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1 Introduction

Numerical simulations in the field of civil engineering are common for the design process of structures and

the assessment of existing buildings. Particularly, such approximation models of the “real” physical be-

haviour of structures are regularly applied in the case of complex systems with a high number of unknowns,

geometrical and/or material non-linear behaviour, sophisticated models for the underlying phenomena, an

irregular geometry of the structure, or a large number of load cases and load combinations. The behaviour

of these structures is analytically difficult to determine and is approximated with numerical simulation

methods especially the Finite Element Method (FEM).

By using FEM, the real structure is transferred into a numerical global model (GM, e.g. concrete bridge). In

the process of designing engineering structures, several physical phenomena (e.g. material modelling, con-

crete shrinkage, soil models, pile foundation, interaction models) are represented by partial models (PM).

These partial models are coupled together to predict the behaviour of the observed structure (GM) under

different load cases and ambient conditions, such as geometric conditions, material properties, environmen-

tal, and loading conditions.

Engineers have to decide which phenomena should be considered in the global structural model. Subse-

quently, the engineer determines which models are suitable for computing the physical processes in order to

determine the structural behaviour realistically and efficiently. This decision-making process is often made

by engineering judgement based on knowledge and experience. The selection of different models is thus

often qualitative. In general, a large set of other models exists, whereby the complexity and accuracy varies

considerably between the models for representing different phenomena.

In most cases, the model includes some amount of inaccuracy and incompleteness. For an improved and

more efficient model application, a lack of theoretical knowledge or a deliberate simplification is often

introduced in the model description, which may cause some errors in the model output. In most cases,

model uncertainty, also known as modelling error, gets involved in the model prognosis, which may be

considered by the commonly known partial safety factors in guidelines and design textbooks. Nevertheless,

consideration must be given to the fact that the partial safety factors in the design codes according to the

model uncertainty consider “small” computational errors, exclusively. As an assumption for the definition

of the model uncertainty’s partial safety factors, the structural model is generally able to, on average,

analyse the load-bearing behaviour [349]. Not considered in these safety factors are the errors due to the

selection of generally inappropriate models and detailed information about the uncertainty. Furthermore,

no specific information is given to model adequateness and hence such model selection is again solely based

on engineering judgement.

Many global structural models are already available for different types of engineering structures. In gen-

eral, the coupling between various partial models is found to be extra important for structures that

cannot be decoupled into the structural components for analysis purposes. Some researchers investigate

the importance and consequence of model selection in different structural engineering fields, such as:
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1. Introduction

�2012 Bažant et al. [29, 28] analysed measured structural bridge deflections such as appeared

at the Palau bridge [37, 38]; emphasised the importance of creep

model choice on the structural behaviour, see Fig. 1.1,

�2011 Guo et al. [154] discussed the importance of the consideration of certain phenom-

ena (creep, shrinkage, cracking of concrete and corrosion) in order

to determine a more accurate time-dependent reliability analysis

method,

�2011 Pan et al. [307] applied uncertainty analysis with respect to the model prediction of

the long-term behaviour of long-span, prestressed, concrete, contin-

uous, rigid-frame bridges; the main goal of this study is the compu-

tation of the difference between several numerical models in com-

parison to measurement data,

�2010 Barr et al. [19] concluded that changes in prestress due to shrinkage, creep, relax-

ation, and elastic shortening are reasons for complicated accurate

prognosis of long-term deformations of prestressed concrete bridges;

comparisons between long-term measurements over three years and

the modelled deformations illustrate the significance of model se-

lection with respect to these phenomena,

�2008 Baker [15] estimated structural damages due to extreme loadings under an

earthquake event by uncertainty propagation method; this study

declared the uncertainty due to the model selection process to be a

significant and important component in the analysis,

�2007 Yang [414] investigated uncertainty and sensitivity analysis of time-dependent

effects due to creep and shrinkage, time-dependent axial shortening

and time-dependent prestress forces in an actual concrete girder

bridge,

�2001 Sanayei et al. [362] determined the importance of the model selection using structural

health monitoring data; this study concluded that model selection

is a process which is affected by the interdependency between mod-

elling error and parameter estimation.

These studies exemplify the importance of the model selection on the simulation results and corresponding

conclusions. For example, the study of Bažant et al. [37, 38] emphasises the importance of the creep

model choice on the model responses in comparison to the measurement on the structure, see Fig. 1.1.

Consequently, the main conclusion is that the engineering decision about the consideration or negligence

of different phenomena (partial models) is crucially important for the establishment of global structural

models. Nevertheless, the consideration or the negligence of a certain partial model and the coupling to

the other phenomena in the global model are often based on experts’ opinion. The quantification of each

partial model’s influence on the overall structural behaviour is almost never considered in studies, such as

those mentioned above. Subsequent investigations as for example reliability analysis, risk analysis, or the

simulation of the load-bearing behaviour of structures, are commonly analysed for only one global model

scenario of the object with underlying pre-selected partial models and model descriptions. Subsequently,
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Computed Deflections, Prestress Loss, and
Comparisons to Measurements

Because of symmetry, only one-half of the bridge was analyzed. A
three-dimensional (3D) finite-element program that automatically
captured all the stress-redistribution effects attributable to creep
was used (see the mesh in Fig. 2). As a first check of the program,
a comparison was made with the bridge stiffness, which was mea-
sured in January 1990 in a load test by JICA (1990). An average
downward deflection of 30.5 mm (0.10 ft) was recorded at midspan
when two 12.5 t trucks were parked side by side on each side of the
midspan hinge (a previous paper erroneously assumed that only
one truck was parked on each side). The front wheels of the

two trucks on each side were assumed to have been 3 m away from
the midspan. The rear wheels, 12 m behind the front wheels, were
assumed to carry 60% of the truck weight. The finite-element code
predicted the deflection of 30 mm (0.098 ft) that was measured
approximately within 2.4 h (the 2.4 h creep was based on Model
B3 Set 2) under a load of 245 kN (55.1 kip). Given the uncertainty
about the actual rate of loading, the difference was small enough.

The results of the calculations are shown in Figs. 4–7, both in
linear and logarithmic time scales (t − t1 = time measured from the
end of construction; t1 = time when the midspan hinge was in-
stalled). The data points show the measured values. The circles re-
present the data reported by the firm that investigated the excessive
deflections (JICA 1990), and the diamonds represent the data

Fig. 4. Mean deflections calculated using Model B3 and the ACI, CEB (one using SOFiSTiK), JSCE, and GL models in normal and logarithmic
scales

Fig. 5. Mean deflections calculated as in Fig. 4 but for time extended up to 150 years (assuming no retrofit and no collapse have taken place)
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Figure 1.1: Mean deflections analysed with different models at the Palau bridge in normal and logarithmic
scales [37]

some questions arise:

� For which of the several existing phenomena should the engineer take into account for a more

complex and accurate model to represent the global structural model?

� When can the engineer choose simplified models or even neglect certain phenomena?

� What is the influence of a certain phenomenon in comparison with other phenomena with re-

spect to the structural load-bearing behaviour?

� How can the uncertainty in the model prediction be reduced?

� How can the reliability of the structural design be increased?.

The qualitative model selection is not capable of recommending detailed answers to such questions. In

contrast, the quantitative model evaluation developed by Keitel et al. [210, 211], with the contribution

of this thesis’ author, assists the model selection process with numerical simulations in order to reduce the

modelling uncertainty. The analysis of the phenomena’s influence on the structural load-bearing behaviour

explains the engineering selection of more accurate or simplified models based on a quantitative approach.

This analysis can significantly reduce the uncertainty in the model prediction if the engineer selects par-

tial models with high prediction quality for the more sensitive phenomena. Hence, a clear insight into the

structural behaviour and the subsequent quantitative model selection can provide a more reliable approach

to the structural design.

However, this quantitative evaluation method of coupled partial models only provides information on local

positions of the structure. Based on the evaluation method by Keitel et al., changing the importance of

the partial models and varying corresponding partial model qualities along the structural positions results

in a varying global model quality. In practical engineering problems, there is no requirement to establish

various global models with the corresponding best prediction quality at a local position in the structure for

the design purposes. For example, it would not be feasible for practical engineering projects to choose a

certain global model with a high quality to predict a response quantity at the side span of a bridge struc-

ture and subsequently select an also high-quality but different global model to evaluate the same response

quantity at the mid span. The structural engineer needs to have a global model with an acceptable overall
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prediction quality. But

� What are the partial models’ influences with respect to the entire structure?

� What is the global structural prediction quality for the entire structure?

� Is the global model quality the lowest or highest quality of all positions?

� Is the global model quality the average of both?

� Is the global model quality the numerical integration of all qualities at each position along the

structure?

� What is the significance of each position with respect to the entire structure?

� Is it possible to quantify a prediction quality with accordance to certain engineering design criteria?

These questions cannot be answered by the local position’s quality assessment. Moreover, the assessment

at local positions is not reasonable for non-linear physical simulations in which the global safety check is

necessary, in structures that a false position identification may appear, due to complicated and interactive

conditions, or for dynamic analysis of structures.

Therefore, the integrative assessment method is established here to quantitatively compute the answers for

these questions. The assessment at local positions is enhanced to the integrative assessment method of

the entire structural load-bearing behaviour. The integrative assessment method is applied to semi-integral

concrete bridges in order to emphasise the applicability of the method for structures with interactive and

complex structural components. The study about the influencing phenomena for such types of restraint

sensitive structures shows that there is a lack of material models’ assessment for reinforced concrete and

pile foundation models. Hence, both phenomena are evaluated according to the uncertainty in the model

prediction. Parametric studies under varying assumptions in the uncertainty analysis quantify significant

conclusions. These partial model qualities can be subsequently considered in the assessment of the entire

structure by applying the proposed integrative assessment method.

Finally, the integrative assessment method for the entire structure can automatically consider any design

requirement, such as stress limitations, displacement limits, reinforcement design and others. Hence, the

global model qualities quantified by this method allow for the selection of an adequate model to meet

design criteria with high reliability in the model predictions. A quantitative comparison between several

global structural models is then clearly feasible on the entire structural level. The integrative assessment

method assists the structural engineer in the decision making process in various project’s design phases. The

engineer can then choose a structural model with an adequate prediction quality for the entire structure in

order to obtain more reliable simulation results and finally a safer design.

This analysis illustrates where the global structural model has to use more accurate partial models and

where more simplified partial models can suffice. Therefore, the integrative assessment method is a powerful

methodology, which can significantly reduce the uncertainty in model predictions. The design of engineering

structures in accordance with the recommendations of codes and guidelines should be performed based on

the results of a global structural model with a high prediction quality in order to obtain a more reliable and

safer design. Therefore, the probability of occurrence of structural damages during lifetime, which generally

leads to high maintenance, repair, and refurbishment costs, can be clearly reduced. Finally, the quantitative

comparison of a few global structural models can increase the confidence in the computed results and also

in the entire structural design.
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2 Statistics, model evaluation, and reliability

2.1 Uncertainty Analysis

2.1.1 Fundamentals of uncertainty analysis

A computational model is a description of a phenomenon either based on physical, theoretical, or empirical

investigation. Inside these models, relevant variables Xi are used as the model input variables, which are in

most cases random and not deterministic variables. Therefore, the model output Y can be interpreted as:

Y = f (X1, X2, ... , Xi ) , (2.1)

in which f (...) is the model function. As a first guess, it may be obvious to assume that the model is

complete and exact in the determination of the phenomenon. In the case that all variables Xi are known

in a particular system of interest (e.g. determined by specific experiments), the model output is predicted

without any error. This is a very optimistic and maybe naive assumption, because in most cases the

model underlies some amount of inaccuracy and incompleteness mainly due to assumptions in the model

abstraction process. For an improved and efficient model application, a theoretical lack of knowledge or

a deliberate simplification is often introduced in the model description, which may cause some errors in

the model output. Therefore, model uncertainty (modelling error) is in most cases involved in the model

prognosis.

In order to evaluate how closely a model approximates the real system of interest, it is not simply a

matter of comparing model results and empirical data [399]. The identification and the assessment of

the uncertainties underlying a model is a necessary and helpful methodology for the development and

application of engineering models. In order to design structures, the underlying uncertainties have to be

considered in the simulation and design [160]. Being taken into account the model uncertainty, a more

reliable model output Y
′

can be determined according to the measurement/model reference data by [105]:

Y
′

= f
′
(X1, X2, ... , Xi ; θmod,1, θmod,2, ... , θmod,j ) , (2.2)

in which f ′(...) is the model function including the model uncertainties θmod,j . These quantities are param-

eters representing the model uncertainties that can be treated as random variables.

In general, the uncertainty in a model output is caused by aleatoric (parameter randomness X1 ... Xi ) and

epistemic (model errors θmod,1 ... θmod,j ) uncertainties, see Fig. 2.1. Increase in the complexity in the model

description can reduce model uncertainty, because the accuracy is increased in describing the “real” phe-

nomenon (e.g. material behaviour). However, if more model input parameters are needed for the analysis of

sophisticated model with high model complexity, greater parameter uncertainty will arise due to imprecision

and randomness in the input parameters.
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2. Statistics, model evaluation, and reliability

The most adequate model is the model with acceptable model uncertainty and suitable parameter uncer-

tainty. For the evaluation of the model output, both uncertainty sources can be investigated by combining

both into the total uncertainty of the model prognosis, see Fig. 2.1. Finally, the assessment of model, param-

eter, and total uncertainty results in the quantification of model quality of the prediction and subsequently

assists model selection based on a quantitative approach. Hence, the most adequate model should be used

for structural analysis, design, reliability assessment, and any other purposes. In various research studies,

several terminologies are used for the uncertainty description which are listed as follows:

� epistemic uncertainty afterwards referred to as model uncertainty and

also referred to as: reducible uncertainty

subjective uncertainty

intrinsic uncertainty

state-of-knowledge uncertainty

systematic error

� aleatoric uncertainty afterwards referred to as parameter uncertainty.

also referred to as: variability

irreducible uncertainty

inherent uncertainty

stochastic uncertainty
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total uncertainty

parameter 
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(aleatoric)

model
uncertainty
(epistemic)

most adequate 
model

Figure 2.1: Hypothesis of relationship between model complexity and model uncertainty, based on [399]

The parameter uncertainty is caused by the inherent uncertainty of model input parameters, such as mate-

rial properties, geometric dimensions, or empirically determined parameters. The comparison between the

deterministic model output and the “reality” is commonly determined by experimental measurements. Such

experimental studies can be similarly seen as a model description, called physical model, with underlying

measurement uncertainties. Nevertheless, experimental data are generally used for the comparison between

mathematical and physical models, which usually leads to a discrepancy between results from both mod-

elling techniques.

This source of uncertainty in the mathematical model description is assessed in the model uncertainty,
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2.1. Uncertainty Analysis

which is quantified in the conceptual error of the model caused by simplification or even by lack of knowl-

edge about the “real” physical phenomenon. The validation of a model is the study of whether a model

representing a physical phenomenon predicts the actual physical phenomenon with sufficient accuracy [12].

The use of experimental measurements is a regularly used method for analysing the discrepancy between

model predictions and experimental studies.

There are a lot of engineering fields and applications where researchers and engineers state the substantial

and crucial importance of uncertainty assessment of numerical simulations. For example, the uncertainty

analysis is applied to hydrological, hydraulic and environmental models [406], groundwater models [121],

reliability and risk analyses [88, 109, 293], road safety assessment [168] and large-scale physics-based sim-

ulations [309]. The results may affect the decision-making in these various engineering issues.

In a study by Riley [345], an overview of existing uncertainty quantification methods is presented. The

Bayes’ian model averaging approach [241], the adjustment factor approach [423], and the modified adjust-

ment factor approach [346] are all commonly used methods. The limited availability of experimental data

points for approaches, such as the Bayes’ian model averaging, is clearly recognisable in the preliminary

design phase of engineering structures. Therefore, the adjustment factor approach is reasonable to use for

uncertainty analysis without specific experimental data. This method introduces in the response of a certain

model YMi a sort of additive E ∗a “adjustment” directly on the prediction of a reference model YMref in

order to account for the uncertainty associated with it [423]:

YMi = YMref + E ∗a . (2.3)

Only one source of uncertainty, which is the model uncertainty, is included in this approach. Using the

concept of additive model framework uncertainty, Most [286] enhanced this approach by additionally

taking into account the parameter uncertainty. Assuming an additive total uncertainty, the output of a

single model is approximated by:

YM
∗
i ≈ YMi + εMi

∆ + εMref , (2.4)

where εMi
∆ is the model uncertainty with respect to the reference model. The error of the reference model

itself is defined as εMref and is assumed to be a constant additive term for each model [286]. Therefore,

the knowledge about the exact value of the reference model error is not necessary.

If the differentiation between the complexity of the models cannot be evaluated in a clear theoretical argu-

mentation (e.g. which model considers which physical phenomena in which complexity), the evidence theory

initiated by Dempster [80] and developed by Shafer [376] can be used for the uncertainty assessment

with the extension by Park and Grandhi [309].

The most adequate model with the highest prediction quality is the model with the lowest total uncer-

tainty. This model should be subsequently used in structural engineering studies in order to achieve a greater

confidence in the simulation results and finally to ensure a reliable structural design. The quantification

of the model quality using the uncertainty analysis with the adjustment factor approach [286], presented

in this section, is suitable for the assessment in the range of the mean values of the input parameters.

Furthermore, theoretical studies, as published by Kiureghian [216], have to be conducted for a reliability

analysis. Because of the significant influence of the distribution type and the bias of the total uncertainty

due to the failure probability, the assumptions with respect to the model uncertainty should be redefined

7



2. Statistics, model evaluation, and reliability

in order to quantify model quality in the failure regions.

2.1.2 Aleatoric parameter uncertainty

A mathematical closed-form solution for the analysis of the probabilistic characteristics of a system of

interest is rarely feasible and therefore computational algorithms are necessary. This method relies on a

repeated random sampling of the input variables in order to simulate the results of the models (input - output

relationship for each sample). The Monte Carlo method is still a commonly applied strategy in order to

obtain random input parameters and associated simulation results. Nevertheless, extensive computational

effort is necessary for the computation of the randomness for large structures, many input parameters,

time-dependent analysis, reliability analysis of structures and for non-linear responses in the models.

In order to improve sampling precision and decrease the required sample size in a probabilistic simulation,

the Latin Hypercube Sampling (LHS) is investigated by MacKay [254]. This algorithm is an effective

sampling method that enables a reliable approximation of the stochastic properties even for a small number

of samples and high dimensional random variables. Further development of this method by Iman [184]

improves the accurate consideration of correlation between input parameters. As a first step, each input

variable is subdivided into K non-overlapping intervals on the basis of equal probability. Therefore, the

probability in each interval is 1/K and the algorithm provides that only one sample xk
i (k actual sample of

sample size K ) is considered in the analysis of the model output, see Fig. 2.2. The centroid in each interval

can be assumed to be a representative value of the sample in the case that the number of intervals K is

greater than the number of variables N.

C
D

F 
F(

x i
)

input samples

k-th interval

1

K

…

k

0.0

0.5

1.0

xi
1 xi

k xi
K

F(xi
k) 

1/K

Figure 2.2: Interval of equal probability for the Latin Hypercube Sampling method

In order to consider the adequate probabilistic characteristics of the underlying distribution functions, it is

necessary to couple the input variables xk
i with tables of random permutations of rank number. Therefore, a

matrix of K rows and N columns is computed for the random input parameters. Moreover, the efficiency and

accuracy of the LHS sampling methodology is independent of the dimensions of the random vectors, which

have to be considered in the analysis of the model. In conclusion, the main advantage of this computational

algorithm is to significantly reduce the number of required simulations in probabilistic analyses with the
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2.1. Uncertainty Analysis

same accuracy compared to Monte Carlo simulation.

In general, the parameter uncertainty is quantified by the variance in the model output of each model

caused by its underlying probabilistic input parameters. The aleatoric parameter uncertainty of each model

Mi is computed by the quotient of the standard deviation σMi
par,Y and the mean value µMi , which leads to

the dimensionless coefficient of variation CVMi
par,Y . Therefore, the mean value of the model output Y for K

number of samples is defined as:

Y =
1

K

K∑
k=1

Y k , (2.5)

the standard deviation of the model output:

σMi
par,Y =

1

K − 1

K∑
k=1

(
Y k − Y

)2
, (2.6)

and the coefficient of variation:

CVMi
par,Y =

σMi
par,Y

µMi
. (2.7)

The standard deviation of a model output is often used as a scatter indicator to compare different models.

This strategy penalises models that computes, for the same coefficient of variation, a higher mean model

output, because the standard deviation is automatically raised. High differences in the mean model output

occurs for example in the comparison between linear and non-linear models. Thus, for the model evaluation,

the coefficient of variation is applied in this thesis in order to evaluate the models in a dimensionless strategy.

2.1.3 Epistemic model uncertainty

Experimental and monitoring data as reference

A common approach for the assessment of model uncertainty is concerned with the comparison between

the prognosis of the mathematical (computational) model with either physical (experimental) data or some

more sophisticated model, which is supposed to be a more accurate representation of the phenomenon.

In comparative studies between model predictions and the reference (experiment, sophisticated model),

probabilistic characteristics can be assessed for the model uncertainties, see Fig. 2.3. Quantifying the dif-

ference between mathematical and physical models in such a way that the computational model predicts

accurately, on average, the test results, determines the mean value of the model uncertainty. Therefore,

the model uncertainty random variable θmod,Mi
for each model Mi can be determined by [63, 105]:

θmod,Mi
=

Ymeas/ref

YMi

or θmod =
Ymeas/ref[∑nMi

i=1 YMi

]
/nMi

, (2.8)

in which Ymeas/ref in the output of the measurement or the reference model and YMi
is the response of the

actual considered model. These uncertainties account for random effects that are neglected in the models

due to simplifications in the mathematical description.

A very large set of representative laboratory and monitoring data on real structures where all input param-

eters Xi , describing the load effects, environmental conditions, and the material’s resistances, are measured

or controlled is the ideal situation for quantifying the model uncertainties. In such a case that all parameters

and conditions are known, then the model uncertainty has the nature of an intrinsic uncertainty [105]. In
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Figure 2.3: Determination of model uncertainty statistics assessed for a number of mathematical or phys-
ical experiments, based on [105] and Eq. 2.9

contrast, a limited number of available measurements for a specific system of interest can cause a large

statistical uncertainty. Moreover, in the measurements itself, an additional source of uncertainty is included

which affects both the input parameters and the output variables.

Therefore, an adequate set of measurements is often absent and a purely statistical evaluation of model

uncertainties is limited. In probabilistic analysis, such as reliability assessment, the properties of the model

uncertainties are commonly based on engineering judgement. In the Probabilistic Model Code (PMC) [105],

the comparison of several model predictions is stated to be reasonable in order to assist the decision making

process under model uncertainties. A frequently applied method for considering this uncertainty into the

computational model, see Fig. 2.3, is:

Y
′

= θmodf (X1, X2, ... , Xi ) . (2.9)

For models defined in design guidelines such as Eurocode 2 (EC 2) or Model Code 2010 (MC 10), the mean

value of model uncertainty can be larger than unity, due to the inherent conservative description of such

models. In the case that measurement data are used, applications of measured properties rather than nom-

inal or characteristic values are preferred in calculating the model prognosis. Nevertheless, computational

models such as the Finite Element models implicate advantages in comparison to physical experiments,

since the former allows a well-controlled input definition [105]. In general, the modelling uncertainties may

be subdivided into:

� load models variability in a structural component, between several structural

components of the same structure, between various structures,

� load effect simulation

models

linear-elastic, non-linear analysis of strains, stresses, section forces

in elements, considerations of connections, imperfections, etc.,

� local stiffness and re-

sistance models

description of element behaviour, material modelling, hardening and

softening, thermal properties.

A summary of assumptions with respect to the consideration of model uncertainties, which depend on the

types of structural members or the physical phenomenon, is listed in Tab. 2.2. A normal distribution is exten-

sively applied for the description of randomness of model uncertainty. In most cases, these determinations

are usually based on engineering judgement and can only be seen as estimations if no further information is

available. For example, the output of Finite Element models are the basis for the judgement based on the
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2.1. Uncertainty Analysis

Probabilistic Model Code (PMC). But what does a Finite Element model mean? No further information is

available to clarify the underlying model characteristics, such as material description, long-term behaviour,

load conditions, loading level, constraint conditions, and so on.

Model uncertainty studies on concrete elements

Based on the Round-Robin test project on strain-softening behaviour of concrete in uniaxial compression,

see Sec. 3.1.2, a second Round-Robin test programme of highly reinforced concrete beams (over-reinforced)

is investigated under four-point bending. The failure of the concrete elements is caused by the failure in

compression. The rectangular beams are tested at Aalborg University in Denmark in 1996 including 4 dif-

ferent types of beams [279]:

� normal strength concrete (NSC) fcm ≈ 23 MN/m2 L = 3.60 m, h = 0.20 m, b = 0.1 m

L = 7.20 m, h = 0.40 m, b = 0.2 m

� high strength concrete (HSC) fcm ≈ 118 MN/m2 L = 3.60 m, h = 0.20 m, b = 0.1 m

� fibre-reinforced HSC (FRHSC) fcm ≈ 114 MN/m2 L = 3.60 m, h = 0.20 m, b = 0.1 m

where each type is tested three times. Each beam is highly reinforced with the same reinforcement ratio

of about ωs1 = 7.3 %. The compressive zone is unreinforced in the midsection between external loads in

order to force and localise compressive failure. Based on the test results including the material properteris

and experimental conditions, researchers are intially invited to this research project to investigate numerical

models. Finally, seven research institutions contributed to this study. The outcome of this study is pre-

sented by van Mier and Ulfkjœr [279] with comparisons between the numerical predictions and the

experimental results obtained from maximum external load, ductility, and size effect. The models used to

compare the experimental results are all based on numerical methods and are shortly introduced:

� König et al. [223] different constitutive models over certain parts of compressive zone,

identification for ranges of constitutive models necessary

� Légeron et al. [243] curvature integration method (CIM, computation of depth of neural

axis for a certain curvature from equilibrium considerations) or

simplified Finite Element Method (SFEM, multilayer beam elements,

plane sections are assumed to remain plane)

� Bascoul et al. [21] Finite Element Method with multilayered short elements, strain in

reinforcement as same as surrounding concrete, successive equilibrium

states

� Kang et al. [201] fibre beam elements, half of beam is modelled using four elements

only

� Ožbolt et al. [306] 3D- Finite Element Model, 8-node solid elements, microplane model

as constitutive law, only one fourth is modelled, and

� Kotsovos [231] 3D- Finite Element Model, 27-node brick elements, steel is modelled

by means of line elements without transversal stiffness.

The comparison between the ultimate load observed in the experimental study Pexp with the calculated

load Pcalc based on the previously introduced models is shown in Fig. 2.4. All analyses, except results of

Kotsovos (maximum concrete compressive strain is limited), are within 15 % of the measured maximum
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2. Statistics, model evaluation, and reliability

load. In studies by Bascoul et al. [21] and König et al. [223], low and high friction concrete properties

(from uniaxial compressive tests) are analysed. In general, low friction prognoses always underestimate

the experimental maximum load by up to 15 %. In contrast, high friction material properties lead to

overestimation of up to 16 %. Perhaps the truth lies somewhere in between as van Mier et al. suggest

[279]. This extensive experimental and numerical research project is used in the assessment of model

uncertainty by Schlune et al. [370], see Tab. 2.2.
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Figure 2.4: Comparison of ultimate load observed in experimental study Pexp with calculated load Pcalc

for over-reinforced beams in four-point bending [279], low friction (LF) and high friction (HF)
condition considered for constitutive compressive concrete model, normal strength concrete
(NSC), high strength concrete (HSC), fibre-reinforced high strength concrete (FRHSC), small
for beam length L = 3.60 m, large for beam length L = 7.20 m

In the project “Sustainable Bridges - Assessment for Future Traffic Demands and Longer Lives” [63], various

research studies are assessed and summarised in order to accurately account for the modelling error in the

simulation of bridges in particular. The modelling errors for bridge members in bending and shear are listed

in Tab. 2.2.

For the prediction of shear capacity of reinforced concrete beams, Somo and Hong [382] quantify the

model uncertainty of commonly applied models. In total, the database contains 1146 test beams subjected to

point loads and uniformly distributed loads in which detailed information for the shear capacity prognosis

is available. Models according to the American Concrete Institute, the Canadian Standard Association,

modified compression field theory, and shear friction methods are used for the statistical evaluation of

model uncertainty, see Tab. 2.2. The ratio computation between the experimental test results and the

predictions evaluates the model uncertainty.

For beams without stirrups, the recommendations of the design codes significantly underestimate the shear

capacity and therefore the mean value is about µθmod
≈ 1.6 and CVθmod

≈ 0.6. The prognosis of shear

capacity for RC beams with stirrups is more reliable and leads to µθmod
≈ 1.2 and CVθmod

≈ 0.3. This model

uncertainty is assessed for all shear span -to -depth ratios (a/d) which are tested in the database. For ratios
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2.1. Uncertainty Analysis

a/d > 2, a reduced uncertainty is analysed and the accuracy of the prognosis models is increased.

Large-scale shear/bending tests on reinforced concrete slabs are performed in 2002 and 2003 at the Institute

of Structural Engineering at the Swiss Federal Institute of Technology in Zurich [193]. Afterwards, an

international study for the prediction of the expected load-deformation response of the test specimens is

motivated by Jaeger and Marti, which leads finally to contributions by Belletti at al. (University

of Parma), Bentz and Collins (University of Toronto), Butscher and Vill (Vienna University of

Technology), Cervenka and Pryl (Cervenka Consulting, Praha), Che and Vecchio (Dalian University

of Technology and University of Toronto), Foster (University of New South Wales, Sydney), Kolleger

(Vienna University of Technology), and Susetyo and Vecchio (University of Toronto) [192].

The evaluation of the experimental results and the computational models pronounced once again the

modelling challenge of the non-linear behaviour of reinforced concrete, which still poses significant problems

even for experienced researchers using both simplified (moment-curvature relationship) or complex models

(Finite Element analysis), see Fig. 2.5. The application of relatively simple hand calculations can still be

highly justified in the case that they are judiciously used, which may provide predictions that are comparable

to those obtained from more complex numerical simulations. For some tests, a failure due to flexural fracture

mechanism with plastic strains in the reinforcement is observed and for slabs without shear reinforcement,

a shear fracture process occurs.

ACI Structural Journal/May-June 2009 311

Fig. 3—Moment-deflection characteristics: scatter of all entries. (Note: 1 kNm = 0.738 kip⋅ft; 1 mm = 0.0394 in.)

(a) h = 20 cm, 0◦, with shear reinforcement

ACI Structural Journal/May-June 2009 311

Fig. 3—Moment-deflection characteristics: scatter of all entries. (Note: 1 kNm = 0.738 kip⋅ft; 1 mm = 0.0394 in.)

(b) h = 50 cm, 0◦, with shear reinforcement

Figure 2.5: Comparisons between several prediction models and experimental test results for load-
deformation behaviour of concrete slabs according to Jaeger and Marti [192, 193], hor.
axis: displacement w [mm], vert. axis: bending moment My [kNm]

In the modelling uncertainty study by Schlune et al. [370], the discrepancy between the model predictions

for slabs with shear failure is much higher 0.24 ≤ CVθmod
≤ 0.34 in comparison to slabs with bending failure

0.03 ≤ CVθmod
≤ 0.11, see Tab. 2.2. Moreover, the behaviour of slender slabs (h = 20 cm) can be modelled

more accurately in comparison to compact slabs (h = 50 cm). In the case that the bending reinforcement

is not aligned with the principal bending moment direction, the models overestimate the maximum failure

load observed in the experiment. Nevertheless, this model uncertainty assessment is based exclusively on

the maximum admissible external load. The load-deformation curve in the post-peak and pre-peak range

is not considered, which may be significant.

All information about the research studies according to the assessment of model/modelling uncertainty is

listed in Tab. 2.2. For beams in bending, a variation of the model uncertainty is quantified in the range of
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2. Statistics, model evaluation, and reliability

0.06 ≤ CVθmod
≤ 0.25. In the case that plastic strains occur in the reinforcement (ductile failure mechanism

design), the model uncertainty is low. Compressive failure in beams (over-reinforced beams) leads to a higher

model uncertainty and intermediate values are reasonable. Moreover, high strength concrete beams with a

high amount of reinforcement lead to the highest model uncertainty in the above mentioned range. Shifting

the angle of reinforcement away from the direction of principal moments in concrete slabs leads to an average

discrepancy between the models considered in comparison to the experimental results. This can be taken

into account in the average value of the model uncertainty by a quantity of about 0.9 ≤ µθmod
≤ 1.1.

The prediction of shear capacity for concrete beams and slabs is subjected to higher model uncertainties in

the range of 0.10 ≤ CVθmod
≤ 0.35. Structures with plastic strains in the failure condition lead to a better

agreement and a model uncertainty in the lower range could be applied for the simulation. Failure due to

concrete crushing in small structures without combined loading conditions leads to an uncertainty in the

middle of the above mentioned range. Combined compressive and shear loadings for large structures cause

the highest model uncertainties. Shear capacity analysis may considerably overestimate the measured test

results, which lead to a mean model uncertainty of about 0.7 ≤ µθmod
≤ 1.0.

Despite the studies presented here, the data to quantify model uncertainty of non-linear analysis are scarce

and might be neither representative nor conclusive. The model uncertainty generally depends on the chosen

model description approach and solution technique. Therefore, these model uncertainties vary in a wide

range. Until more research is assessed that allows the model uncertainty to be quantified more accurately,

the choice of the model uncertainty is often dependent on engineering judgement and can be subjective.

However, it might be better to choose a conscious and reasonable model uncertainty than assuming a

coefficient of variation of CVθmod
= 2.5 ... 5.0 for all kinds of non-linear models independent of shear or

bending failure mechanism, as is considered in design codes such as the Eurocode 2.

Most complex model as reference

According to the estimation of model uncertainty in a specific system of interest, a certain model can be used

as the reference modelMref in order to evaluate the differences in the several predictions. Different models’

output is caused by the lack of knowledge of the simplified models in relation to the most complex model

considered in the evaluation. Experimental data could be used for this purpose as previously discussed, but

usually in the design process of engineering structures, no specific measurement data exist. Therefore, the

most complex model can be set as a benchmark. By using the model with the highest complexity, it is safe

to assume that the accuracy of the description of the physical phenomena should also be the highest. The

model uncertainty of the other more simplified models Mi is defined as [286]:

V
(
εMi

∆

)
≈ b2

(
Y
Mi − Y

Mref
)2

, (2.10a)

CV
(
εMi

∆

)
= CVMi

mod,Y ≈
b ·
(

Y
Mi − Y

Mref
)

Y
Mref

. (2.10b)

This model uncertainty is computed using the mean responses of the models Y . The absolute differences

between the reference model and the more simplified models are the basis for determining the model

uncertainty [286]. The variance of the model uncertainty is unknown and therefore it is necessary to make

an assumption about the form of the underlying distribution in order to obtain a valid confidence level.

In engineering applications, a reasonable assumption is that the underlying distribution is normal, because

many simulation results encountered in practice can be well approximated by this distribution type [285].
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2.1. Uncertainty Analysis

A moderate divergence from normality will have little effect on the validity of this assumption. Based on

this assumption, the factor b in Eq. 2.10a can be chosen in correspondence to a certain one-sided quantile

value (confidence boundaries defined by percentage points tα,ν):

97.5%→ b = 1/t0.025,∞ = 1/1.960 = 0.510 , (2.11a)

95.0%→ b = 1/t0.050,∞ = 1/1.645 = 0.608 , (2.11b)

90.0%→ b = 1/t0.100,∞ = 1/1.282 = 0.780 . (2.11c)

2.1.4 Total uncertainty and partial model quality

The total variance of a certain model considering the variance of the model output, the model uncertainty,

and the variance of the error of the reference model itself is approximately [286]:

V (YM
∗
i )︸ ︷︷ ︸

CV
Mi
tot,Y

≈ V (YMi )︸ ︷︷ ︸
CV
Mi
par,Y

+ b2(Y
Mi − Y

Mref )2︸ ︷︷ ︸
CV
Mi
mod

+ V (εMref )︸ ︷︷ ︸
not considered

. (2.12)

The variance of the most complex model itself is additive to each individual model. Therefore, the exact

value is not crucially important for the assessment of several models and is consequently not further

addressed in this thesis. The total uncertainty, defined as the variance (dimensional criteria) mentioned

above, is redefined to the dimensionless coefficient of variation by:

CVMi
tot,Y =

√
CVMi

par,Y

2
+ CVMi

mod,Y

2
. (2.13)

This restatement from the dimensional expression of the uncertainty to the dimensionless indication enables

a more precise quantification with respect to the relative model responses. Otherwise, the dimensional

uncertainty is related to the magnitude of the model output. The most adequate model of all the models

considered is the one with the smallest sum of the model and parameter uncertainty. This leads to the

following definition of the model quality based on the corresponding total uncertainty:

MQMi
PM,Y = 1− CVMi

tot,Y . (2.14)

For high total uncertainties CVMi
tot > 1.0, the model quality for each partial model can also be related to

the minimum total uncertainty of all models considered based on the study by Keitel [206] by:

MQMi
PM,Y =

MIN
[
CVMtot,Y

]
CVMi

tot,Y

. (2.15)

Consequently, the application of this relative definition of the prediction quality MQMi
PM,Y is no longer a

clear statistical expression of the uncertainty. Therefore, Eq. 2.14 is applied in this thesis for the evaluation

of the partial model quality based on the total uncertainty, see Sec. 5.1 for the evaluation of material models

for reinforced concrete and Sec. 5.2 for the assessment of pile foundation models.
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Table 2.2: Literature review for model/modelling uncertainty θmod, Probabilistic Model Code (PMC),
Normal Strength Concrete (NSC), High Strength Concrete (HSC), normal distribution (N),
log normal distribution (LN), not mentioned (n.m.), reinforcement (reinf)

Literature Member/ fX (x) µθmod
CVθmod

Phenomenon [-] [-]

PMC, load [105] moments in frames LN 1.00 0.10
effect axial forces in frames LN 1.00 0.05
simulation shear forces in frames LN 1.00 0.10

moments in plates LN 1.00 0.20
forces in plates LN 1.00 0.10

Caspeele et al. [64] load effect uncertainties LN 1.0 0.10

PMC, local [105] bending moment capacity LN 1.20 0.15
stiffness and shear capacity LN 1.40 0.25
resistance connection capacity LN 1.00 0.10

Casas et al. [63] reinforced/prestressed concrete, bending N 1.02 0.06
reinforced/prestressed concrete, shear with reinf. N 1.07 0.10
reinforced/prestressed concrete, shear without reinf. N 1.20 0.10

EC 2-1-1 [101] steel N 1.0 0.025
concrete N 1.0 0.050

Schlune et al. [370] small beam, compressive failure, NSC, n.m. 0.93 0.10
van Mier [279] large beam, compressive failure, NSC, n.m. 0.94 0.11
et al. beam with compressive failure, HSC n.m. 1.02 0.25

Schlune et al. [370] flexural member LN 1.0 0.05

Allaix et al. [5] continuous RC beam LN 1.1 0.07
slender column, combined loading LN 1.2 0.15

Caspeele et al. [64] beam in bending LN 1.2 0.15
column in compression LN 1.0 0.10

Somo et al. [382] RC beams, shear failure, with stirrups LN 1.24 0.32
RC beams, shear failure, without stirrups LN 1.63 0.58

Schlune et al. [370] slab, h = 20 cm, 45◦, no shear reinf. n.m. 0.79 0.27
Jaeger et al. [192] slab, h = 20 cm, 45◦, with shear reinf. n.m. 0.89 0.09

[193] slab, h = 20 cm, 0◦, no shear reinf. n.m. 1.00 0.24
slab, h = 20 cm, 0◦, with shear reinf., Fig. 2.5(a) n.m. 1.04 0.05
slab, h = 50 cm, 45◦, no shear reinf. n.m. 0.72 0.34
slab, h = 50 cm, 45◦ , with shear reinf. n.m. 0.89 0.11
slab, h = 50 cm, 0◦, no shear reinf. n.m. 0.97 0.29
slab, h = 50 cm, 0◦, with shear reinf., Fig. 2.5(b) n.m. 1.12 0.03
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2.2. Sensitivity Analysis

2.2 Sensitivity Analysis

The uncertainty analysis quantifies the variance in the model prediction caused by the scatter in the model

input parameters and the discrepancy between the models assessed in comparison to experimental data or

the most complex model of the considered ones. In contrast, the sensitivity analysis investigates how the

uncertainty (variance) in the model response can be related to the model input parameters [360]. Therefore,

the sensitivity analysis allows the quantification of the influence of each probabilistic model input parameter

with respect to the model output. This analysis quantifies which parameters are influential or can be seen

as deterministic values, because their variance does not affect the model output variance.

Several methods are available in order to compute the sensitivity indices, such as partial derivatives, scatter-

plots, Elementary Effects Method, Variance-based Methods, or Factor Mapping and Metamodelling. These

methods can be distinguished by several criteria such as how these methods can consider non-linearity in

the model output or interactions between the input parameters, and what is the number of possible input

parameters or the number of simulation runs.

The Elementary Effects Method can analyse computationally demanding models and still compute sensi-

tivity values with a relatively small number of accurately distributed sample points and a small number of

model runs [360]. This method is effective at identifying the few important parameters in a model that

contains several parameters, especially in the case when the number of input parameters is too large to

apply computationally demanding variance-based methods.

Variance-based methods compute the sensitivity indices by decomposing the model output’s variance. These

methods are independent of the model characteristics (linear, non-linear), and able to handle full range of

input factor variation; they can compute interaction effects between the input parameters among the pure

sensitivity values of each individual parameter. The main disadvantage of the variance-based measures is

their computational effort. Further information about variance based sensitivity indices, such as first-order,

total-effects, and higher-order indices, is discussed in Sec. 2.5.

Consequent to the computational effort of variance-based sensitivity analysis, researchers aim to develop

efficient numerical algorithms such as Factor Mapping and Metamodelling. Such methods transfer the com-

putational model, such as a finite element model of a structure, into a mathematical description of different

functions or arbitrary shaped areas or even volumes. Therefore, a relatively small number of simulations in

the original computational model is performed in order to obtain the necessary data points for developing

the mathematical model. Subsequently, the sensitivity analysis is computed based on the mathematical

model, which is much faster and more efficient than the computational effort of the original model. Atten-

tion should be paid to the approximation error introduced by this transformation between both models.

In accordance with Saltelli et al. [360, 361], the selection of an adequate sensitivity analysis depends on:

� the computational effort of computing the model,

� the number of input parameters,

� the model characteristics (e.g. non-linearity),

� the consideration of interactions between the model input parameters, and

� the motivation for the analysis and its target.

In the computation of a sensitivity analysis, the input parameters are mostly assumed to be independent.

Experiments on model input parameters such as material characteristics, see Sec 2.3, show in many cases
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2. Statistics, model evaluation, and reliability

a certain correlation between the input parameters. Hence, some methods are limited to uncorrelated pa-

rameters. In the study by Xu and Gertner [413], the variance in the model output is subdivided into

correlated and uncorrelated parameter contributions. This subdivision is analysed using regression-based

methodology. Therefore, the total uncertainty in the model output can be quantitatively decomposed into

partial variances consisting of correlated variations and uncorrelated variations. A high reliability of this

method is assessed for the case where the relationship between input parameters and model output is

approximately linear. Nevertheless, this method may also be applicable for non-linear models depending

on the degree of non-linearity. This method is applied to the evaluation of material models for reinforced

concrete, see Sec. 5.1.

2.3 Probabilistic material properties

2.3.1 Probability distribution

A random experiment is a procedure in which the outcome differs even though it is repeated in the same

manner every time. The possible outcome of the random experiment is the sample space. A random variable,

denoted by an uppercase letter X , is a function that assigns a real number to each outcome in the sample

space of a random experiment. Obtaining the results of an experiment, the measured value of the random

variable is denoted by a lowercase letter x . A discrete random variable (or discrete sample space) is a

random variable with a finite (or countably infinite) range [285]. In contrast, a continuous random variable

(or continuous sample space) is a random variable with an interval (either finite or infinite) of real numbers

for its range. The probability distribution assigns a probability to each measurable subset of the possible

outcomes of a random experiment. Experiments whose sample space are encoded by discrete random

variables can be specified by a probability mass function. Continuous random variables can be specified

by a probability density function. For a discrete random variable X with possible values x1, x2, ... xN a

probability mass function is a function such that [285]:

f (xi ) ≥ 0 , (2.16a)

N∑
i=1

f (xi ) = 1 , (2.16b)

f (xi ) = P (X = xi ) . (2.16c)

The cumulative distribution function (CDF) of a discrete random variable X , denoted as F (x) is

F (x) = P (X ≤= x) =
∑
xi≤x

f (xi ) , (2.17a)

0 ≤ F (x) ≤ 1 . (2.17b)

An alternative method to describe the distribution of a discrete random variable can also be used for

continuous random variables. Because the number of possible values of X is uncountably infinite for a

continuous random variable, X has a distinctly different distribution from the discrete random variables

mentioned above. But, as in the discrete case, many physical systems can be modelled by the same or

similar continuous random variables [285]. Density functions are commonly used in engineering in order to

describe physical systems. A probability density function (PDF) f (x) can be used to describe the probability
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2.3. Probabilistic material properties

distribution of a continuous random variable X . For a continuous random variable X , a probability density

function is a function such that:

f (x) ≥ 0 (2.18a)∫ +∞

−∞
f (x) dx = 1 . (2.18b)

A histogram is an approximation of a probability density function. For each interval of the histogram,

the area of the bar equals the relative frequency (proportion) of the measurements in the interval. The

cumulative distribution function of a continuous random variable X is:

F (x) = P (X ≤ x) =

∫ x

−∞
f (x) dx . (2.19)

The quantity µ = E [X ] of the random variable X is defined in such a way that the operator E determines

the average or expected value of X . Based on this determination, standard deviation σ of the random

variable can be computed by:

continuous random variable:

σ =

√
E
[
(X − µ)2

]
, (2.20)

discrete random variable:

σ =

√
1

N

[
(x1 − µ)2 + (x2 − µ)2 + ... + (xN − µ)2

]
, (2.21)

in which the mean value can be determined by:

µ =
1

N
(x1 + x2 + ... + xN) . (2.22)

A moment of a probability distribution (quantitative measure of shape of a set of data points) about

the mean value of the random variable is the central moment. This quantity is the expected value of

the deviation of the random variable from the mean. Stochastic properties of a random variable can be

described by the several moments which can be subsequently considered in the probability distribution

of the random variable. In general, the important central moments are up to the order of four, which is

adequate for the description of the probabilistic characteristic of a random variable:

First central moment: mean value

µ1 = µ = E ((X − µ)) , (2.23)

Second central moment: variance

µ2 = V (X ) = σ2= E
(

(X − µ)2
)

, (2.24)

Standardised third moment: skewness

µ3 = γ1 =
E
(

(X − µ)3
)

σ3
, (2.25)

Standardised fourth moment: kurtosis

µ4 = β2 =
E
(

(X − µ)4
)

σ4
. (2.26)
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2. Statistics, model evaluation, and reliability

The coefficient of variation CV is a normalised quantity to determine the spread of a probability distribution

expressed as a percentage. The relationship between mean value µ, standard deviation σ and CV is defined

as:

CV =
σ

µ
. (2.27)

The most widely applied distribution model of a random variable is a normal distribution. Whenever a

random experiment is replicated, the random variable that equals the average result over the replicates

shifts to a normal distribution as the number of replicates becomes large (known as central limit theorem,

De Moivre in 1733) [285]. This work was lost in the past, and Gauss independently developed a normal

distribution nearly 100 years later. Although De Moivre was later credited with the discovery, a normal

distribution is also referred to as a Gauss’ian distribution. In Eq. 2.29, the probability density function (PDF)

of the normal distribution is defined in which E (X ) = µ determines the centre and V (X ) = σ2 is the width

of the curve. For different mean and variance, Fig. 2.6 shows the corresponding normal probability density

functions.

PDF
f (x)

σ2 = 1
CV = 0.2 

μ = 5 μ = 15 x

σ2 = 4
CV = 0.4 

σ2 = 1
CV = 0.067 

PDF
f (x)

x

ω2 = 0.25
ω2 = 1.00
ω2 = 2.25

θ = 0

Figure 2.6: Left: normal distribution with different mean and variance, right: log normal distribution with
zero mean and different variance, based on [285]

Random variables may follow an exponential relationship as x = em . In the case that the exponent is a

random variable M, then X = eM is a random variable with a distribution of interest. A special case is when

M underlies a normal distribution. Therefore, the distribution of X is called a log normal distribution. The

name follows from the transformation ln X = M, which means that the natural logarithm of X is normally

distributed [285]. The CDF determined in Eq. 2.30 is based on the mean θ and the variance ω2. For different

variance and mean value, Fig. 2.6 shows the corresponding log normal probability density functions (PDF).

The weibull distribution is often used to model time-dependent problems, such as failure assessment. The

parameters in the distribution enable high flexibility to model phenomena in which the number of failures
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2.3. Probabilistic material properties

increases, decreases, or remains constant with time. In Eq. 2.33, the CDF, expected value, and variance are

defined based on the scale parameter δ > 0 and the shape parameter β > 0 [285].

distribution domain f (x) E (X ) V (X )

uniform a ≤ x ≤ b 1/(b − a)
(a + b)

2

(b − a)2

12
(2.28)

normal −∞ ≤ x ≤ ∞ 1√
2πσ

e
−(x−µ)2

2σ2 µ σ (2.29)

log normal 0 < x <∞ 1

xω
√

2πσ
e−

(ln x−θ)2

2ω2 eθ+ω2/2 e2θ+ω2
(

eω
2 − 1

)
(2.30)

exponential 0 ≤ x ≤ ∞ λe−λx 1

λ

1

λ2
(2.31)

gamma x > 0
λr x r−1e−λx

Γ(r)

r

λ

r

λ2
(2.32)

weibull x > 0
β

δ

(x

δ

)β−1
e−( x

δ )
β

δΓ

(
1 +

1

β

)
δ2Γ

(
1 +

2

β

)
(2.33)

−δ2

[
Γ

(
1 +

1

β

)]2

In the case that more than one random variable should be considered in the system of interest (in the

probability space), it is generally appropriate to determine a measure for the relationship between the

variables in order to describe the influence the variables have on each other and how they vary together.

Therefore, the covariance cov is a reasonable linear estimator for the combined interaction in parameter

randomness and can be determined between two variables X1 and X2 according to (continuous and discrete

random variables):

cov(X1, X2) = σX1X2 = E [(X1 − µX1) (X2 − µX2)] = E (X1X2)− µX1µX2 . (2.34)

Moreover, the correlation ρX1,X2 is another measure of the linear relationship between two random variables.

This estimator relates the covariance to the product of the standard deviation of each variable. Hence, the

correlation is a dimensionless variable that may be applied to compare the linear relationships between pairs

of variables in different units. Two random variables are termed correlated when a non-zero correlation exists

between both. In contrast, in the relationship between independent random variables, no interaction in their

joint probability distribution is expected and both parameters can be termed uncorrelated ρX1X2 = 0. The

correlation quantity is defined as:

ρX1X2 =
cov(X1, X2)√
V (X1) V (X2)

=
σX1X2

σX1σX2

. (2.35)

In the case that the covariance between X1 and X2 is positive, negative, or zero, the correlation between

X1 and X2 is positive, negative, or zero, because σX1 > 0 and σX2 > 0. Therefore, the range of correlation

between two random variables is −1 ≤ ρX1X2 ≤ +1.
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2. Statistics, model evaluation, and reliability

2.3.2 Probabilistic concrete material properties

In a fundamental experimental study by Rüsch [357] in 1969, various concrete specimens of several

construction sites are assessed up to the compressive strength of fc ≈ 50 MN/m2. This study concluded

that the probabilistic characteristics of the compressive strength can be described by normal distribution with

sufficient accuracy. The standard deviation of the specimens is analysed to be on average σfc = 4.7 MN/m2

for the considered concrete grades.

Tue et al. analysed the probabilistic property of the concrete compressive strength by evaluating 173

construction projects within a total of 5027 test specimens and published the results of the tests in 2005

[397]. This study investigated a linear function of standard deviation of the concrete compressive strength

in dependence on the concrete grade as determined by a mathematical regression. Therefore, the standard

deviation σfc slightly increases with higher concrete compressive strength fc , see Fig. 2.7, which is determined

by:

σfc =
fc

48.44
+ 2.80

MN

m2
. (2.36)

The mean standard deviation of the concrete compressive strength decreased over the last decades in

the comparison between the study by Rüsch in 1969 and the study by Tue et al. in 2005. The recent

investigation by Tue et al. determines a decrease in the average of the standard deviation by 20% to

σfc = 3.6 MN/m2 [397] compared to Rüsch.
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Figure 2.7: Standard deviation σfc as a function of the compressive strength fc , assessed for 173 construc-
tion projects by Tue et al. [397]

Tue et al. [397] performed additional laboratory experiments of concrete compressive strength with cylindri-

cal or cubic test specimens to evaluate the stochastic characteristics. Therefore, the coefficient of variation

of concrete compressive strength is determined as follows:

CVfc,mt =
2.80 MN

m2

fc
+

1

48.44
, (2.37)

in dependence of the concrete grade fc . The index mt in Eq. 2.37 is the abbreviation for material testing,

which means that the experimental data are measured in laboratory tests and not at the construction sites.

In general, a difference between the compressive strengths appears between measurements in laboratory

experiments and specimens taken from the structures. Uncertain material properties in building concrete
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structures occur from [397]:

� scatter in the base material for concrete,

� imprecise production,

� scatter quality of placing the concrete,

� different effects of the concrete curing and,

� scatter quality of concrete in the case of supplier consortium.

Construction supervision with quality control (material testing) can determine the first two items of uncer-

tainty mentioned above. König et al. [226] and Macgregor et al. [252] analysed concrete cores taken

from structures in order to determine the rest of the uncertainty sources in structural concrete placed in

buildings.

For the whole range of concrete grades up to fc ≈ 50 MN/m2, the characteristic structural strength is ap-

proximately 85% of the characteristic cylinder compressive strength [226, 252]. Therefore, the uncertainty

in the structural compressive strength CVfc,str increases in comparison to the uncertainty in the laboratory

material testing CVfc,mt . Based on these assumptions, the relationship between the CVfc,mt and CVfc,str is

[397]:

CVfc,str = 0.091 + 0.85 · CVfc,mt . (2.38)

The index str in Eq. 2.38 is the abbreviation for structure. Using Eq. 2.38 and Eq. 2.37, the coefficient of

variation for the structural strength in dependence of the compressive strength is:

CVfc,str = 0.10855 +
2.38 MN

m2

fc
. (2.39)

The variation of the concrete compressive strength for material testing and measurements in structures is

shown in Fig. 2.8. The coefficient of variation CVfc of normal strength concrete is clearly higher in the range

of 20 MN/m2 ≤ fc ≤ 55 MN/m2 in comparison to high strength concrete. Therefore, the relationship be-

tween CVfc and fc decreases with increasing compressive strength [379]. In many design codes, such as the

Eurocode 2 (EC 2), the standard deviation for normal strength concrete is assumed to be σfc = 5 MN/m2,

which similarly describes the relationship between strength and uncertainty, see Fig. 2.8. Nevertheless, the

determination by Tue et al. [397] describes this relationship more accurately and is applied in this thesis.

Moreover, the compressive strength, the modulus of elasticity Ec and the tensile strength fct significantly

affect the stiffness, strength, and load-deformation behaviour of a concrete structural component. These

material characteristics are similarly uncertain and cannot be classified as deterministic values. Many differ-

ent studies addressing the determination of uncertainty description of the concrete material characteristics

are summarised in Tab. 2.3. The rows are ordered according to the material property and subsequently

according to the year of publications.
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Figure 2.8: Coefficient of variation for material testing CVfc,mt and for structural measurements CVfc,str as
a function of the compression strength fc , assessed for 173 construction projects [397]

Table 2.3: Stochastic material properties for concrete assessed by various researches, Normal Strength
Concrete (NSC), normal distribution (N), log normal distribution (LN), not mentioned (n.m.)

Material fX (x) Condition µ σ CV Literature

Property [MN/m2] [MN/m2] [−] Year Ref.

concrete N for all NSC ≤ 50 4.7 0.081 ... 0.235 1969 [357]

compressive N 0.05 ... 0.25 1974 [289]

strength N

0.10 ... 0.20 1981 [373]fc LN

Weibull

n.m. 36.4 3.7 0.10 1986 [22]

N

precasting works

≤ 20

0.125 ... 0.200

1992 [384]

big construc. site 0.200 ... 0.275

small construc. site 0.275 ... 0.350

precasting works

≥ 20

2.5 ... 4.0

big construc. site 4.0 ... 5.5

small construc. site 5.5 ... 7.0

LN 0.06 2001 [105]

LN 21.20 2.12 0.10 2002 [149]

N 23.16 2.58 0.11 2004 [388]

N
material testing

structural strength

2.80
fc

+ 1
48.44

0.10855 + 2.38
fc

2005 [397]LN

Weibull

N 0.05 ... 0.15 2007 [63]

n.m.

24.6 2.63 0.107

2007 [379]49.9 4.04 0.081

90.8 5.18 0.057

N 28.0 2.24 0.08 2007 [387]

continued on next page
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Stochastic material properties for concrete (continued)

Material fX (x) Condition µ σ CV Literature

Property [MN/m2] [MN/m2] [−] Year Ref.

N for all NSC ≤ 50 5.0 0.086 ... 0.250 2011 [101]

LN C 20 23.8 5.1 0.21

2012 [370]
LN C 40 40.8 8.8 0.21

LN C 60 57.8 5.6 0.10

LN C 60 74.8 6.3 0.08

LN C 25 33.7 5.7 0.17
2013 [5]

LN C 35 40.6 5.4 0.13

n.m. C 20/25 39.84 2.13 0.054

2013 [421]
n.m. C 25/30 B3 47.03 2.28 0.049

n.m. C 25/30 XC1 53.42 2.62 0.049

n.m. C 30/37 H 58.56 3.24 0.055

LN 40 6 0.15 2014 [64]

concrete N ≥ CVfc 1992 [384]

tensile LN 0.30 2001 [105]

strength LN 2.72 0.57 0.211 2002 [149]

fct N 2.27 0.24 0.10 2004 [388]

N 2.2 0.26 0.12 2007 [387]

n.m. C 20/25 3.10 0.48 0.155

2013 [421]
n.m. C 25/30 B3 4.13 0.69 0.168

n.m. C 25/30 XC1 4.17 0.51 0.124

n.m. C 30/37 H 5.01 0.72 0.143

concrete LN 0.18 1995 [401]

modulus LN 0.08 1997 [47]

of elasticity LN 0.15 2001 [105]

Ec LN 30,450 3,197 0.105 2002 [149]

N 30,522 3,662 0.12 2004 [388]

N 0.08 2007 [63]

N 28,800 1,440 0.05 2007 [387]

n.m. C 20/25 31,150 1,131 0.042

2013 [421]
n.m. C 25/30 B3 30,822 2,654 0.086

n.m. C 25/30 XC1 35,456 1,982 0.056

n.m. C 30/37 H 35,522 2,643 0.074

In comparison to the compressive strength of concrete, a higher variance in the tensile concrete strength

is observable, which is similarly assessed by [74]. Similarly, the modulus of elasticity also shows a greater

uncertainty as compared to the compressive strength, as presented in Tab. 2.3.

In addition to the information about the distribution type, the mean value, and the coefficient of variation,

the relationship/interaction of a certain material property with the other properties is important for the ad-

equate description of probability distributions. Therefore, the determination of the correlation is significant
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for the assessment of models. The correlation between concrete compressive strength fc , concrete tensile

strength fct , and concrete modulus of elasticity Ec is shown in Tab. 2.4.

The correlation between the compressive and tensile strengths is between 0.7 and 0.9, which is similar to

the correlation between the compressive strength and the modulus of elasticity. In contrast, the correlation

between the tensile strength and the modulus of elasticity is lower and is between 0.6 and 0.7.

Table 2.4: Correlation between concrete material properties

Material Property Correlation ρXY [−] Lit.
X Y

fc ⇐⇒ fct
0.9 [388]
0.8 [387]
0.7 [149]

fc ⇐⇒ Ec
0.73 [388]
0.9 [387]
0.9 [149]

fct ⇐⇒ Ec
0.6 [388]
0.7 [387]
0.6 [149]

2.3.3 Probabilistic reinforcing steel material properties

The yield strength is a significant material property of reinforcing steels for the simulation and design

of reinforced concrete structures. Based on the determination of the strength parameter, the transition

between elastic and plastic curvatures in a reinforced concrete cross-section is defined. Moreover, the proof

of allowable steel stress also significantly depends on the yield strength. The randomness of this material

quantity is mainly dependent on the specific production batch and other production influences. However,

only general statistical data that satisfactorily describe the entire group of reinforcing steels is adequate for

the description of this property for probabilistic analysis [401].

In Tab. 2.5, the probabilistic characteristics of reinforcing steel are listed according to the yield strength

fy , ultimate strength fu, and the modulus of elasticity Es and according to the year of publications. The

modulus of elasticity of reinforcing steel is very low and in many studies a deterministic mean value is

applied in the analysis. Nevertheless, a certain amount of variance occurs even in this material property,

which can be considered by CVEs ≤ 0.03.

The variance in the yielding strength is found to be higher than one in the modulus of elasticity. In several

studies, the coefficient of variation for this material property is assessed to be CVfy = 0.05. The uncertainty

in the ultimate strength can be of a similar or even higher magnitude compared to the yielding strength.

The correlation between the reinforcing steel parameters is rarely assessed or is very often not considered

in the analysis. According to the probabilistic model code [105], the correlation is listed in Tab. 2.6, which

determines a correlation between the yielding and ultimate strengths of 0.85 and no dependence between

the other relationships of the reinforcing steel properties.
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Table 2.5: Stochastic material properties of reinforcing steel assessed by various research studies, normal
distribution (N), log normal distribution (LN), Weibull distribution (W)

Material fX (x) Condition µ σ CV Literature
Property Profile Manuf. [MN/m2] [MN/m2] [−] Year Ref.

reinforcing N
0.08 ... 0.10 1974 [289]

steel LN
yielding N

0.06 1981 [373]
strength W

fy n.m. 470 33 0.07 1986 [22]
N same different 0.01 ... 0.04

1992 [384]
LN different same 0.04 ... 0.07
LN same different 0.05 ... 0.08
N different different 0.06 ... 0.12

n.m. 557.0 25.9 0.05 2000 [3]
N different manuf. 560 30 0.05 2001 [105]

LN 510 0.05 ... 0.15 2007 [63]
N 582 29.1 0.05 2007 [387]
N 550 30 0.05 2012 [370]

LN 560 30 0.05 2013 [5]
LN 560 30.24 0.054 2014 [64]

reinforcing n.m. 620 82 0.13 1986 [22]
steel N ≥ CVfy 1992 [384]

tensile n.m. 659.9 16.6 0.03 2000 [3]
strength N different manuf. 644 40 0.06 2001 [105]

fu LN 550 0.05 ... 0.15 2007 [63]
LN 644 40 0.06 2013 [5]

reinforcing constant 2.05 e5 2001 [105]
steel modulus of LN 2.10 e5 4,200 0.02 2007 [63]

elasticity Es N 2.10 e5 6,300 0.03 2007 [387]

Table 2.6: Correlation between reinforcement material properties

Material Property Correlation ρXY [−] Lit.
X Y

fy ⇐⇒ fu 0.85 [105]
fy ⇐⇒ Es 0 [105]
fu ⇐⇒ Es 0 [105]

2.4 Probabilistic loading conditions

In addition to the influence of material properties on the load-deformation behaviour and resistance of a

structural element, the loading condition on real structures is also affected by uncertainties. Most of the

loading conditions are not fixed deterministic values, because even the dead load of a concrete element

underlies some variance in the loading condition, see Tab. 2.7. In general, variable loads such as live loads

in residential or commercial buildings, or snow loads are much more uncertain compared to dead loads.

The focus of this thesis is the assessment of the phenomena which determine the physical load-deformation
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behaviour of concrete structures (resistance side). Therefore, the loading conditions are not considered with

any uncertainty quantity in order to evaluate concrete structures exclusively for the resistance side.

Table 2.7: Stochastic characteristic of loading conditions

Loading condition CV Lit. Characteristic Lit.
[-] value

permanent load
dead load normal weight concrete, 300 mm 0.05 [72] average value [136]

variable load
live load for house building 0.54 [384] average value [136]
live load for warehouse 0.81 [384] 98%-fractile or nominal value [136]
snow 0.45 [130] 98%-fractile [138]

2.5 Global and partial model quality evaluation

2.5.1 Evaluation of coupled partial models

On the geometric level, the numerical simulation of structures subdivides the entire structure into structural

components. On a conceptual level, however, these parts are then modelled by suitable partial models (PM),

which mathematically describe different phenomena such as the time-dependent behaviour of concrete or the

stress-strain relationship of the surrounding soil. The coupling between the PM integrates the phenomena

of the structural components into the global model (GM) of the entire structure.

Global models for numerical simulation approaches utilize different model classes (M) with subordinate

partial models. Interactions and couplings of these PM are necessary to determine an appropriate structural

behaviour. The reliability of the model prediction can be assessed by an evaluation method quantifying the

prediction quality of coupled partial models according to the method by Keitel et al. [211]. Therefore, the

comparison between different global structural models can be evaluated quantitatively which increases the

reliability of a calculation model in a reasonable manner by selecting an adequate model with acceptable

prediction quality. Hence, this method is able to detect optimal as well as efficient model combinations for

reliable predictions.

In order to quantify the global model prediction quality, the first evaluation step is to quantify whether a

phenomenon has an influence on a certain structural response value or the phenomenon can be neglected

in the numerical simulation or modelled with simplified partial models. The importance of these PM with

respect to the global response of the structure can be quantified using variance based sensitivity analysis,

see Sec. 2.5.1.1 and 2.5.1.2. In the case that a PM influences the structural behaviour, it is necessary to

quantify the prediction quality of the partial model MQPM and then subsequently combine both sets of

information into the global model quality MQY
GM for the entire structure. Therefore, the following evaluation

method developed by Keitel et al. [211] enables the assessment of global model quality MQY
GM.

2.5.1.1 Sensitivity according to model class

The first step is to quantify whether the model class (phenomenon) has an influence on a certain target value

at a certain position in the structure. Therefore, variance based global sensitivity estimators [176, 360, 381]

allows the quantitative assessment of the phenomenon’s importance in relation to the structural response
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quantities Y (e.g. displacements, stresses). In general, sensitivity analysis is the study of how the output

of a model Y is related to the model input X . In the evaluation of the global model quality, the sensitivity

indices are used for the quantification of the phenomenon‘s importance. By using discrete random variables

for selecting (activating or deactivating a certain PM) the model class, the sensitivity study in this case is

not an estimation of uncertainty, but a quantified value of the influence of the model class (Xi ).

Each of the classes of partial models i, e.g. shrinkage of concrete, is represented by a discrete random

parameter with the two discrete values:

Xi ∈ {0, 1} , with i = 1, ... , nM , (2.40)

wherein nM represents the number of considered partial models. A value of Xi = 0 denotes the deactivated

partial model class i, for example, when shrinkage is not considered, and Xi = 1 denotes the activated

partial model class i, e.g. when shrinkage is considered. The global model Y is calculated for all possible

combinations of Xi with i = 1 ... nM . A finite number of possible model class (partial models) combina-

tions ncomb = 2nM is necessary for the assessment of the sensitivity indices, whereby the partial models

representing the same physical phenomenon are related to the equivalent model class:

ncomb = 2nM (2.41)

with nM random variables (model classes in global model). Due to the discrete random parameters, the

sensitivity indices can be computed based on the results of model Y for the ncomb model combinations

without the usual need for specific sensitivity estimators, which require high computational effort.

The first-order sensitivity index Si established by Sobol [381] can be used to compute the exclusive

influence of a certain model input Xi (such as PM) on the structural response of the global model:

Si =
V (E (Y |Xi ))

V (Y )
, (2.42)

where V (E (Y |Xi )) is the variance of the expected value of Y when conditioning with respect to Xi and

V (Y ) is the unconditional variance of Y . Due to interactions in complex engineering problems, higher order

sensitivity indices are needed. The total-effects sensitivity index STi investigated by Homma and Saltelli

[176] calculates the overall influence of a specific partial model while also considering the interaction with

the other PM in the global model:

STi = 1− V (E (Y |X∼i ))

V (Y )
, (2.43)

where V (E (Y |X∼i )) is the variance of the expected value of Y when conditioning with respect to all

parameters except for Xi . In general, the total-effects sensitivity index STi should be used for the quantitative

evaluation of the importance of various phenomena in engineering structures.

A measure of the interaction between Xi and other model classes is the difference between Si and STi .

For each model class, a partial model with an adequate complexity and accuracy has to be used for the

sensitivity evaluation in the first step. High values of the sensitivity indices show a significant influence of

the model class on the global model response at a certain position in the structure. Model classes with

sensitivity indices smaller than a given threshold (e.g. SM
Ti < 0.03) shall be neglected for the next evaluation

method step [211]. In other words, no further investigations about their partial model quality are necessary.
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The unimportant model classes are excluded for the subsequent evaluation steps of the global model quality

assessment.

2.5.1.2 Sensitivity according to model choice

The second step is to quantify the model choice influence of certain partial models for the same phenomenon

in relation to the other phenomena. The model choice (MC) assessment is similarly computed using the

variance based sensitivity analysis by computing SMC
Ti . It is also based on sensitivity studies [211, 360]. In

comparison to the first step, the phenomena are not constrained to be activated or deactivated; they are

analysed with respect to certain models in the second evaluation step. For example, in the case that the

shrinkage of the concrete is an important phenomenon (in the first step: STi ,shrinkage ≥ 0.03), the second

step quantifies the influence of the selection of a certain shrinkage model. This is in relation to the model

choices of all the other sensitive phenomena (e.g. creep, material models, pile foundation stiffness).

The choice of each PM within a model class (MC) is controlled by Xi . The total-effect sensitivity index

indicates how this choice leads to a variation of the global model response according to a certain output

value. The total-effects sensitivity index quantifies the effect that the model choice has on the global

model’s response at a particular position in the structure. On one hand, low values express that the choice

of different partial models representing the same phenomenon predicts a similar partial model output.

On the other hand, the choice of a PM in this model class does not significantly affect the structural

load-bearing behaviour. These effects are quantified by the sensitivity indices which transfer the partial

model quality for a certain phenomenon into a global model quality of the structural model. Finally, these

sensitivity indices can be seen as weighting factors for the partial model quality MQPM in the assessment

of the numerical global model MQGM,Y .

2.5.1.3 Global model quality of coupled partial models

The global model quality MQGM,Y of coupled partial models is quantified by a path on a graph (graph

theory see [69, 84, 203, 204]) in which the vertex is the quality of the partial model MQMi
PM,Y and the

edges are the coupling quantities. A number between 0 and 1 expresses this quality. 0 signifies a poor and

1 a high MQMi
PM,Y . These quantitative values come from the evaluation of the PM itself, using uncertainty,

complexity, or robustness criteria [32, 49, 207, 209, 234, 286], see Sec. Sec. 2.1 and 2.5.2. Assuming a

perfect data coupling between each of the model classes, the model quality of a global structural model is

defined as [211]:

MQGM,Y =

nM,red∑
i=1

SMC
Ti ,Xi

·MQMi
PM,Y

nM,red∑
i=1

SMC
Ti ,Xi

, (2.44)

where MQMi
PM,Y is the partial model quality of a certain partial model i in the model class M. The variable

nM,red, determined by the first evaluation step, is the number of considerable model classes influencing the

global response quantity and SMC
Ti ,Xi

is the total-effects sensitivity index for the model choice assessment. It

is obvious, that the sensitivity indices strongly influence the structural model quality. However, the focus

in this evaluation method is the development of the evaluation methodology and the application to local

structural response values.

Due to the interaction between the structural components, the sensitivity indices are strongly variable
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with respect to the position in the structure, see Sec. 6.1. Consequently, the global model quality for the

same partial model combination also changes from position to position. Therefore, the existing sensitivity

analysis at local positions in the structure is upgraded to the integrative sensitivity analysis, see Sec. 6. This

improvement allows the overall assessment of phenomena importance in relation to the entire structural

load-bearing behaviour by taking into account the response significance at each position in the structure.

Finally, for each partial model combination, a global prediction quality can be assessed for the entire

structure. Therefore, the quality assessment is no longer depending on the position to be evaluated, because

all positions can be considered simultaneously in the integrative sensitivity analysis.

2.5.2 Partial model assessment

In general, numerous analytical and numerical models for each of the partial models are applied in con-

struction projects and research studies. In addition, new models are going to be developed with additional

knowledge better able to describe “real” phenomena. Therefore, selecting models is not a simple and trivial

task. When analysing the uncertainty in the numerical simulation, the quantitative model evaluation poses

the question of which partial model should be chosen in comparison to the other considered models.

In the case that experimental data are available for a certain object of interest (e.g. certain concrete mix-

ture), the stochastic model selection (Bayes ian model selection) proposed e.g. by MacKay [253], and

Beck et al. [39] can be applied for the assessment of the prediction of different models representing the

same phenomenon. For particular experimental data, this method computes the probability that a model

has in comparison to the measurement points MP using the likelihood function [90]. The likelihood is a

function of the parameters of a statistical model, which may be determined in order to analyse the rela-

tionship between the model input parameters and the corresponding given model output (predictions and

experimental data).

In addition to that, it is appropriate according to [253] to consider a penalty for over-parameterisation in

the models represented by the Ockham factor, which is proposed by Gull [153].

Hence, simplified models are always preferred in comparison to more sophisticated ones assuming that both

models have the same likelihood. This is a more reasonable approach than the Akaike Information Criterion

(AIC) [1] and the Bayesian Information Criterion (BIC) [374]. AIC and BIC judge exclusively on the models

depend on the pure number of parameters, defined by:

AIC = 2k − 2ln
(
L̂
)

Akaike [1] , (2.45)

BIC = k ln(MP)− 2ln
(
L̂
)

Schwarz [374] , (2.46)

in which k is the number of free parameters in each model to be estimated, L̂ is the maximised value of

the likelihood function of the modelMi , and MP is the number of observations or measurement points. In

contrast, the Model Selection Factor (MSF) takes into account the probabilities of the prior and posterior

model parameters and should be used for the model assessment in comparison to AIC and BIC criterions

[209]. Based on the Bayes’theorem, the MSF can be interpreted as the probability of modelMi to be most

adequate (higher MSF expresses a higher model accuracy) and is defined as:

P (Mi |Xm, M) =
p (Xm|Mi , M) P (Mi |M)

p (Xm|M)
, (2.47)
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in which:

p (Xm|M) =
Nm∑
i=1

p (Xm|Mi , M) P (Mi |M) , (2.48)

is based on the theorem of total probability where M is a model class representing the same phenomenon

by partial models and Nm is the number of PM with the group M. The prior engineering judgement of the

model’s plausibility/accuracy is expressed by P (Mi |M) and the sum is equal to unity:
Nm∑
i=1

P (Mi |M) = 1 . (2.49)

The evidence of the model Mi in comparison to the experimental data Xm is expressed by the theorem of

total probability:

p (Xm|Mi , M) =

∫
θi

p (Xm|θi ,Mi , M) p (θi |Mi ) dθi , (2.50)

in which θi is the parameter vector of model Mi , p (Xm|θi ,Mi , M) is the likelihood and p (θi |Mi ) is the

prior probability density function of θi defined by the engineer. The posterior PDF of the parameter vector

in a globally identifiable case may be approximated by a Gauss ian distribution [39]. Hence, the evidence

for model Mi based on the optimal parameter vector θ̂i is defined as:

p (Xm|Mi , M) =
p
(

Xm|θ̂i ,Mi

)
p
(
θ̂i |Mi

)
p
(
θ̂i |Xm,Mi

) , (2.51)

in which the Ockham factor is considered by the ratio p
(
θ̂i |Mi

)
/p
(
θ̂i |Xm,Mi

)
. The probability of each

partial model in the model class computed by Eq. 2.47 determines the prognosis quality of the PM. According

to [206], the highest probability of a certain model amongst all considered models MAX [P (M|Xm, M)]

corresponds to the highest prediction quality. Based on the normalised model selection factor MSFN , the

quality of each Mi is defined as:

MSFN =
P (Mi |Xm, M)

MAX [P (M|Xm, M)]
. (2.52)

The assessment of models based on experimental data can also be analysed based on uncertainty analysis

considering parameter and model uncertainty. Due to the randomness of the model input parameters, a

variation in the model predictions is caused. Model uncertainty represents the inconsistency between the

experimental data and the model prognosis. This uncertainty can be taken into account by the model

uncertainty factor ψmod [209]. The expected value of the model uncertainty is Eψmod
= 1 and a mean

coefficient of variation CV mod can be determined by [25]:

CV mod =
1

Y meas

·
[

1

MP − 1

MP∑
i=1

(
Y i

meas − Y i
sim

)2

] 1
2

, (2.53)

in which Y meas is the mean value of all measurements, MP is the number of measurements, “meas” is the

abbreviation for measurement, and “sim” for simulation. This model uncertainty factor can be multiplied

by the simulation results which leads to a measure for the agreement between the mean model prediction

and the mean of the experimental measurements [209]. The probabilistic simulation computes a variation
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in the model prediction and the uncertainty of the model prediction is used as an indicator for the model

evaluation, see Sec. 2.1.

In the modelling uncertainty strategy of Snowling and Kramer [380], similar to total uncertainty, a

Model Utility Factor Ui considers the model response to changes in the model input (in this study called

sensitivity, synonymous to parameter uncertainty) and the closeness of model to measurements (in this

study called model error, synonymous to model uncertainty)

Ui = 1−
√

KsS2
i + KeE 2

i

Ks + Ke
, (2.54)

in which Si is the sensitivity value for model i (relative to maximum sensitivity) with ks are the weighting

constants for sensitivity, Ei is the error value (relative to maximum error) with ke are the weighting constants

for error. This Model Utility Factor is in the range of 0 and 1, where a larger value of U represents a greater

model utility. If the model uncertainty, sensitivity, and the model error are valued equally, then ks = ke = 1.0.

Moreover, in order to prove the general hypothesis that more complex models compute more accurate results

with higher parameter uncertainty and less model uncertainty (see Fig. 2.1), a mathematical determination

of the model complexity Ic is proposed [380]:

Ic =

nj∑
j=1

Ni∑
i=1

Xi ri , (2.55)

in which Ni is the number of state variables, nj is the number of processes flowing to or from state variable

i , Xi is the number of parameters used to describe the process j , and ri is the number of mathematical

operations used to describe the process j . The complexity of the mathematical description as well as the

number of degrees of freedom for each individual model are considered in the model complexity factor.

In the case that no measurement data are available, the uncertainty analysis is similarly capable of con-

sidering the uncertainties due to the non-deterministic model input parameters as well as uncertainties due

to the model prediction error [286]. With the help of this probabilistic model evaluation, the model selection

is provided decisively in a quantitative manner. Hence, the question of the considered models is the most

adequate can be answered by the use of uncertainty analysis, see Sec. 2.1.

For the evaluation of the creep phenomenon, recommendations can be found in Sec. 3.2.2 and for the

shrinkage of concrete in Sec. 3.3.2. The non-linear material modelling of reinforced concrete is evaluated in

this thesis and is presented in Sec. 5.1. Moreover, the assessment of pile foundation models for predicting

the stiffness of pile groups is discussed in Sec. 5.2.

A multicriteria evaluation method considers several criteria instead of focusing on a certain model char-

acteristic. In the study by Reuter et al. [341, 342], uncertainty, sensitivity, robustness, and reliability are

considered in the evaluation methodology. Therefore, the selection of an adequate model for the structural

analysis can be assisted in a quantitative manner.

2.5.3 Coupling quality assessment

In structural engineering, an evaluation method for the assessment of coupled partial models is published

by Keitel et al. [211]. This method is applied on a conventional prestressed concrete box girder bridge

without any consideration of the coupling quality. In a cooperative study by Keitel et al. [210] with

contribution of the author of this thesis, the evaluation method is enhanced in order to assess the coupling
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quality between the partial models and the coupling importance on the global model prediction quality.

In addition to first-order Si and total-effects STi sensitivity indices, the higher-order indices Sij are computed,

which are directly proportional to the interaction effects to specific parameters/classes i and j of partial

models. For Sij , the following definition holds [360]:

Sij =
V (E (Y |Xi , Xj ))− V i − Vj

V (Y )
=

V (E (Y |Xi , Xj ))

V (Y )
− Si − Sj . (2.56)

Common types of coupling in engineering are uni- and bidirectional coupling methods [119]. The first one

denotes the data transfer from PM k to PM l , but not in the opposite direction. Conversely, the bidirectional

coupling allows the additional data transfer from PM l back to PM k. The method to determine the coupling

quality is not addressed in detail here, because this method is discussed in [210]. Let α be a model quantity

appearing in both partial models k and l at the same structural node, for example the supporting force

of a bridge pier, which is present in the pier itself and also at the top of the pile foundation. A perfect

data coupling ensures consistent data in both models, αk = αl , which refers to data coupling quality of

cqα,k−l = 1. As the differences in transferred data increase, which mean that αk 6= αl , the quality of the

coupling decreases down to a quality of zero when no data is transferred, αk 6= 0 and αl = 0.

In the case that the coupling quality is assessed for coupled partial models that are ordered before the

investigated response value, for example the influence of the bridge pier material model on the support

moment of the pier, which is used to calculate the settlements of the foundation, the backward coupling

might influence the coupled quantities to some extent, but it is not obligatory. In this case, the quality is

defined with respect to the influence of the partial models before and after the coupling [210]:

CQB
k−l =

1
Nf

Nf∑
α=1

(
cqα,k−l

∑
i≤k

Si ,α

)
+ cql−k

1
Nf

Nf∑
α=1

(
Np∑
i=1

STi ,α −
∑
i≤k

Si ,α

)
1

Nf

Nf∑
α=1

∑
i

Si ,α

, (2.57)

with Nf is the number of different forward coupling quantities, cq is the data coupling quality, cq is the

mean data coupling quality, CQ is the quality of partial model coupling, and α is the model quantity.

The forward data coupling quality cqf
α,k−l is directly linked to the sensitivity indices of α. For backward

data coupling quality, this is not possible, because it cannot be determined which of the backward coupling

quantities has an influence on α. Furthermore, the number of forward and backward coupling quantities

might differ. Hence, the mean value of the sensitivity indices of α is multiplied with the mean of the

backward data coupling quality cqb
l−k . The prediction quality of the global model for an output quantity γ

depends on the quality of the partial models, their influence on the quantity of interest, and the coupling

quality. The quality of the partial model i, MQi , is determined in separate studies, for example using

uncertainty analysis [286] or other strategies [234]. The quality MQi is weighted by the influence of the

partial model i on quantity γ, quantified by the total-effects sensitivity index SγTi calculated according to

Sec. 2.5.1.1.

As the sum of all SγTi might be larger than one, a normalisation with respect to
∑M

j=1 SγTj is required. In

addition, the quality contribution of each partial model is multiplied by the coupling quality CQc of each
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of the Nc,i ,γ couplings that are necessary to transfer the data from PMi to the quantity of interest γ. The

resulting model quality of the global model GM for quantity γ becomes:

MQγ
GM

=
M∑

i=1

 SγTi∑M
j=1 SγTj

MQi

Nc,i ,γ∏
c=1

CQc

 . (2.58)

The coupling quality CQc of the partial models a and b being coupled is once more distinguished into two

cases depending on the position of the output quantity γ:

CQc =

CQA
a−b if γ is after coupling c

CQB
a−b if γ is before coupling c

(2.59)

Using this algorithm, different combinations of couplings and partial models can be compared quantita-

tively and the best possible model combinations can be detected while the loss of quality using worse model

combinations can be found.

In the cooperative study in [210], it is finally assessed that partial models with an average prediction quality

in combination with a high coupling quality should be preferred more than high partial model qualities in

combination with a low coupling quality.

2.6 Reliability methods

2.6.1 Full-probabilistic reliability method

The general problem in the design and the assessment of engineering structures is the non-deterministic

effect of the action E and the non-deterministic resistance of the structure R [106, 164, 299, 384]. The

single probability of the load part or the resistance part is not separately important for the safety assessment

of structures. It is more important to asses the joint probability of the combinations of both parts.

The computation of structural failure, such as undesired or unsafe conditions, is defined according to

the limit state function g(X) by the set F = {X : g(X) ≤ 0} [55]. The limit state function is regularly

referred to as the safety margin Z = g(X). The probability of failure pf is defined as the probability of the

occurrence of F . Therefore, pf is a unique quantity, i.e. not depending on the particular choice of the limit

state function, and is defined as:

pf = Prob [{X : g (X) ≤ 0}] . (2.60)

Due to the multiple basic variables Xi , which are present in the analysis of engineering structures, the

computation of the failure probability can be written as [55]:

pf = Prob [g (X1, X2, ... Xi ) ≤ 0] =

∫
...

g(X)≤0

∫
fX(x)dx (2.61)
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The computation of the integral of the failure probability, defined in Eq. (2.61), is mathematically challeng-

ing due to the necessary solution of the limit state function g(x). In particular, a non-linear load-bearing

behaviour of the structure requires an iterative numerical approach. The sole purpose of the limit state

function, in this context, is to provide and define the bounds of the integration. The point on the limit

state function with the associated highest probability for the basic vaiables X is termed as the design Point

Pd . A very narrow region around Pd contributes to the quantity of the integral Prob[F ].

The probability of failure pf is the volume under the probability density fE ,R for the combinations e > r .

This quantity defines the probability of the structure to exceed a certain criterion defined by the limit state

function. For each of the different criterion, such as stress limitations or deformation control, or ultimate

design, it is important to define/recommend an acceptable probability of failure pf ,accep. Therefore, the

probability of failure of the structure can be compared to the acceptable probability of failure by:

pf < pf ,accep . (2.62)

In the case that pf > pf ,accep, the actual design/layout of the structure cannot meet the design criteria.

Therefore, some items and conditions in the structure should be changed in order to allow an acceptable

safety level of the structure.

2.6.2 Second-moment reliability method

The mathematical definition of the probability of failure is defined in Eq. (2.61). The analytical solution

of this integral is limited to very special restrictions [73]. The first-order reliability method (FORM) is

published by Hasofer and Lind [164], is a commonly used approximation method for the assessment of

the safety of a structure. The basic limitations and assumptions are:

� first and second central moments of basic variables are exclusively considered,

� correlated basic variables are transformed into uncorrelated ones,

� basic variables are transformed into standard normal distributed ones,

� probability density is normally distributed and

� limit state function is linear

In the case of the above-mentioned requirements, the exact analytical solution of the integral of the failure

region in the probability density function is defined as:

pf = Φ (−β) (2.63)

with β is the reliability index and Φ is the cumulative standardised normal distribution. A non-linear limit

state function will lead to an inaccuracy in Eq. (2.63) due to the linearisation of the limit state function.

Therefore, the relationship between the failure probability and the reliability index is approximated as:

pf ≈ Φ (−β) (2.64)

The error in the assessment of the failure probability using the FORM depends mainly on the characteristics

of the failure function. This approximation error cannot be analytically computed [73]. In the case of basic

variables with a non-normal underlying distribution, a transformation from the so-called physical space x
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into the standard normal space u is necessary. For uncorrelated basic variables, the transformation is defined

as:

Yi = Φ−1 [FXi
(Xi )] ; i = 1 ... n (2.65)

Ui = Φ−1 (Fi (Xi )) (2.66)

with Ui are the standardised normal parameters. The inverse transformation is consequently defined as:

Xi = F−1
i (Φ (Ui )) . (2.67)

The second-moment reliability methods, the so-called level II reliability methods, are only approximations

of the level III precisely simulated probability of failure. The concept was originally developed because of

the lack of information on the tail of the distributions of the loading and the resistance parts. For the

computation of the reliability index using the second-moment reliability methods, the exclusively influenc-

ing stochastic parameters are the mean values and the standard deviations of the basic variables [164].

Therefore, only the first and second central moments (see Sec. 2.3.1) of the probabilistic input variables are

taken into account and therefore the approximation methods are the so-called second-moment reliability

methods.

The probability of these variables is expected to be concentrated within a few standard deviations from the

mean values. Therefore, the criterion of the level III simulations methods (Prob [g(X) ≤ 0] < pf ,accep) is

replaced by a criterion involving the mean value and the standard deviation of the basic variables.

The probability density fE ,R is the volume for specific combinations of the effect of the action part and the

resistance part (e, r). The point with the highest probability is visible in the case of the mean values µE

and µR (top of the probability density). The failure criterion R − E < 0 is often considered in structural

engineering and the following definitions are related to this criterion, see Fig 2.9. The safety margin Z

(failure criterion) is also referred to as the limit state function g(X) is defined as:

Z = g(X) = R − E . (2.68)

Therefore, the limit state of a structure appears in the case of the condition that the effect of the actions

is co-occurring with an identical resistance of the structure (e = r). For the failure criterion Z = R − E ,

the limit state function is a 45◦ rotated e, r -plane measured from the point of origin.

e

fE,R

design point

r

μE

μR

Figure 2.9: Probability density function of effect of action part E and resistance part R for failure criterion
R − E < 0, based on [299]
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The exceedance of the resistance of the structure occurs for the combinations of e, r in which e > r .

Therefore, the structure is subjected to the failure condition, which is in the so-called failure region G ∗(E , R)

with Z (E , R) < 0 [164]. In contrast, the safety of the structure occurs for all combinations of e, r ahead

of the limit state function in which e < r . Therefore, the structure is deemed to be in the safe condition,

which is in the so-called safe region G (E , R) with Z (E , R) > 0.

The shift of the point of origin of the probability density fE ,R to the centre of the plan area as well as the

normalisation of the effect of action and the resistance according to the corresponding standard deviations

σE and σR allows the computation of the design point Pd . The normalised coordinates of the transformed

coordinate system are defined as:

ê =
e − µE

σE
(2.69)

r̂ =
r − µR

σR
(2.70)

The contour lines of the probability density are transferred into circles due to the normalisation. The limit

state function according to the normalised coordinates is defined as:

r̂ · σR + µR − ê · σE − µE = 0 . (2.71)

The division of the normalised limit state function by
√
σ2

R + σ2
E leads to the form of the Hesse´ian normal

form of a straight line [329].

r̂ · σR√
σ2

R + σ2
E

− ê · σE√
σ2

R + σ2
E

+
µR − µE√
σ2

R + σ2
E

= 0 (2.72)

Therefore, each term is comprehensible and interpretable. The last term of Eq. (2.72) defines the length as

the perpendicular distance from the point of origin to the limit state function. The cut of the probability

density at this point in the direction of the perpendicular line with the corresponding length/distance

between the point of origin and the limit state function defines the reliability index β. This relation is

feasible in the case of the normalisation of the coordinates. The reliability index according to Eq. (2.72) is:

β =
µR − µE√
σ2

R + σ2
E

. (2.73)

The reliability index is interpretable as the fractile-distance in the case of the assumed underlying normal

distribution of the probability density fE ,R . Hence, the relationship between the reliability index β and the

probability of failure pf for a linear limit state function is described by a standardised normal distribution.

Table 2.8: Relationship between reliability index β and probability of failure pf , 1 year reference period,
linear problem with theory of first order, [299]

β 5.2 4.7 4.2 3.7 3.0 2.5 2.0
pf 10-7 10-6 10-5 10-4 10-3 5 · 10-3 10-2
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The coefficients of the first two terms in Eq. (2.72) are denoted as the weighting factors. They are geo-

metrically interpreted as the cosine direction of the limit state function.

−cos(ϕr ) =
σR√

σ2
R + σ2

E

∼= αR (2.74)

−cos(ϕe) =
−σE√
σ2

R + σ2
E

∼= αE (2.75)

√
α2

R + α2
E = 1 (2.76)

The potential changes of the reliability index β are mainly caused by the variations in e and r . The

coefficients αR and αE express the sensitivity of β according to the uncertain effect of action and resistance.

Hence, these coefficients are the so-called weighting factors. For example, the reliability index β can be

more sensitive due to the variations of the resistance part r than on the effect of action part e with the

same magnitude (∆r = ∆e). In summary, the position of the design point is defined to be:

êd = −αE · β (2.77)

r̂d = −αR · β (2.78)

The position of the design point Pd for a given reliability index β is exclusively dependent on the standard

deviations σE , σR , which are closely linked to the weighting factors αR , αE . The ratio between the standard

deviations σE/σR controls the position of the design point.

A simplification of the probabilistic load-resistance problem is helpful for engineering practice and the design

of structures. Therefore, the weighting factors αE , αR are chosen as constant factors and the design point

Pd is consequently fixed. Consequently, it has to be taken into account that some certain inaccuracy is

introduced. This inexactness depends on the actual σE/σR ratio.

The reliability index is defined as the shortest distance between the point of origin of the probability density

and the limit state function. The greater the perpendicular distance from the limit state function to the

point of origin is, the greater the actual safety of the considered design situation will be. In order to resist

the uncertainty caused by the assumption of the fixed design point, the weighting factors are ordinarily

defined as σE = −0.7 and σR = 0.8 [299]. Hence, the design point Pd lies outside with respect to the

circumscribed circle for the required reliability index β. The magnitude of the difference is 6% according

to [222, 349].√
α2

R + α2
E =

√
(−0.7)2 + 0.82 = 1.06 . (2.79)

For the initial coordinate system (e, r), the coordinates of the design point are:

Ed = µE + ê · σE = µE − αE · β · σE (2.80)

Rd = µR + r̂ · σR = µR − αR · β · σR (2.81)

The quantity Ed is the design value of the effect of action and the quantity Rd is the design value of

the resistance. The design proof with these quantities is appropriate for the constant weighting factors

αE = −0.7 and αR = −0.8.
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In “reality”, there exist more than two probabilistic quantities for the assessment of the reliability of

structures. The graphical interpretation of the safety index β is therefore difficult to capture in a 2D-

representation. The probability density function for two probabilistic parts is graphically interpretable as

a hill. This complexity of density function increases for more than two uncertain reliability parts. The

probability density function with the corresponding safety index β is a sphere in the case of three stochastic

input parts. The graphical representation of the probability density function of the reliability assessment

is not presentable for more than three influence factors. The definition of the weighting factors αE , αR is

applied in analogy to the reliability analysis with two probabilistic parts. In contrast, each weighting factor is

considered as the product of a global weighting factor and an inner weighting factor. The global weighting

factors are defined as αE = −0.7 for the effect of action part and αR = 0.8 for the resistance part.

In addition, the inner weighting factors αS,i , αR,i are defined for the special stochastic effect of action

quantities E1, E2, ..., Ei and the special stochastic resistance quantities R1, R2, ..., Ri . The German

Institute for Standardisation (german: Deutsches Institut für Normung, abbreviation DIN) investigates the

magnitudes of the inner weighting factors to be [128]:

� αR,1 = αE ,1 = 1.0 for the quantity with the highest influence on the scatter and

� αR,i = αE ,i = 0.4 for the quantities remaining.

The design values for the effect of action part Ed is extended for the design situations with a multitude of

effect of action conditions Ei . This extension of the design value is based on Eq. (2.80) and is defined as:

Ei ,d = µE ,i − αE · αE ,i · β · σE ,i (2.82)

µE ,i ... mean value of the i-th effect of action component

σE ,i ... standard deviation of the i-th effect of action component

αE ... global weighting factor of the effect of action part (αE = −0.7)

αE ,i ... inner weighting factor of the effect of action part (αE ,1 = 1.0 for the predominant effect of

action condition, αE ,i = 0.4 for the remaining ones)

In analogy, the design value of the resistance part is based on Eq. (2.81) and is defined as:

Ri ,d = µR,i − αR · αR,i · β · σR,i (2.83)

µR,i ... mean value of the i-th resistance component

σR,i ... standard deviation of the i-th resistance component

αR ... global weighting factor of the resistance part (αR = 0.8)

αR,i ... inner weighting factor of the resistance part (αR,1 = 1.0 for the predominant resistance

condition, αR,i = 0.4 for the remaining ones)

2.6.3 Semi-probabilistic safety concept of Eurocode

The practical and daily designs of engineering structures using the Eurocode are generally based on the

semi-probabilistic design concept of Eurocode 0 [136]. Therefore, different limit states are defined including

the characteristic value, the partial safety factors, and the design rules.

The semi-probabilistic concept is commonly used in the design of engineering structures. The check of the

necessary safety does not take into account the full scope of the distribution functions of the loading and
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the resistance quantities. Various design criteria are investigated with deterministic values. The uncertainty

of one single parameter is considered by the individual partial safety factors. Therefore, the common design

concept of the Eurocode is the semi-probabilistic design concept, which is in general a simplified approach

compared to the probabilistic design concept, see Sec. 2.6.1.

The determinations of the partial safety factors assists and simplifies the design practice. The computation

of the design variables excluding the partial safety factors is previously defined according to Eq. (2.80) for

the effect of actions Ed and according to Eq. (2.81) for the resistance Rd . The application of this definition

is exclusively appropriate in the case of the exact knowledge of the mean values and the variances of all

considered input quantities of the single effects of loading and the single resistances (probabilistic design

concept). In general, this knowledge is extremely limited and consequently unsuitable for the daily design

practice. Therefore, the variances of the input values for the design of engineering structures are considered

by the partial safety factors in the semi-probabilistic design concept.

For the determination of the partial safety factors, it is necessary to establish a socially acceptable safety

level expressed by the safety index β. The predefinition of the safety index quantity is, among other things,

dependent on the consequences of failure of the structure, and the so-called consequence classes, which

are linked to the reliability classes, see Tab. 2.9.

Table 2.9: Determination of reliability index β according to Eurocode [53, 136], ultimate limit state
(ULS), serviceability limit state (SLS, irreversible), reference period (RP)

Consequence Reliability Description Target values for β
class class 1 year RP 50 years RP

CC 3 RC 3
high consequence for loss of human life, or
economic, social or environmental
consequences very great

5.2 4.3

CC 2 RC 2
medium consequence for loss of human life,
economic, social or environmental
consequences considerable

4.7 (ULS) 3.8 (ULS)

2.9 (SLS) 1.5 (SLS)

CC 1 RC 1
low consequence for loss of human life, and
economic, social or environmental
consequences small or negligible

4.2 3.3

The partial safety factors applied in the practical design of structures are defined for the reliability class

RC 2 with the useful life of 50 years. In the case of structures such as power plants, bridges or dams, a

different consequence and reliability classes are predefined. Consequently, the target value of the reliability

index increases (lower probability of failure) for the structures with a pronounced importance for the society.

In addition to the partial safety factors, the characteristic values are a strongly influential aspect of the

safety concept of the Eurocodes. The quantity of the partial safety factors is always connected with the

definition of the corresponding characteristic values. The characteristic values are established as reference

values, which are representative quantities of the loading condition and the resistance. Hence, the question

of the definition of the representative values arises. For example, the characteristic value of the wind loading

can be referred to as the mean value of a certain reference period or can even be defined as the maximum

magnitude of a certain reference period. The definition of the fractile quantities is usually applied for the

material properties. For example, the 5%-fractile can be defined for the concrete compressive strength.

Consequently , the characteristic values of the loading condition and the resistance are linked to a certain

41



2. Statistics, model evaluation, and reliability

probability of occurrence. It can be assumed that the characteristic values are exceeded or undershot in the

reference period with the corresponding probability of occurrence.

The definition of the characteristic values for the loading is dependent on the loading condition, see

Tab. 2.7. The loads related to the permanent loading have less variation of their load magnitude over the

service life of the structure. The variation in the range of the mean value is generally minor for the perma-

nent loading condition. Hence, the coefficient of variation CV of the permanent loads is CV ≤ 0.10 [299]

and the mean value is representative for the permanent load magnitude. The characteristic value of the

dead load loading condition is defined according to the mean material density quantities [137].

The variability of the load magnitude as well as the probability of occurrence of the variable loads lead to

a higher variance CV > 0.10 [299] in comparison to the permanent loads. The representative value of the

variable loads cannot be exclusively expressed by the mean value of the load magnitude. The consideration

of the stochastic properties of the probability density function is not possible for the application of the mean

value as the characteristic value for the variable loads. For example, the average wind load magnitude over

a certain time period cannot be stated as a representative quantity. The information about the maximum

and minimum peak values is not considered in the mean value.

The representative load magnitudes of the variable loads are defined in relation to a certain confidence

bound of the probability density function. Therefore, the fractile values are applied in the determination of

the characteristic values for the variable loads. In general, the load magnitude of a variable load is stated

to be representative, if the quantity will be exceeded only once in the service life. In the case of a 50-year

design life, the exceedance probability of the characteristic value is 1/50 = 0.02. This representative value

of the variable load magnitude is also called the 98%-fractile, see Tab. 2.7. The nominal values are tradion-

ally applied, but are not related to a statistical distribution characteristic.

The mean values of the probability density functions are not representative quantities for the various mate-

rial properties. The variation of the material properties is in general CV > 0.1. Therefore, the characteristic

values for the material properties are also related to fractile confidence bounds, see Sec. 3.1.

The partial safety factors consider the different variances of the special effects of the actions and the

resistance conditions by the individual partial safety factors. This concept with the partial safety quantities

allows for a uniform design safety level for a wide range of different structures. In contrast, the past design

concept with the global safety factors (e.g. [131, 132, 133]) did not consider the independence of the

variable effects of the action parts and the resistance parts. Consequently, a uniform safety level cannot be

achieved by the global safety factor concept.

The computation of the effect of actions E is associated with various uncertainties. The stochastic char-

acteristics of the loading F , the divergence of the geometric parameters in the structure to their nominal

values of the building drawing, and errors due to the computational model are the main sources of uncer-

tainty which are considered in the partial safety factors.

The partial safety factors for the loading part consider the following sources of uncertainty:

� variances in the loading conditions,

such as adverse deviation according to the characteristic values

� variances in the geometric parameters constructed,

such as differences between the nominal geometric parameters of the building drawings and

the constructed geometry

� model uncertainty.

such as uncertainty due to the computational model for the analysis of the effect of actions
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Uncertainties on the resistance part occur similarly, which are caused by the transfer from the material

properties to the structural resistances. The partial safety factors for the resistance part consider the

following uncertainties [299]:

� variances in the material properties,

such as adverse deviation according to the characteristic values

� variances in the geometric parameters constructed,

such as differences between the nominal geometric parameters of the building drawings and

the constructed geometry

� model uncertainty.

such as uncertainty due to the computational model for the analysis of the resistance of the

structure

However, consideration must be given to the fact that the partial safety factors according to the model

uncertainty exclusively consider “small” computational errors. On average, the structural model is able to

simulate the load-bearing behaviour adequately with the assumed partial uncertainty safety factors [349].

The errors due to the selection of generally inappropriate models are not considered in these safety factors.

The design rules define the combination regulations between the partial safety factors and the characteristic

values in dependence of limit states. For the structural engineering design practice, the serviceability limit

state (SLS) and the ultimate limit state (ULS) are the most influential components of the analysis and the

design of structures. The other components of the limit states in the design and the life cycle assessment of

structures are the durability, the robustness, the redundancy, the economy, the environmental compatibility,

the sustainability, and the forming [299].

The design concept of the Eurocode is based on the limit state design in the SLS and ULS. In addition,

different design situations have to be considered in the limit states. The general design requirement is

independent of the limit state and the design situation and is defined by:

Ed ≤ Rd resp.
Ed

Rd
≤ 1 . (2.84)

2.6.4 Non-linear safety concept for concrete structures

A non-linear simulation of an entire structure requires a safety level, which is comparable with the con-

ventional cross section design methods using the linear-elastic determination of the section forces and the

subsequent non-linear design of critical cross sections. In the conventional design procedure, a strict de-

composition between the section force analysis and the load capacity of the cross sections is used which is

generally independent of the types of structures. No coupling between the cross section design and the force

analysis is considered in this design procedure. Therefore, this design procedure is a simplified methodology,

while still ensuring a minimum safety margin [224]. The “real” distribution of the loading and resistance

in the entire structure and the interaction between both cannot be considered in this design approach.

The reduced quantile material properties including the material safety factors are used for the design of

structures with the linear-elastic computation of the section-forces and the subsequent design of the critical

cross sections.

Design procedures for non-linear structural analyses have been investigated in recent decades. The simu-

lation with non-linear material models more adequately predicts the stiffness and force distribution in the
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structure. Therefore, the actual load-deformation behaviour can only be represented by considering the

average material properties, because the results obtained using design values are not able to predict the

“real” behaviour. Hence, a discrepancy between the commonly used design of critical cross sections ap-

plying the design values and the non-linear structural simulation is obvious. Nowadays, a non-linear safety

concept is proposed in the EC 2 [141] and MC 10 [187]. Therefore, a safety factor γR for the resistance

part is introduced representing a safety margin on a structural level. This safety factor also considers the

required level of safety which ensures that no failure in the structure occurs in the case that the material

properties at any position in structure fall below the lower fractile-values. It is necessary to consider the

influence of the uncertainty in the material properties on the cross section bearing capacity as well as on

the load-deformation behaviour of the structure [224].

More information about the non-linear safety concept of EC 2 and MC 10 for concrete structures with

various comparative case studies can be found in Allaix et al. [5], Cervenka [65, 66], Jackson [191],

Schlune et al. [369, 370], and Woliński [411]. The main limit state equation for the non-linear simula-

tion of structures, according to the non-linear safety concept of EC 2, with respect to the German National

Annex [141], is defined as:

Ed ≤
R

γR
⇒ R (fcR ; fyR ; ftR ; fp0.1R ; fpR) . (2.85a)

Therein, the safety concept of the EC 2 defines the “calculation” material properties (expressed by index

“R”) for the physical non-linear simulations as follows:

fcR = 0.85 · α · fck , (2.85b)

fyR = 1.10 · fyk , (2.85c)

ftR = 1.08 · fyR B 500B , (2.85d)

ftR = 1.05 · fyR B 500A , (2.85e)

fp0.1R = 1.10 · fp0.1k , (2.85f)

fpR = 1.10 · fpk , (2.85g)

γR =

1.3 permanent and transient design condition

1.1 accidental design condition
. (2.85h)

These computational average values ensure the independence of structural safety checks, with respect to

the failure model (ductile or brittle), by considering a consistent global safety factor for the structural

bearing capacity. In the ultimate limit state with the permanent design condition, the consistent global

safety factor is visible for the ratio fcR/fcd and fyR/fyd :

fcR

fcd
=

0.85 · α · fck

α · fck/γc
= 1.275 ≈ 1.3 , (2.86)

fyR

fyd
=

1.1 · fyk

fyk/γs
= 1.265 ≈ 1.3 . (2.87)

The failure of the system is controlled by the check of the material limit strains for the steel and the

concrete. In the case of geometric non-linearities in the entire structure or in structural components, the

failure is reached at the indifferent equilibrium [11].
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structures

3.1 Material models

3.1.1 Concrete material properties

3.1.1.1 Classification

In general, concrete can be classified into several categories such as density and strength. The classification

with respect to the oven-dry density of hardened concrete is defined as [187, 420]:

� lightweight aggregate concrete 800 ≤ ρ ≤ 2000 kg/m3

� normal weight concrete 2000 < ρ ≤ 2600 kg/m3

� heavy weight concrete ρ > 2600 kg/m3

Engineering structures for ordinary buildings and bridges are mainly constructed with normal weight con-

crete. Therefore, the theory about the concrete material models in this thesis is based on normal weight

concrete.

The strength classification is related to the compressive strength which categorises concrete grades. The

design guidelines Model Code 90 (MC 90) [74] and Model Code 10 (MC 10) [187] classify concrete accord-

ing to the compressive strength of cylindrical specimens. In contrast, the Eurocode 2 (EC 2) [101] classifies

the strength grades in an dual designation considering the compressive strength of cylinders (first number)

and cubes (second number). The guideline EN 206 [103] specifies characteristics of cylinder strengths from

12 MN/m2 (normal strength) to 100 MN/m2 (high strength), which are covered by the design codes and

guidelines MC 10 and EC 2 [101] in the following grades:

� Model Code 90 and Model Code 10 C 12, C 16, C 20, C 25, C 30, C 35, C 40, C 45, C 50,

C 55, C 60, C 70, C 80, C 90, C 100, C 110, C 120

� Eurocode 2 C 12/15, C 16/20, C 20/25, C 25/30, C 30/37,

C 35/45, C 40/50, C 45/55, C 50/60, C 55/67,

C 60/75, C 70/85, C 80/95, C 90/105

For a characteristic compressive strength of fck ≤ 50 MN/m2, the concrete grades are classified to normal

strength concrete (NSC). Concrete grades with fck > 50 MN/m2 are classified as high strength concrete

(HSC) [187].
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3.1.1.2 Compressive strength

In laboratory experiments, concrete compressive strength can be measured in a uniaxial compression test.

For example, the strength according to the Model Code 90 [74] should be tested for cylinders fck,cyl, 150 mm

in diameter and 300 mm in depth, which are stored in water at 20± 2◦C and tested at the age of 28 days.

The international European standard EN 206 [103] specifies that the laboratory test be performed according

to the recommendations of EN 12390 [102]. Therefore, the characteristic compressive strength should be

tested with cylinders 150 mm in diameter and 300 mm in depth and with cubes of 150 mm edge length

fck,cube. In addition, the international standard code ISO 1920 [188] recommends the same cylindrical ge-

ometry for the compressive test.

In general, the concrete compressive strength depends on the size and shape of specimen, water/cement

ratio, degree of hydration and moisture state, concrete age and curing, type and strength class of ce-

ment, type and amount of additions and in some cases on the type of admixtures [185]. The aggregate

strength and stiffness significantly affect the concrete compressive strength for high strength concrete

(fck,cyl ≥ 55 MN/m2). Thus, the strength of HPC depends primarily on concrete composition and condi-

tions during concrete hardening. Conversion factors may be used in order to consider different test specimen

sizes, curing effects, and environmental conditions [10, 292].

concrete compressive strength fc [N/mm2] 
15 25 35 45

C 25/30

5%-quantile
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Figure 3.1: Probabilistic distribution of concrete compressive strength according to EC 2 recommended for
concrete grade C 25/30

For each concrete grade, the test results of the compressive strength vary around an average value. Hence,

it is also important to determine lower and upper bound values representing quantiles and fractiles, re-

spectively. Material properties related to a certain quantile are referred to as characteristic values. The

characteristic compressive strength fck is defined as the strength below 5% of all test specimens may be

expected to fall. For the purpose of verification in design and estimation of other concrete properties, it is

necessary to refer to a mean value of compressive strength fcm which is generally defined as:

fcm = fck + ∆f . (3.1)

The MC 90 recommends a value of ∆f = 8 MN/m2 independent of the concrete grade. In the updated

textbook of Model Code 1990 (MC 90-99) [185], the scatter in the concrete compressive stress is defined

as ∆f = 1.64 · σfc . This determination is related to the 5% quantile of the normal distribution. Thus, the
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standard deviation can be assessed separately for each concrete class. In the current version of EC 2 [101]

and MC 10, [187], the randomness in the compressive strength is assumed to be normally distributed and

the variance is determined to be σfc = 5 MN/m2, independent of the concrete grade. For the concrete

grade C 25/30, Fig. 3.1 shows the assumed normal distribution with the average value fcm = 33 MN/m2

and the characteristic strength fck = 25 MN/m2. This determination is commonly applied to the design

of structures for the cases where no specific experimental data about the uncertainty (randomness) in

this strength property is available. However, measurements on actual concrete specimens are much more

reliable than those general approximations in design guidelines in order to analyse the probabilistic ma-

terial characteristics. The results of such experimental investigations on actual concrete are mentioned in

Sec. 2.3.2.

3.1.1.3 Tensile strength

Concrete tensile strength depends primarily on the parameters which also influence the compressive strength

such as the type and strength class of cement or water/cement ratio. The correlation between tensile and

compressive strength is not proportional, particularly for higher strength concrete (HSC). An increase

in compressive strength, such as for HSC, cause only to a small increase in tensile strength [221]. The

increasing brittleness of the cement paste with increasing compressive strength is one of the reasons for

this phenomenon. The increase in brittleness is due to the crack propagation in the cement paste being

less hindered by voids, due to a finer and denser pore structure [340].

The tensile strength is influenced by shape, size, surface condition, and mineralogical character of the

aggregates [161]. Another main influencing factor on the tensile strength is the test method (uniaxial

tensile, tensile splitting, and flexural testing). In this context, the tensile strength is generally more size and

shape dependent than the compressive strength [185]. However, the size effect becomes less pronounced

as the concrete compressive strength increases [351]. In addition to the size dependence and different test

methods, internal stresses such as drying shrinkage can significantly influence concrete tensile strength

[186]. Hence, this material property should be taken into account with caution in the design of structures.

In general, tensile strength basically refers to the axial tensile strength fct determined in laboratory uniaxial

tensile tests. Due to experimental difficulties in performing such experiments, the axial strength is almost

exclusively determined in research [185]. However, uniaxial tensile testing is the most appropriate method

in order to determine the concrete tensile strength, because of its specimen size independence [187].

Therefore, uniaxial tension tests on unnotched specimens provide reliable measurement data establishing

relationships between compressive and tensile concrete strength [186]. Without specific experimental data

for a particular concrete, the concrete axial tensile strength on average fctm (in [MN/m2]) may be computed

relative to the compressive strength as follows:

fctm = 1.40 ·
(

fck

10 MN/m2

)2/3

MC 90 [74] , (3.2a)

fctm = 2.12 · ln
(

1 +
fcm

10 MN/m2

)
Remmel [340] , (3.2b)

fctm = 2.64 ·
(

ln

(
fcm

10 MN/m2

)
− 0.1

)
fib Bulletin 42 [186] , (3.2c)
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fctm = 0.30 · (fck )2/3 ≤ C 50/60 MC 10 [187], EC 2 [101] , (3.2d)

fctm = 2.12 · ln
(

1 +
fcm

10 MN/m2

)
> C 50/60 MC 10 [187], EC 2 [101] . (3.2e)

More recent measurement data including tests on high performance concretes are used in Remmel’s

study [340], see Eq. 3.2b. These measurements are mainly observed on notched specimens. The results

of this study are considered for high strength concrete in the Mode Code 10 and the Eurocode 2 for

concrete grades >C 50/60. In the textbook fib Bulletin 42 [186], the empirical relationship between concrete

compressive strength and axial tensile strength, see Eq. 3.2c, is investigated for unnotched specimens.

This leads to higher determination of the tensile strength compared to Eq. 3.2b. A comparison of the

empirical relationship assessed by several research studies between concrete compressive and tensile strength

considering measurement data (fib Bulletin 42) is shown in Fig. 3.2.
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Figure 3.2: Influence of concrete compressive strength fcm on axial concrete tensile strength fctm according
to MC 90 [74], Remmel [340], fib Bulletin 42 [186], MC 10 [187], measurement data [186]

For some design requirements, such as minimum reinforcement or deflection control, it might be necessary

to determine tensile strength to its quantiles. In the Model Code 1990 [74], it is proposed:

� for deflections mean or lower quantile value fctk,0.05, fctm,

� for minimum reinforcement upper quantile value fctk,0.95,

� for stability verifications mean value fctm,

� for crack width calculation mean value fctm,

in which fctk,0.05 is the lower 5% quantile and fctk,0.95 is the upper bound 95% quantile. These probabilistic

properties of the axial tensile strength may be computed by (fctk in [MN/m2]):

fctk,0.05 = 0.95 ·
(

fck

10 MN/m2

)2/3

MC 90 [74] , (3.3a)

fctk,0.95 = 1.85 ·
(

fck

10 MN/m2

)2/3

MC 90 [74] , (3.3b)

fctk,0.05 = 0.7 · fctm MC 10 [187], EC 2 [101] , (3.3c)

fctk,0.95 = 1.3 · fctm MC 10 [187], EC 2 [101] . (3.3d)
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In MC 90, the ratio between the average strength and the quantiles is similarly defined as 0.95/1.40 ≈ 0.7,

and 1.85/1.40 ≈ 1.3. Upper and lower quantiles of concrete tensile strength are similarly recommended by

MC 90, MC 10 and EC 2.

As a consequence of the experimental difficulties in uniaxial tensile testing, in many instances, concrete

tensile strength is assessed in splitting (tensile splitting strength fct,sp) or flexural tests (flexural strength

fct,fl), according to EN 12390 [102] or ISO 1920 [188], respectively. A comparison of the strength magnitudes

shows that flexural strength is higher than axial strength and the tensile splitting strength is closer to axial

strength [292]. Similar to the size effect in compressive strength, tensile splitting and flexural strength are

dependent on various conditions in the test setup. In contrast, axial tensile strength is much less sensitive

to several testing conditions. Hence, the uniaxial tensile test is the most appropriate method to determine

the concrete fracture properties in tension. Nevertheless, in many instances, the tensile splitting strength

is determined due to a more practical testing technique. This strength depends mainly on specimen shape

[161, 347], specimen size [30, 200], and width of bearing strips [348]. In the case narrow bearing strips are

used, the effect of specimen shape or size is not significant within the usual range of test specimen sizes

[348]. The critical stresses act at some distance from the concrete surface and therefore the tensile splitting

strength is much less sensitive to curing conditions [171]. Therefore, tensile splitting strength data shows

less variance (measurement uncertainty) compared to data obtained from flexural tests.

In the case that tensile strength properties are not determined by means of direct tests, empirical conversion

factors can be used to determine the axial tensile strength. The transition between axial and tensile splitting

strength may be computed by:

fctm = 0.9 · fct,sp MC 90 [74] , (3.4a)

fctm = 0.95 · fct,sp DAfStb 444, Remmel [340] , (3.4b)

fctm =
2.635 · ln (fcm)− 6.322

2.329 · ln (fcm)− 4.71
· fct,sp fib Bulletin 42 [186] , (3.4c)

fctm = 1.0 · fct,sp MC 10 [187] . (3.4d)

In MC 90, the conversion factor between axial tensile and splitting strength is defined as αsp = 0.9. This

determination is based on the study of Heilmann [166], in which this relationship is experimentally inves-

tigated between compressive strength and axial strength and compressive strength and splitting strength,

respectively. . Therefore, the ratio between axial and splitting strength is defined as [166]:

αsp =
fctm

fct,sp
=

0.24 · f 2/3
c,cube

0.27 · f 2/3
c,cube

= 0.89 . (3.5)

In the textbook fib Bulletin 42 [186], αsp is defined according to Eq. 3.4c and is in the range between

αsp(fcm = 20 MN/m2) = 0.69 and αsp(fcm = 160 MN/m2) = 0.99, see Fig. 3.3(a). The study by Remmel

(DAfStb 444, [340]) recommends a conversion factor of 0.95. New comprehensive experimental and nu-

merical investigations by Malárics and Müller [255, 256, 257] determined, that conversion should be

performed in relation to various specimen geometries and concrete types. This study proposes conversion

factors for several geometries and concrete types, which are in general αsp > 1.0, see Fig. 3.3(a). As a

compromise between the different effects in the splitting testing, MC 10 proposes αsp = 1.0. Moreover,

an extensive evaluation of the ratio between tensile splitting and compressive strength for several concrete
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3. Modelling aspects of restraint sensitive concrete structures

grades can be found in [9, 415].

The flexural test is another method to determine the concrete strength in tension. The flexural strength

strongly depends on the size of the testing beam [249, 336]. In particular, flexural strength is sensitive to

the depth of the specimen beam [288]. Furthermore, the results of flexural tests are influenced by notches

and notch size, test setup (three or four-point bend test [124]) and curing conditions [186].

The effect of the beam depth may be computed according to Eq. 3.6, which defines conversion between

flexural strength and axial tensile strength αfl as:

fctm = fct,fl ·
αfl

(
hb

h0

)0.7

1 + αfl

(
hb

h0

)0.7
MC 90 [74], MC 90-99 [185], MC 10 [187] . (3.6)

with hb the depth of the beam and h0 = 100 mm. The effect of maximum aggregate size on tensile strength

is neglected in Eq. 3.6 and thus it is only valid for hb > 50 mm. As the depth of the beam increases, flexural

strength approaches axial tensile strength. In MC 90, the value of αfl = 1.5 is proposed. This factor depends

on the brittleness of the concrete with respect to the testing concrete beams. Experimental results show

that the ratio fct,fl/fctm decreases with beam depth, due to higher brittleness [288]. Therefore, the factor

should increase for higher beam depths, see Fig. 3.3(b).
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Figure 3.3: Experimental data and empirical relationships between splitting, flexural and axial concrete
tensile strength

3.1.1.4 Modulus of elasticity

The concrete modulus of elasticity is mainly influenced by hydrated cement paste and aggregate stiffness

similar to the influence it has on compressive strength [185]. On one hand, concrete modulus of elasticity can

be simulated on the basis of the composite materials theory in the case that the moduli of the components

are known [163, 398]. On the other hand, a number of empirical formulas is proposed in design codes and
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guidelines. These determinations estimate the modulus of elasticity relative to the compressive strength. In

these empirical relationships, the modulus of elasticity raises with an increase in concrete strength, which

confirms the commonly observed trend in experiments [404].

The concrete modulus of elasticity is defined either as the tangent Ec0 at the origin of the stress-strain

relationship or as the secant Ecm between the origin and concrete compression strain at a stress level

of σc = −0.40 · fcm. The tangent modulus of elasticity does not include initial plastic deformations and

is approximately equal to the slope of the secant of the unloading branch (rapid unloading condition).

In contrast, the secant modulus of elasticity includes some irreversible strains and therefore Ec0 > Ecm

(normal strength concrete). The tangent modulus of elasticity at the age of 28 days may be determined

by:

Ec0 = αaggre · 2.15 · 104 MN/m2 ·
(

fcm

10 MN/m2

)1/3

MC 90 [74], MC 10 [187], (3.7a)

Ec0 = 1.02 · 104 MN/m2 · (fcm)1/3 Wee et al. [404], (3.7b)

Ec0 = 1.05 · 2.20 · 104 MN/m2 ·
(

fcm

10 MN/m2

)0.3

EC 2 [101], (3.7c)

and the secant modulus of elasticity by:

Ecm = 0.85 · Ec0 MC 90 [74], (3.8a)

Ecm = αEcm · Ec0 MC 10 [187], (3.8b)

αEcm = 0.80 + 0.20 · fcm

88 MN/m2
≤ 1.0 .

Ecm = 1/1.05 · Ec0 ≈ 0.95 · Ec0 EC 2 [101]. (3.8c)

Experimental measurements and regression analysis by Wee et al. [404] on 163 cylindrical specimens (see

Eq. 3.7b) are used for comparison to the empirical models of MC 90, MC 10, and EC 2. A small improve-

ment in accuracy is assessed for Wee in comparison to other models, as is expected. Nevertheless, the

general shape is almost identical for all considered models, see Fig 3.4(a). Moreover, the determination of

the tangent and secant modulus of elasticity are similarly defined in MC 90 and MC 90-99.

In MC 90 and EC 2, a strength independent ratio is proposed between the tangent and secant modulus of

elasticity αEcm = Ecm/Ec0. The ratio is determined as αEcm = 0.85 in MC 90 and αEcm ≈ 0.95 in EC 2.

In contrast, experimental results show that the difference between first loading up to σc = −0.4 · fcm and

the unloading branch decreases with an increase in compressive strength [187]. For example, the difference

is smaller than 3 % for concrete grades higher than C 80/95. Therefore, MC 10 considers the strength de-

pendence in the ratio between both moduli of elasticity, see Eq. 3.8b. The comparison between different

empirical determinations of the secant modulus of elasticity Ecm as a function of the compressive strength

is shown in Fig. 3.4(b).

For designing purposes, secant modulus of elasticity should be used for an elastic analysis of concrete

structures in order to account for initial plastic strains [74, 110, 185]. In contrast, tangent modulus of

elasticity may be used for non-linear compressive and tensile stress-strain relationships as well as for an

estimate of concrete creep [187]. The effect of aggregate type on modulus of elasticity can be considered

approximately by multiplying Ec0 by the aggregates influence coefficients αaggre, see Tab. 3.2. The values

listed in Tab. 3.2 should be seen as indicative and crude approximations that are reasonable for general
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Figure 3.4: Concrete moduli of elasticity Ec as a function of compressive strength fcm according to Wee
et al. [404], MC 90 [74], MC 10 [187], and EC 2 [101]

applications such as parametric studies. More accurate consideration of the influence of aggregate stiffness

on concrete modulus of elasticity can be assessed by direct experimental measurements. If the structure is

sensitive to variations in elastic stiffness, Ec should be experimentally determined, which may significantly

reduce uncertainties in model predictions and allow for a more reliable design of the structure.

Table 3.2: Effect of aggregate type on concrete modulus of elasticity

Aggregate type αaggre

MC 90, MC 90-99, MC 10 EC 2 DAfStb 525
[74, 185, 187] [101] [126]

Basalt, dense limestone 1.20 1.20 1.05 - 1.45
Quartzitic 1.00 1.00 0.80 - 1.20
Limestone 0.90 0.90 0.70 - 1.10
Sandstone 0.70 0.70 0.55 - 0.85

3.1.2 Concrete in compression

3.1.2.1 Fracture process

The material behaviour of plain concrete in compression is characterised by a non-linear stress-strain rela-

tion. With increasing stress level, concrete tends to soften as a consequence of concrete microcracking. At

a stress level of about 40% of compressive strength, bond cracks are already present in the aggregate-paste

interface and start to grow in the case of further increase in load. These cracks propagate into the matrix

at a stress level in the concrete of about 80% of compressive strength. The predominant direction of crack

propagation is parallel to the external load. This system of microcracks causes the non-linear material

behaviour of concrete in compression [74]. On one hand, the microcracking of lower and medium strength

of concrete is concentrated in the hydrated cement paste and in the paste-aggregate interfaces. On the

other hand, for high strength concrete, microcracks can also pass through aggregates. Thus, different crack
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3.1. Material models

patterns may be developed for NSC and HSC.

A further stress increase induces crack growth and shorter cracks join to form longer ones. The concrete

compressive strength is reached in the case that under a constant stress, sudden, unstable fracture occurs.

This can be observed if the length of one or more of several microcracks becomes critical [185]. For loading

with a constant strain rate, the external force is reduced after the ultimate load is reached. Therefore,

microcracks continue to grow in a stable fashion and a descending portion of the stress-strain relationship

can be observed in experimental compressive tests [391].

The fracture region of the irreversible strains due to the microcrack formation is limited to a certain width in

which the compressive strains are concentrated [185], particularly for strains εc > |εc1|, in which εc1 refers

to the strain at the compressive strength. Hence, compressive failure is a discrete phenomenon [278]. The

descending relationship for concrete in compression is influenced by the specimen or member geometry,

boundary conditions and possibilities for load distribution in the structure. Consequently, the post-peak

range in the stress-strain relationship is size dependent and thus not only a property being influenced by

the material characteristic itself [186].

Experimental studies by van Mier [276, 277] show that decreasing specimen depth leads to an increase in

ductility due to the concentrated microcracking, see Fig. 3.5(a). For longer specimens, the strain concen-

trations become smeared and the descending branch is steeper. In contrast, the behaviour of plain concrete

under compression in the pre-peak region is almost independent of the specimen size, due primarily to

observed constant fracture energy, which is studied by Sangha and Dhir [363].

In addition to the specimen size effect, the study by Kotsovos [230] analyses the influence of different

compressive strain εc [‰]

stress σc / σc,max [-]
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Figure 3.5: Non-linear behaviour of plain concrete measured in uniaxial compressive experiments

testing techniques on the concrete behaviour in compression. Varying degrees of frictional restraint across

the loaded surfaces are a significant effect on the descending portion of concrete’s stress-strain relationship.

For both normal and high strength concrete, the compressive strength depends mainly on the loading platen

and specimen slenderness used in the test. In the case of rigid steel loading plates, an increase in specimen

strength is observable with decreasing slenderness. In contrast, the reduction of the friction (e.g. by insert-

ing a sheet of teflon between steel loading platen and concrete specimen) allows for independence between

slenderness ratio (h/d) and measured strength [343]. In comparison, the ascending portion is essentially

independent of the compressive testing technique and slenderness when low-friction loading plates are used.

The strain rate in experiments additionally determines the post-peak behaviour of concrete in compression,

which is initially investigated by Rüsch [356].

53



3. Modelling aspects of restraint sensitive concrete structures

In general, concrete compressive behaviour can be characterised as quasi-brittle with a sudden failure mech-

anism [8, 34]. For lower concrete strength, the post-peak behaviour of concrete in compression is rather

ductile and becomes more and more brittle with increase in strength [185]. A very brittle behaviour of

plain concrete is visible for high strength concrete. Such dependences between strength, stiffness, and fail-

ure mechanism is observed in experiments by Wee [404], see Fig. 3.5(b). Moreover, the behaviour in the

softening range is shown to be more ductile if the specimen slenderness is decreased. In conclusion, the

modelling of the descending branch is significantly influenced by the specimen size and testing boundary

conditions and, thus, the post-peak stress-strain behaviour is a mixture of material and structural properties

[343].

Finally, the modelling of the descending branch is subjected to higher experimental and modelling uncer-

tainties compared to the pre-peak region. A comparison between various material models and experiments

are investigated e.g. by Lu, Zhao [250] and Wee [404], which similarly illustrates that the difference

between empirical models and measurements is much higher than the post-peak region.

Moreover, an extensive data bank is investigated for the “RILEM TC 148-SSC: Test Methods for the Strain-

Softening Response of Concrete” project which is proposed by van Mier in 1993 [343]. This comprehen-

sive Round-Robin test programme is performed in ten different laboratories around the world, such as Delft

University of Technology, Technische Hochschule Darmstadt, University of Minnesota, and University of

Sydney. The goal of this research project is to develop a reliable standard test method for measuring strain

softening of concrete under uniaxial compression. Specimen slenderness and boundary restraint are the

main variables that are analysed in the test programme, see Fig. 3.6. Specimen shape and size are addi-

tionally investigated. Both normal strength concrete with a strength of about 45 MN/m2 and high strength

concrete with a strength of about 75 MN/m2 are analysed in several laboratories. Assessment of all tests

concluded that reliable and reproducible strain-softening measurements can be made for specimens with a

slenderness ratio 1.0 ≤ h/d ≤ 2.0 with teflon platens between the steel plates and the concrete specimen.

An axial platen-to-platen deformation technique can be applied for normal strength concrete, whereas a

combination of axial and lateral deformation (or combination of axial deformation and axial load) should

be used for high strength concrete. More information about the test method can be found in [344] which

provides detailed recommendations for the specimen, instrumentation, test apparatus, test performance,

and test results/report.

The effects in the post-peak stress-strain relationship mentioned above are difficult to capture in smeared

material models and, thus, are not considered in empirical material models. In addition to the higher model

uncertainties, the load-deformation behaviour of reinforced and prestressed concrete structures have to per-

mit, in general, a certain amount of ductile deformations [40]. Therefore, the concrete compressive failure

is not generally suitable for concrete structures. Hence, the descending branch for high compressive strains

|εc | > |εc,lim| is not further addressed in this thesis. The compressive strain |εc | = |εc,lim| is identified

with the failure condition in the compressive material models. The pre-peak behaviour of concrete is much

less sensitive to size effects and boundary test conditions. Therefore, the models mentioned in Sec. 3.1.2.2

are accurate for the description of the non-linear concrete behaviour under compression especially in the

pre-peak stress level range.
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Figure 3.6: Effect of specimen slenderness on concrete compressive strength for different frictional test
conditions, Round-Robin testing programme RILEM TC 148-SSC [343], ACBM...Center for
Advanced Cement-based Materials, DUT...Delft University of Technology, ENEL...Centro di
Ricerca Idraulica e Strutturale (ENEL-Cris) Laboratories, EUT...Eindhoven University of Tech-
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3.1.2.2 Compressive material models

A basic non-linear concrete compressive model is investigated by Hognestad [173]. This study defines

the material behaviour by a second-degree parabola:

σc = −fcm ·
[

2

(
εc

εc1

)
−
(
εc

εc1

)2
]

. (3.9)

The ratio between tangent modulus of elasticity at the origin and secant modulus at the peak stress is

assumed to be constant and independent of compressive strength, which contradicts the experimental

observations. A further development is found by Sargin [364]. This study establishes a broken-rational

function in order to describe the material behaviour which is defined as:

σc = −fcm ·
A ·
(
εc

εc1

)
+ B ·

(
εc

εc1

)2

1 + C ·
(
εc

εc1

)
+ D ·

(
εc

εc1

)2
. (3.10)

The coefficients A, B, C , and D are computed according to all of the strain rates including ascending

and descending branches. An extension of this model by Wang et al. [403] separately defines two sets

of coefficients for both branches, whose predictions matching the experimentally determined descending

branch more adequately. Furthermore, a material model is proposed by Carreira and Chu [61]. This

model estimates the experimental measurements with a serpentine curve.
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The material models considered in current editions of design codes and guidelines are based on the study by

Sargin [364], see Eq. 3.10. Model characteristics and a comparison between the different model predictions

are presented in the following paragraphs.

Model Code 90

The Model Code 90 [74] defines the non-linear compressive stress-strain relationship for a smeared (more

ductile in post-peak range) crack propagation which may be observable in experiments with a great speci-

men depth, see Fig. 3.5(a). This non-linear function approximates the measured σc -εc data points by the

following definition:

|εc | < |εc,lim| σc = −fcm ·

Ec0

Ec1

εc

εc1
−
(
εc

εc1

)2

1 +

(
Ec0

Ec1
− 2

)
εc

εc1

(3.11)

with the tangent modulus Ec0 according to Eq. 3.7a, the strain at the mean concrete compressive strength

εc1 = −2.2 · 10−3 and the secant modulus of elasticity from the origin to the peak Ec1 = −fcm/εc1. For

higher compressive strains than εc1, the MC 90 concrete material model is valid up to |σc | /fcm ≥ 0.5. At

the descending stress value σc,lim = −0.5·fcm, the limit strain εc,lim is defined for restricting the applicability

of the model. The limit strain can be computed by:

εc,lim

εc1
=

1

2

(
1

2

Ec0

Ec1
+ 1

)
+

[
1

4

(
1

2

Ec0

Ec1
+ 1

)2

− 1

2

]1/2

. (3.12)

Furthermore, MC 90 specifies the descending branch of the σc -εc for strains |εc | > |εc,lim| by either a

non-linear or a linear function. Due to the reasons mentioned above, these high compressive strains are

not further discussed or considered in the simulation results. The non-linear concrete compressive material

model of MC 90 is shown in Fig 3.7(a) for various concrete strength grades.

Updated knowledge of Model Code 90

In MC 90, the strain at the maximum compressive stress εc1 = −2.2 · 10−3 is assumed to be constant

and independent of concrete strength. The comparison of experimental results shows a correlation between

strength and corresponding strain value, see Fig. 3.5(b). Therefore, the MC 90-99 extended the compressive

concrete material model of MC 90 in order to take into account the increase of εc1 with increasing strength

grade. The non-linear function is basically the same as defined in Eq. 3.11, but the strain value at the

strength εc1 is determined by:

εc1 = −1.7 · 10−3 − 1.0 · 10−3 ·
(

fcm

70 MN/m2

)
. (3.13)

The non-linear concrete compressive material model of MC 90-99 is shown in Fig 3.7(b) for various concrete

strength grades.
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Model Code 10

The broken rational function of Model Code 90, see Eq. 3.11, is similarly defined in the Model Code 10.

Some quotients are redefined as η = εc/εc1 and k = Ec0/Ec1 and therefore:

|εc | < |εc,lim| σc = −fcm ·
k · η − η2

1 + (k − 2) η
. (3.14)

The determination of εc1 is based on the studies by Meyer [275] and Popovics [314] and is defined by:

εc1 = −1.6 · 10−3 ·
(

fcm

10 MN/m2

)0.25

. (3.15)

The values for εc,lim recommended in MC 10 are in good agreement with experimental results of Grimm

[152] and Meyer [275]. The non-linear concrete compressive material model of MC 10 is shown in Fig 3.7(c)

for various concrete strength grades.

Eurocode 2

The Eurocode 2 [101] approximates the non-linear concrete compressive behaviour by a broken rational

function in the same way as defined in the Model Code 10, see Eq. 3.14. The strain at the peak stress is

defined as (fcm

[
MN/m2

]
):

εc1 = −7.0 · 10−4 · (fcm)0.31 ≥ −2.8 · 10−3 . (3.16)

The ultimate permissible compressive strain is defined as εc,lim = −3.5 · 10−3 for concrete grades C 12/15

up to C 50/60. For high strength concrete, the ultimate limit strain can be computed by (fcm

[
MN/m2

]
):

εc,lim = −2.8 · 10−3 − 27 · 10−3 · [(98− fcm) /100]4 . (3.17)

The non-linear concrete compressive material model of EC 2 is shown in Fig 3.7(d) for various concrete

strength grades.

Comparison of material models

The non-linear concrete compressive models are illustrated in Fig. 3.7 for the concrete classes C 20/25 (fcm =

28 MN/m2), C 40/50 (fcm = 48 MN/m2), C 60/75 (fcm = 68 MN/m2) and C 80/95 (fcm = 88 MN/m2).

Therefore, normal strength concrete (C 20/25 and C 40/50) and high strength concrete (C 60/75 and

C 80/95) are considered in the illustration of the material models. For the material model of MC 90 [74],

each of the different concrete classes reaches their corresponding peak stress (fcm) at the same strain value

of magnitude εc1 = −2.2 ·10−3. More accurate consideration of the strength depending on this strain value

is considered in MC 90-99 and even more precisely in MC 10 and EC 2. Comparison between the latter two

models shows only small differences in the model predictions in the pre-peak range and in the determination

of εc1. In contrast, the post-peak and especially the ultimate compressive strain are defined differently in

both models.
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Figure 3.7: Non-linear material models (MC 90, MC 90-99, MC 10, EC 2) of plain concrete in uniaxial
compression for various concrete grades

3.1.3 Concrete in tension

In concrete specimens subjected to uniaxial tension, the material initially behaves linear-elastic almost up to

the peak load [179]. On a macro-level point of view, the stresses and strains are uniformly distributed over

the tensile bar. Hence, the load-deformation behaviour can be directly represented by a material stress-strain

relationship. The initiation of propagating microcracks is observable at a stress level of about 70 %− 80 %

of the tensile strength [185, 225, 262], see Fig. 3.8. In experiments by Heilmann et al. [167], a difference

between the linear-elastic material behaviour and the measurements is visible at a stress level of about

60% of the tensile strength. However, the specimens are loaded under an eccentric normal force in these

experiments which may cause this difference. The concrete fracture process in tension is an even more

discrete phenomenon when compared to concrete in compression. For a load-controlled test, the fracture

occurs when the maximum attainable load is reached which determines the concrete tensile strength. In a

deformation-controlled test, the post-peak behaviour can be additionally observed as shown in Fig. 3.8.

For axially loaded tensile specimen, the corresponding limit strain ε∗ct for 0.75fct as an indicator for initiation

of microcracking is investigated by several studies:
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Figure 3.8: Load-deformation behaviour of concrete bar under uniaxial tension, based on [179]

ε∗ct [�] author reference

� 0.08-0.10 Hordijk [179] ,

� 0.10 Mark et al. [262] ,

� 0.08 Schlangen [368] .

In the case of a stress level close to the maximum admissible stress, concrete strains start to localize

within a narrow zone of micro-cracks. Crack propagation primarily occurs in a perpendicular direction with

respect to the external stress. A system of more or less parallel but initially discontinuous microcracks

propagates and develops into a continuous macro-crack which builds the so-called process zone (softening

zone). Tensile stresses can still be transmitted in the process zone and thus is also referred to as a cohesive

crack [185]. Due to the variability of concrete tensile strength along the tensile specimen, the process zone

appears at the section with corresponding lowest strength. If the process zone develops within the measured

length, this data determines the load-deformation behaviour with consideration for the softening branch,

corresponding to displacement umeas,I shown in Fig. 3.8. The increase in deformation in the process zone

causes a decrease in external load. Hence, the concrete outside this zone is unloaded due to load reduction,

which is illustrated by the displacement umeas,II in Fig. 3.8. In the descending branch of the load-deformation

behaviour, the displacement is built up by strains and crack opening. Therefore, the deformation process

can not be exclusively described by concrete strain. In order to model the tensile behaviour of concrete,

deformation is separated into a stress-strain behaviour in the uncracked branch and a stress-crack opening

relation for the crack, see Fig. 3.9.

displacement u

fct fct

strain ε

arctan Ec0 GF

crack opening w w0

= +

stress σct stress σct stress σct

Figure 3.9: Differentiation of concrete in tension into stress-strain and stress-crack opening relation ac-
cording to fictitious crack model, based on [179]
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In the case that the cohesive crack reaches a critical size, an unstable fracture can only be avoided by

a reduction of the external stress (deformation controlled). The descending branch of concrete in tension

consequently occurs and a steady increase of deformation occurs due to gradual opening of the crack. In

the case that the crack surfaces are completely separated, the maximum crack opening size w0 can be

determined. The experimental study of w0 is very difficult due to the long tail of the descending branch.

The material properties for the concrete tensile descending branch are investigated in several studies. In the

case that no specific experimental data is available, the maximum crack opening w0 may be determined

by:

w0 = 5.14 · GF/fctm Hordijk [179] , (3.18)

w0 = GF/fctm ·


8 for aggregate size: 8 mm

7 for aggregate size: 16 mm

5 for aggregate size: 32 mm

MC 90 [74] , (3.19)

w0 = 5 · GF/fctm MC 10 [187] , (3.20)

and the fracture energy GF by:

GF =

∫ w=w0

w=0
σct(w) dw , (3.21)

GF = f 0.7
cm ·


4 for aggregate size: 8 mm

6 for aggregate size: 16 mm

10 for aggregate size: 32 mm

MC 90 [74] , (3.22)

GF = 73 · f 0.18
cm MC 10 [187] . (3.23)

The fracture energy GF is a material characteristic which describes the resistance of a material subjected to

tensile stresses by defining the energy which is required to propagate a tensile crack of unit area (dimension

Nmm/mm2 or N/mm) [185]. This property depends primarily on water/cement ratio, maximum aggregate

size and concrete age [179]. Moreover, it depends on the sizes of the structural members which is not taken

into account in the above mentioned empirical relationships (only aggregate size considered), which results

in a discrepancy between these determinations compared to experimental data of up to ±30 % [74]. Due

to the substantial increase in concrete brittleness with higher strength grades fcm > 80, a fracture energy

limit is proposed in MC 90-99 [185]. In general, it is very useful to determine GF from uniaxial tensile

tests. However, indirect tests (e.g. three-point bending tests on notched beams) are most frequently used,

because these tests are easier to perform [187]. In a recent comprehensive study by Hoover and Bažant

et al. [177, 178], an experimental test program is performed for one batch of concrete with a total of 164

concrete specimens within three hours, which results in a low uncertainty in the measurement data. This

data bank may allow an adequate comparison of existing models as well as development of more accurate

models.

The stress-strain relationship for uncracked concrete and the stress-crack opening relationship for cracked

concrete in tension proposed in the design guidelines MC 90 [74], MC 10 [187], and by Hillerborg [169]

are illustrated in Fig. 3.10(a).
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Figure 3.10: Several models for stress-strain and stress-crack opening relationship for concrete in tension

The fictitious crack model by Hillerborg et al. [170] and the crack band model by Bažant and

Oh [33] are two of the most important cohesive crack models which take into account the fracture and

deformation processes. The fictitious crack model is capable of correctly modelling the existence of a dis-

crete crack, but the path of such cracks should be estimated beforehand in such a way that a suitable

finite element mesh can be chosen. An evident crack is interpreted as a crack that cannot transfer ten-

sile stress. In contrast, crack-closing stresses appear in the fictitious crack (process zone). Axially loaded,

notched specimens are analysed in the study by Hillerborg et al. [170] and a material model defined

as a stress-crack opening function is developed based on the measured force-displacement relationship. For

the numerical simulation, the observed concrete tensile stress-crack opening relationship is approximated

by either linear or bi-linear functions.

For the crack band model proposed by Bažant and Oh [33], the crack is partially smeared and corre-

sponds to the width of the finite element representing the crack band [185]. Therefore, the fracture process

is limited to a certain band in which the cohesive crack develops, whereas in other regions the strain de-

crease as the tensile stress is reduced. Therefore, a distinction should be made carefully between regions in

which fracture develops and those outside the fracture zone. Based on the original proposal, the optimum

effective width of the crack band front is found to be about three-times the maximum aggregate size.

The discrete phenomenon of cracking and crushing can also be modelled by a smeared approach defining

average stress-strain relationships. These smeared crack models are particularly suitable for applications

where many cracks may occur in the entire structure [16, 151]. Therefore, the non-linear load-deformation

behaviour of structures can be adequately analysed by applying the smeared compression, tension, and

tension stiffening models [224]. For discrete simulations, the bond stress-slip relationship is more explicitly

described in order to obtain adequate results. In this thesis, only smeared stress-strain relationships are
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applied for the modelling of the material behaviour.

3.1.4 Reinforced concrete in tension - tension stiffening

The fracture process of plain concrete is significantly different than that of reinforced concrete. Therefore,

it is necessary to investigate the crack propagation separately for reinforced concrete. On one hand, all

tension forces in a cracked section are exclusively balanced by reinforcing steel. On the other hand, some

tension forces in between neighbouring cracks are transmitted from steel to surrounding concrete by bond

stresses. Therefore, the pieces of concrete between the cracks contribute to the stiffness of the element

[185]. Hence, this effect is denoted with the term ”tension stiffening“. The tension stiffening effect for

prestressing steel is not considered in this thesis. Recommendations and models can be found in [219].

For combined reinforcing and prestressing steel, their combined influence on the tension stiffening may be

considered in a ratio between bond stiffness of both steel materials [396]. In general, the tension stiffening

effect is mainly influenced by [162]:

� concrete strength,

� reinforcement ratio, and reinforcement layout,

� bond characteristics,

� loading level,

� concrete cover, and

� type of loading (instantaneous, long-term, or repeated).

The distribution of bond stresses along the process zone (discontinuity area) is non-linear as it is shown in

Fig. 3.11(a). Due to the fact that the distance between several cracks varies, it is quite difficult to compute

the contribution of concrete by an exact analytical determination. Furthermore, the bond behaviour between

concrete and reinforcement is mainly influenced by the following aspects [220]:

� concrete behaviour due to 3-dim. high compressive stresses under ribbed reinforcing bars,

� internal cracks and longitudinal cracks,

� reinforcement surface characteristics,

� reinforcement strain,

� concrete mixture,

� residual stresses,

� external stresses, and

� concrete creep and shrinkage.

In addition, the bond description is sensitive to the distance of the steel layer to the surface or the neigh-

bouring bars, and sensitive to the distance of the considered section point to the next crack. All of these

factors influence the relationship between the slip (relative displacement between concrete and steel) and

the bond stress. Therefore, a universal bond model for the bond-slip relationship is not easy to develop

[220]. For practical applications it is quite useful to simplify the bond-stress relationship [294]. The average

and constant bond stress τbm along the bar (dotted line in Fig. 3.11(a)) enables a simplified calculation of

the tension stiffening effect. Therefore, the assumed bond-slip relationship is illustrated in Fig. 3.11(b).
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Figure 3.11: Transmission from steel to concrete for single crack, based on [185]

The contribution of concrete in tension between adjacent cracks may be considered by increasing the

stiffness of the tensile reinforcement. In the case that this effect is neglected in the analysis of concrete

structures, the stiffness of a reinforced concrete bar or a flexural member is underestimated and inaccurate

results are obtained [74].

In general, the analysis of deformation, material stress, and crack width are significantly sensitive to the

cracking stage which might appear in sections of the structural members. Therefore, the consideration of

the characteristics of each crack stage should be made from the first crack up to the yielding in reinforce-

ment. The several cracking stages are defined as follows:

¬ uncracked stage,

­ crack formation stage,

® stabilised cracking stage,

¯ steel yielding stage.

The strains in concrete and steel are equal (εc = εs) in the uncracked stage and the stiffness of the el-

ement is equal to the linear-elastic stiffness (Ec AI
i , Ec I I

i ). At a certain loading level the concrete tensile

stress reaches the tensile strength and somewhere the first crack occurs at a section with the lowest elastic

stiffness. Hence, concrete tensile stresses at the location where the concrete is cracked are σct = 0 and

reinforcing steel is subjected to the full tensile force. The concrete is activated to carry a part of the tensile

force at both sides of the crack due to the bond stress along the discontinuity area. The bond strength

influences the distance which is necessary to redevelop the full tensile force in the concrete [185]. The

assumption of a constant bond stress along the steel bars leads to a linear distribution of concrete and steel

stress over the transmission region, see Fig. 3.11(c). New cracks are not able to appear within this region,

because the concrete tensile strength cannot be reached here. At a certain distance ls,max from the crack,

the concrete tensile stress reaches the tensile strength again and another new crack can occur. Therefore,

the force which causes a neighbouring crack over the length ls,max must be:

Fct = Ac · fctm = Es · As · εI
s . (3.24)
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Along the length ls,max a bond force Fb between steel and concrete is transmitted by virtue of the action

of bond stresses. The bond force can be described by [185, 220]:

Fb = ∅s · π · τbm · ls,max = Es · As ·∆εsr (3.25)

∅s ... bar diameter

τbm ... mean value of bond strength, see Tab.3.5

As ... area of reinforcement

Es ... reinforcement modulus of elasticity

Equalizing the forces Fct from Eq. 3.24 and Fb from Eq. 3.25 results in:

ls,max =
1

4
· fctm

τbm
· ∅s

ρs
(3.26)

where ρs = As/Ac is the geometrical reinforcement ratio of a tensile bar. For a flexural member, the

effective ratio ρs,eff = As/Ac,eff should be applied with the determination of the effective concrete area in

tension Ac,eff as discussed in Sec. 3.1.4.5. Considering the effect of the concrete cover on the maximum

transmission length, the Model Code 2010 defines the length as [187]:

ls,max = k · c +
1

4
· fctm

τbm
· ∅s

ρs
(3.27)

where k is an empirical parameter to take the influence of the concrete cover into account (assumed to be

k = 1.0) and c is the concrete cover. This equation is valid for structures where the concrete cover is not

more than 75 mm.

With increasing loading level, gradually more and more cracks are formed in the crack formation stage.

Hence, the stiffness of the structural member decreases. In the case that a new crack appears just at the

end of a discontinuity region, the smallest possible crack distance is found. The maximum crack distance

occurs, where the next crack is formed at a distance smaller than 2 · ls,max. Hence, the crack distance sr

varies between ls,max ≤ sr ≤ 2 · ls,max. The final stage in the crack formation stage occurs when, finally,

overlapping of the discontinuity regions is reached in the entire structural member.

A further increase in loading increases the force in the reinforcement bar which is characteristic of the

stabilised cracking stage. The force in the concrete between the cracks cannot increase anymore since the

bound stresses reach their maximum permissible value. Therefore, the concrete contribution to the stiffness

between the cracks is constant and only crack widening is supposed to occur in the stabilised cracking

stage [187]. Hence, the relationship between the tensile force and the elongation is parallel to the line of

pure reinforcement steel, see Fig. 3.12.

Another increase in load leads finally to plastic deformations in the reinforcement steel, which is charac-

terised for the steel yielding stage. The crack stages of a reinforced concrete member in comparison to pure

reinforcement are qualitatively shown in Fig. 3.12.

Single crack

Whenever cracks appear, single cracks play an important role. In the case that the first crack occurs, the

distribution of concrete and reinforcing steel strain is shown in Fig. 3.13(a). Slip between concrete and steel

64



3.1. Material models

1

2

3

4

1

2
3

4

uncracked stage

crack formation stage

stabilised cracking stage

steel yielding stage

elongation

te
ns

ile
 fo

rc
e

F
L

Y

F first crack
L last crack
Y yielding

pure
reinforcement

reinforced 
concrete section

(a) force-elongation relation

uncracked stage

crack formation stage

stabilised cracking stage

steel yielding stage

(b) crack pattern

Figure 3.12: Idealised behaviour of a reinforced concrete member, based on [74]

occurs in the range of the transmission length. Therefore, concrete and steel strains are not equal (εc 6= εs).

In contrast, some parts of the area between the cracks remains in the uncracked stage (εc = εs). The mean

steel strain can be computed by [74, 220]:

εs,m = εII
s − βt,m ·∆εsr = εII

s − βt,m

(
εII

sr − εI
sr

)
(3.28)

βt,m ... integration factor for steel strain along transmission length

βt,m = 0.60 for crack formation, see Tab.3.5

εs,m ... mean steel strain

εI
s ... reinforcement strain in uncracked concrete

εII
s2 ... reinforcement strain in crack

εI
sr ... steel strain at point of zero slip under cracking forces reaching fctm

εII
sr ... reinforcement strain at crack under cracking forces reaching fctm

∆εsr ... increase of steel strain in cracking stage

Stabilised cracking

After the crack formation is finished, it is necessary to define mean spacing sr ,m between the cracks in

order to analyse the concrete contribution in the stabilised cracking stage, see Fig. 3.13(b).

The mean distance between the cracks can be taken as [74]:

sr ,m =
2

3
· 2 · ls,max =

4

3
· ls,max . (3.29)

Hence, the transmission length is reduced ls,m = 2
3 ls,max and the average bond force transferred remains:

Fb,m =
2

3
· Fb =

2

3
· As · Es ·∆εsr . (3.30)

As a result, the average steel strain from the crack to the section in the middle between the cracks is

reduced to:

∆εs,m =
2

3
∆εsr . (3.31)
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Figure 3.13: Strain distribution in single crack and stabilised crack stage, based on [74]

The mean reinforcement strain εs,m over the entire discontinuity area can be taken as:

εs,m = εII
s − βt,m ·∆εs,m = εII

s − βt,m ·
2

3
∆εs,r = εII

s − βt ·∆εs,r (3.32)

βt ... βt = 2
3
βt,m,

βt,m according to Tab.3.5,

0.40 for instantaneous loading,

0.25 for long-term and repeated loading.

The coefficient βt,m is the shape factor accounting for the concrete stress distribution over crack spacing

sr ,max. The assumptions of constant bond stress and linear stress distribution in the crack discontinu-

ity areas for all cracking stages results in βt,m = 0.6, which is recommended by MC 90 [74] and MC 10

[187] in the case of deformed reinforcement bars and short-term (instantaneous) loading conditions. The

analysis of the load-bearing behaviour of structures with potentially several cracks is generally focused on

the average structural behaviour [420]. Instead of the maximum crack spacing sr ,max, the average crack

spacing sr ,m ≈ 2/3 · sr ,max is used for the description of concrete strain between the adjacent cracks.

Therefore, the average smeared concrete strain between the cracks reaches εct,m ≈ 2/3 · εct and conse-

quently βt = 2/3 · 0.6 = 0.4 [126, 127, 187]. The values for the integration factor for the steel strain along

the transmission length βt,m and bond stress τbm according to MC 90 [74] and MC 10 [187] are listed in

Tab. 3.5.

In the experimental study by König and Fehling [220], the best accuracy between measured and com-

puted crack widths is found for the rigid-plastic bond stress-slip relation (τbm). In the case of the short term

loading condition, they determine τbm = 2.0 · fctm(t) and βt,m = 0.6. For the analysis of single cracks in the

long term or repeated loading condition, accurate results are obtained, reducing the average bond stress

to 70%. In contrast, in the analysis of the stabilised cracking stage (long term) the bond stress remain to

be equal to the short term determination, but the contribution of the concrete is reduced to 70%. The

comparison between the research of König and Fehling [220] and the recommendations in MC 90 [74],

respectively MC 10 [187] result in very good agreement for the determination of τbm and βt,m.

The bond characteristic between concrete and reinforcement may be weakened through the number of

load cycles in the repeated loading condition. In general, the loss in the bond force for the single crack

initiation can be summed to 30 % and thus the transmission length increases significantly [220]. A similar
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Table 3.5: Values for βt,m and τbm for deformed reinforcing bars according to MC 90 [74] and MC 10
[187]

Crack formation stage Stabilised cracking stage

Short term, instantaneous loading
βt,m = 0.6 βt,m = 0.6
τbm = 1.8 · fctm(t) τbm = 1.8 · fctm(t)

Long term, repeated loading
βt,m = 0.6 βt,m = 0.38 (0.4)
τbm = 1.35 · fctm(t) τbm = 1.8 · fctm(t)

phenomenon is observed for long-term loading conditions. The creep of bond reduces the force transmission

between concrete and reinforcement. The long-term loading condition in the SLS leads to a time depen-

dency of the shape factor due to the creep of the bond. Therefore βt for ribbed reinforcement bars reduces

over time from βt = 0.40 (t = 0) to βt = 0.25 (t →∞) [187].

The time-dependent concrete tensile strength fctm(t) can be considered in the determination of the bond

characteristic in order to predict the development of additional cracks more accurately. Nevertheless, the

phenomenon of concrete hardening is not further addressed in this thesis and is neglected in the simulation

results.

3.1.4.1 Characteristic strains for cracking stages

In the case of a cracked reinforced concrete section, it is necessary to take into account the tension stiff-

ening effect in order to adequately compute the corresponding stiffness determined by the force in the

reinforcement and, thus, the neutral axis in the section. Force and position of the neutral axis are both

influenced by the stiffness of the embedded reinforcement bars, which can be described by the tension

stiffening effect [220]. The modification of either the reinforcement or concrete stress-strain relationship

may be applied for the computational analysis of reinforced concrete structures, see Fig. 3.14.

εs

σs

εs

σs

εc

σc

εc

σc

fct,fl

fct,fl
0.4fct,fl

Figure 3.14: Modelling of tension stiffening effect by modification of reinforcement (left side) or concrete
stress-strain relationship (right side), based on [220]

The characteristic stages of the reinforced concrete cross-sections are uncracked stage, crack formation

stage, stabilised cracking stage, and steel yielding stage. For each stage, it is possible to compute strain

values for the determination of transitions between the cracking stages of the cross-section. The charac-

teristic strains (considered as average steel strain εs,m) are defined for each cracking stage (see Fig. 3.15)
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to [74, 127]:

¬ uncracked stage

0 < σs ≤ σII
sr εs,m = εI

s (3.33)

­ crack formation stage

σII
sr < σs ≤ σsrn εs,m = εII

s −
βt

(
σs − σII

sr

)
+ (σsrn − σs)

σsrn − σII
sr

·
(
εII

sr − εI
sr

)
(3.34)

® stabilised cracking stage

σsrn < σs ≤ fy εs,m = εII
s − βt

(
εII

sr − εI
sr

)
(3.35)

¯ steel yielding stage

fy < σs ≤ ft εs,m = εsy − βt

(
εII

sr − εI
sr

)
+ δ

(
1− σII

sr

fy

)(
εII

s − εsy

)
(3.36)

εs,m ... mean reinforcement strain

εsy ... reinforcement strain at yield strength

εs,m ... mean reinforcement strain

εI
s ... reinforcement strain in uncracked stage

εII
s ... reinforcement strain in cracked stage

σs ... steel stress in crack (pure steel)

σI
sr ... steel stress in uncracked stage, when internal forces cause σc = fctm

σII
sr ... steel stress in cracked stage for crack driving forces

σsrn ... steel stress in crack, when stabilised crack pattern appears (last crack)

βt ... shape factor of concrete contribution in discontinuity area

0.40 for short-term loading, 0.25 for long-term or cyclic loading

fy , ft ... yield and tensile strength of reinforcement

δ ... coefficient to take into account ratio ft/fy representing ductility characteristic

0.8 for high ductile steel (B 500B), 0.6 for normal ductile steel (B 500A)

In the case of a centrically reinforced tensile member, the crack normal force Nr for short-term loading can

be determined by [185]:

Nr = Ac fctm · (1 + αsρs,eff) , (3.37)

and the steel stress in the crack σsr for Nr can be computed by [187]:

σsr =
Nr

As
=

fctm

ρs,eff
(1 + αsρs,eff) , (3.38)

where αs = Es/Ec is the modular ratio. The steel stress at the last crack defining the initiation of the

stabilised cracking stage (no undisturbed areas in the tensile bar) may be computed by [185]:

σsrn = 1.3 · σsr (3.39)

with σsr = σII
sr is the reinforcing stress in the single crack. Therefore, the computation of the mean steel

strain in the crack formation stage according to Eq. 3.34 becomes [74, 127]:

εs,m = εII
s −

βt

(
σs − σII

sr

)
+
(
1.3 · σII

sr − σs

)
0.3 · σII

sr

·
(
εII

sr − εI
sr

)
. (3.40)
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The analysis of imposed deformations influences the crack formation stage. In the case of a continually

increasing elongation, the force in the tensile bar will drop after the occurrence of the first crack. This is

due to the fact, that on one side, the stiffness of the bar is reduced, and on the other side, the total strain

of the bar should remain constant (principle of imposed deformation). The increase in external deformation

leads to an increase in the tensile force, which cannot exceed the cracking force in the member, because

the development of additional cracks prevents this. Hence, the crack formation stage caused by imposed

deformations may be considered by the dotted line in Fig 3.15 [74, 185].

σs

εs,m , εs

βt (εsrII – εsrI)

εsr = εsrII – εsrI

εsuεsy

su

σsrn

fy

ft εs,m εs

pure
reinforcement

modified steel 
strains

imposed 
deformations

Figure 3.15: Stress-strain tension stiffening model for modified steel strains, based on [74]

The basic assumption for the horizontal determination of the crack formation stage (see Fig 3.15) is that

the concrete tensile strength is constant over the tensile bar. Hence, the tensile cracking force is similarly

constant Nr ,1 = Nr ,2, see Fig. 3.16(a). A theoretical analysis by [93] applied this definition for a study on

continuous beams subjected to a temperature gradient. Experimental studies [162, 212, 390] showed, that

the horizontal line is not observable in the performed measurements. Due to the fact that the concrete

tensile strength in the tensile bar varies approximately between fctk,0.05 < fct < fctk,0.95, an increase in

the tensile cracking force for the initiation of the second crack is visible Nr ,1 6= Nr ,2, see Fig. 3.16(b). The

second crack occurs at the local position where slightly higher tensile strength is present compared to the

tensile strength of the first crack.

Nevertheless, several uncertainties such as the accuracy of reinforcement placement, the real effective ten-

sile strength, and the construction quality, strongly affect the crack formation stage. Hence, the horizontal

simplified approach may be accurate enough for practical applications [187, 220].

The ratio between loading level for the start of the stabilised cracking stage Nr ,last and the start of the

crack formation stage Nr ,1 may be considered in the crack formation stage by the term σsrn = 1.3 · σsr ,

see Eq. 3.39. The experimental study by Hartl [162] analysed the concrete contribution to the element

stiffness for 3 different concrete strength grades, 4 varying reinforcement steel diameters with 6 prismatic

specimens for each condition (72 specimens total). The results of the uniaxial tensile tests illustrate that

the reinforcement stress at the final stage in the crack formation stage in relation to the crack initiation

Nr ,last/Nr ,1 is equal to 1.00 for ∅8 mm, 1.10 for ∅12 mm, 1.30 for ∅18 mm, and 1.60 for ∅24 mm, see

Fig. 3.17. Furthermore, in the stabilised cracking stage the tension stiffening effect ∆N is found to be on

average ≈ 40% of the cracking force ∆Nr , respectively ∆σs = 0.40 · σsr = 0.4 · Nr/As . In conclusion,

the above mentioned determination of the general approach (σsrn = 1.3 · σsr ) is related to a variability
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N

l

Nr

Nr,1
Nr,2

Nr,3

N

l

Nr
Nr,1 Nr,2

(a) Constant concrete tensile
strength, based on [185]
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(b) Concrete tensile strength approx.
varies between
fctk,0.05 < fctm < fctk,0.95, based on
[187]

Figure 3.16: Behaviour of a reinforced concrete bar subjected to imposed deformation in the crack forma-
tion stage

in the concrete tensile strength assessed by a normal distribution with an average coefficient of variation

CVfctm = 0.10 [162].
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Figure 3.17: Relationship between reinforcement stress σs (vert. axis) and strain εs (hor. axis) observed
in reinforced concrete bars due to increasing axial force for various diameters and concrete
strengths [162]

3.1.4.2 Modified steel strains

The material model that determines the modified reinforcing steel strains (“mod-steel”) [126, 127, 187]

takes into account the tension stiffening effect by reducing the strains of pure reinforcement bars. The

stress-strain relationship for the modified steel strains and the pure reinforcing steel is shown in Fig. 3.18.

In order to establish the stress-strain relationship for the “mod-steel” material model, the strain values

Eq. 3.41 to Eq. 3.49 and the corresponding stress values Eq. 3.50 to Eq. 3.53 are considered in this model.
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The intersection between the stress-strain definitions allows a clear association of the simulation results with

the characteristics of the cracking stages, which is of significant importance to the analysis of structures.

Therefore, differentiation should be established between each cracking stage. For the consideration of the

tension stiffening effect, a modified stress-strain relationship of the embedded reinforcement (σs -εs,m) can

be established according to [126, 127, 187]:

¬ uncracked stage

εs1 = εI
sr ,bar ·

d − x I

h − x I
(3.41)

­ crack formation stage

εs2 =
σs2

Es
− βt ·∆ε (3.42)

® stabilised cracking stage

εs3 =
fy

Es
− βt ·∆ε (3.43)

¯ steel yielding stage

εs4 =
fy

Es
− βt ·∆ε+ δ ·

(
1− σs1

fy

)
·
(
εsu −

fy

Es

)
(3.44)

with:

εI
sr ,bar =

fctm

Ec0m
(3.45)

εII
sr ,bar =

fctm · Ac,eff

As1 · Es
(3.46)

εI
sr ,beam = εI

sr ,bar (3.47)

εII
sr ,beam =

fctm · Ii
As1 · Es · ziu · (h − d1 − x II/3)

(3.48)

∆ε = MIN
(
εII

sr ,bar − εI
sr ,bar ; εII

sr ,beam − εI
sr ,beam

)
(3.49)

The properties of the cross-section are considered in the computation of the strain values by the amount

of reinforcement As1, the moment of inertia Ii , the effective concrete area in tension Ac,eff and the depth

of the compressive zone in the uncracked stage x I as well as in the cracked stage x II . The ductility of the

reinforcement is defined by the coefficient δ and for commonly used high ductility reinforcing steels δ = 0.8.

The indices “bar” and “beam” express the solution for the strains with respect to a tensile bar and flexural

member, respectively.

¬ uncracked stage

σs1 = εII
sr ,beam · Es (3.50)

­ crack formation stage

σs2 = σs1 · 1.3 (3.51)

® stabilised cracking stage

σs3 = fy (3.52)

¯ steel yielding stage

σs4 = ft (3.53)
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Figure 3.18: Modified stress-strain diagram of reinforcement bars considering tension stiffening, according
to [126, 127, 187]

For combination of external load and centric restraint, the modification of the reinforcing steel stress-strain

relationship may not be adequate [85]. A significant divergence in the initial stiffness based on this model

in comparison to the analytical elastic in-plane stiffness EAI
i and bending stiffness EI I

i exists for the purely

normal force (“bar”) or bending force (“beam”) oriented modification. On one side, the analytical solution

of the in-plane stiffness can be analysed accurately by the normal force oriented stress-strain modification.

In contrast, by applying the bending force oriented modification, the in-plane stiffness may be considerably

underestimated. On the other side, the analytical solution of the bending stiffness can be determined by

the bending force oriented description, whereas the normal force oriented definition overestimates these

stiffness values. Finally, it is not possible to simultaneously describe the analytical in-plane and bending

stiffness [267]. The modification of the concrete stress-strain relationship in the cracked tensile zone, see

Sec. 3.1.4.3 (“multi-lin”) and Sec. 3.1.4.4 (“e-func”), may be more adequate for the combined loading of

external bending load and normal force.

As an alternative to the modification of the reinforcing steel strains, the tension stiffening effect can be

considered by modifying the concrete stress-strain relationship in the effective tensile zone. In the initial

uncracked stage, the assumption of linear-elastic stress-strain relationship allows the exact consideration of

the in-plane and bending stiffness of the cross-section. Moreover, the analytical cracking section forces (Ncr ,

Mcr ) can be simulated for any combination between normal force and bending moment. Various models are

investigated and a discussion of several models can be found in [308]. Two models are considered in this

thesis, the multi-linear material model (Sec. 3.1.4.3) and the exponential function model (Sec. 3.1.4.4).

3.1.4.3 Multi-linear material model

The characteristic cracking stage values are considered in the multi-linear tension stiffening model “multi-

lin” [74, 187] for the stress-strain relationship of the concrete, see Fig. 3.19. The model can be applied

for the subsection of the effective concrete area in tension (RCT), see Sec. 3.1.4.5. Therefore, the tension

stiffening effect is not considered by reducing the strain values of the reinforcement bars, but it is taken

into account in the concrete stress-strain relationship. The strain values are similarly computed according
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to Eq. 3.41 to Eq. 3.49 and the corresponding stress values are illustrated in Fig. 3.19. Therefore, the strain

at the intersection between crack formation and the stabilised cracking stage can be computed by εc2 = εs2

and at the intersection between stabilised cracking and steel yielding stage by εc3 = εs3. The maximum

admissible strain may be determined by εc4 = εs4.

βt · fctm

εc1 = εct

εc

c

fctm

εsy

multi-lin

e-func

εc2 = εs2
εc3 = εs3 εc4 = εs4

c = fctm · e
(-α (εc - εct))

linear

Figure 3.19: Stress-strain diagram of concrete under tension considering tension stiffening, models accord-
ing to “e-func” [313], “multi-lin” [74, 187]

3.1.4.4 Exponential function

Another model is an exponential function (“e-func”) by Pölling [313], which was originally developed

for the stress-strain relationship of plain concrete after reaching its tensile strength. In this function, the

parameter α controls the slope of the descending branch, see Fig. 3.19. This value can be computed in such

a way that an intersection appears between the models “multi-lin” and “e-func” at the strain magnitude

εc2. This intersection point can be directly computed by:

α = −1 ·
(

lnβt

εc2 − εI
sr ,bar

)
. (3.54)

Therefore, this model for the cracked plain concrete is adopted for the description of the tension stiffening

effect. However, a clear differentiation in the stress-strain relationship between the crack formation stage and

the stabilised cracking stage is not possible. The model “e-func”’ may be applied in the “reinforced” concrete

subsection (RCT), see Sec. 3.1.4.5. The stress in the reinforced tensile cross-section zone is computed in

the crack formation and stabilised cracking stages by the following model based on the study of Pölling

[313]:

σ(εct < εc < εs3) = fctm · e−α(εc−εct ) . (3.55)

After the final stage in the stabilised cracking stage is reached, the concrete is linearly modelled in the strain

range of εc3 < εc < εc4. For plain concrete, the parameter α is calculated in such a way that the integral

under the tensile range gives the fracture energy GF . This energy must be assigned to an equivalent length

of the finite element (leq), taking into account the tensile softening in a stress-strain relationship. Hence,

the fracture energy is converted into a specific volume fracture energy g∗t considering the type, integration
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rule (nint ... number of integration points), size and shape of the element. An accurate determination can

be found as follows [258, 313]:

g∗t =
GF

leq
, (3.56)

with the equivalent length leq coupled to the element size:

leq = l (e)/nint 1 D elements with l (e) element length , (3.57)

leq =
√

A(e)/nint 2 D elements with A(e) element area , (3.58)

leq = 3

√
V (e)/nint 3 D elements with V (e) element volume . (3.59)

Very big elements may lead to inaccurate results and a critical length should be considered in the element

size determination:

leq =
2GF Ec

f 2
ct

. (3.60)

For simulations of engineering structures, Bažant and Oh [33] recommend limiting the equivalent length

to:

leq ≤
GF Ec

f 2
ct

. (3.61)

Finally, the parameter α can be estimated for plain concrete by [313]:

1

α
=

g∗t
fct
− 1

2

fct

Ec
. (3.62)

3.1.4.5 Effective concrete area in tension

For the determination of the cracking process, it is necessary to analyse the amount of bond force transferred

from steel to concrete which causes additional cracks. This force significantly influences the crack spacing

and consequently the tension stiffening effect. In the case that the entire concrete tensile area contributes

to the cracking process, then the cracking force can be computed on the entire concrete section area Ac . In

contrast, only a certain amount of the cracking force based on full concrete tensile contribution is enough

to cause an additional crack [227]. This phenomenon is considered to determine the model of the effective

concrete area. In this conceptual model, the required force is computed by the product of the effective

concrete area and the concrete tensile strength. Hence, the concrete in tension is modelled by a centric

tensile bar with the cross-section Ac,eff.

Similarly, the tension stiffening mechanism is determined for centrically reinforced concrete tensile bars

considering the concrete contribution between the cracks in the area Ac,eff. The bond force that causes a

new crack can be determined Fb = Fct = fctmAc,eff. For structural elements subjected to both bending

and normal forces (see Fig. 3.20), it is not clear which bond force causes an additional crack between two

existing cracks with maximum crack spacing in between [220]. Therefore, it is necessary to determine the

concrete compressive force, bond force, and also the interaction of both on the plate stress state between

the two existing cracks.

On one side, the bond behaviour is non-linear between steel and concrete. On the other side the ultimate

capacity of the tensile zone is dependent on the stress redistribution capacity when uneven stress distribution

in the cross-section occurs. Therefore, non-linear plate analysis is necessary in order to determine the
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Figure 3.20: Reinforced concrete element subjected to combined loading of bending and normal forces,
based on [220]

effective concrete area in tension [227]. Plain concrete in tension can still sustain tensile stress after crack

initiation, see Sec. 3.1.3. These effects are considered in the load-deformation analysis by König and

Fehling [220] with a parametric study including various assumed crack spaces sr , concrete compressive

forces Fc , and distances of reinforcement bars to surface d1, see Fig. 3.21.

Fb

Fc

Fb

Fc
h h c

,e
ff

sr / 2d 1

Figure 3.21: Finite Element and mechanical model between two cracks of a structural element subjected
to bending and normal force, based on [220]

In this study, non-linear Finite Element simulations of plate stress states including several conditions allows

an adequate computation of the bond force. One of the major findings is that the distribution of the bond

stresses along the transmission length does not significantly influence the bond force. Hence, a constant

bond stress distribution can be used for the determination of Fb, see Fig. 3.11(b). In the case of small crack

spaces compared to the cross-section depth (sr/h ≈ 0.20), concrete tensile stresses exclusively appear close

to the reinforcement layer. Therefore, the bond force is limited to [220]:

Fb = 2 ... 3 · (h − d)︸ ︷︷ ︸
hc,eff

·fctm · b (3.63)

were b is the cross-section width. For higher ratio sr/h, the concrete compressive force significantly affects

load-deformation behaviour. Very large crack spaces (sr/h ≈ 0.90) lead to a plain strain distribution in the

centre of the two cracks. Hence, the greatest bond force can be computed for such crack spaces. A similar

non-linear plate analysis is investigated by Fischer [111] which defines the effective depth as:

hc,eff = (h − d) + sr/2 , (3.64a)

with a lower limit value (less concrete contribution) determined by:

hc,eff = 2.5 · (h − d) . (3.64b)

Based on these findings, it is possible to determine an effective concrete area in tension, which transfer

the tensile zone of a structural element subjected to bending and normal forces into a fictitious axially
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loaded tensile bar [220]. Hence, the concrete in tension contributes to the stiffness of beams, slabs, and

walls comparable to a tensile tie between cracks [74], see Fig. 3.22.

tensile tie

Figure 3.22: Tensile tie representing concrete contribution between cracks for flexural members, based on
[185]

In order to compute the crack spaces adequately, the effective concrete area in tension Ac,eff is defined as:

Ac,eff = hc,eff · b , (3.65a)

Ac,eff · fctm = Fb . (3.65b)

This equilibrium condition would lead to an iterative analysis of the effective area depending on the crack

space. In general, various research studies recommend the application of general determinations such as:

hc,eff = 7.5 ·∅s thin element Leonhardt [245, 246] , (3.66)

hc,eff = d1 + 8 ·∅s ≤ h/2 thick element Leonhardt [244] , (3.67)

hc,eff = αhc,eff
· (h − d) König and Fehling [220] . (3.68)

On one side, the determination by Leonhardt according to Eq. 3.66 and Eq. 3.67 leads to higher inaccu-

racies in comparison to Eq. 3.68 and corresponding experimental measurements [367]. On the other side,

the effective depth dependency on the reinforcement diameter results in an iterative procedure. Therefore,

the determination according to Eq. 3.68 is adopted in guidelines MC 10 [187]) and codes EC 2 [101]. For

different types of cross-section, the determination of the effective concrete depth hc,eff is illustrated in

Fig 3.23.

hc,eff

h

d
d 1

(a) beam

hc,eff hd
d 1

(b) slab

hc,eff

h

d1d

hc,eff

(c) wall in tension

Figure 3.23: Height of the effective concrete area hc,eff (grey areas), based on [101, 187]

The several definitions of hc,eff are listed in Tab. 3.6 and may be used in the absence of a more refined
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model. Simulations based on fracture mechanics approaches [8, 33, 172] could be applied for a more accu-

rate analysis.

Table 3.6: Determination of effective depth of concrete in tension hc,eff

Component hc,eff Literature

bending < (h − x I )/3 German concrete society [78]
centric tensile force < h/3 German concrete society [78]

absolute 3.0(h − d) König and Fehling [220]

absolute (h − d) + sr/2 Fischer [111]

not mentioned MIN


2.5(h − d)

(h − x I )/3

h/2

EC 2 [101]

beam 2.5(h − d) < (h − x I )/3

MC 90 and MC 10 [74, 187]
slab MIN

{
2.5(h − d)

(h − x)/3

wall in tension MIN

{
2.5(h − d)

h/2

The depth limitation for elements in bending (h − x)/3 [78] should not be applied to large cross-sections

with a regular reinforcement layout over the web depth [220]. In the case of the limit according to the

centric tensile force, the boundary h/3 [78] should be applied for cross-sections with h > 30 cm. In the case

that the maximum crack space is in the range of the cross-section depth and the top and bottom layers are

reinforced, the effective depth for the centric normal force condition should be defined as h/2 for each layer

[220]. Various experimental studies including, centric tensile force, bending loading condition, prestressed

elements, and elements designed for resisting restraint effects within a total of 250 tests are analysed by

König and Fehling [220]. The comparison between computed and measured crack widths illustrate the

best accuracy applying the determination of hc,eff = 3.0(h − d). In the EC 2 with respect to the German

National Annex [141], the determination of 2.5(h − d) is recommended for concentrated reinforcement

layout and thin structural elements with the ratio h/(h− d) ≤ 10 for flexure and h/(h− d) ≤ 5 for centric

tension, respectively. For more compact structural elements, the effective concrete area may increase up to

5.0(h − d), see Fig. 3.26. In the case that the reinforcement is not embedded in the range of (h − x)/3,

this limit should be increased to (h− x I )/2 where x I is the compressive zone depth in the uncracked stage

[141].

For thick structural components (e.g. thick walls, bridge abutments, bridge piers) under tension with re-

inforcement at the surface, the crack propagation is decisively different from that of thinner elements.

Differentiation between the crack propagation of thin and thick elements is very important in order to en-

sure a more reliable and economical design. Otherwise, the reinforcement layout in thick elements may be

overestimated [268]. Between separating cracks additional incipient cracks occur, which propagate initially

from the surface of the thick element. Whereas in thinner tensile bars only separating cracks appear [352].

In the study of Leonhardt [244], this phenomenon is interpreted by a different effective tensile area in

thick elements. In gerneral, the effective concrete area in tension is much smaller than the cross-section

depth, see Fig. 3.24. Therefore, accumulative crack propagation may occur at the surfaces for concentrated

reinforcement bars [220].
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Figure 3.24: Accumulative crack propagation in thick structural components with concentrated reinforce-
ment bars at the surfaces, based on [220, 268]

In order to determine the crack propagation in thick reinforced concrete walls, tensile tests on horizontal

layers of walls with the dimensions b/h/l equal to 100/16/600 [cm] are tested by Rostásy et al. [352]

in deformation controlled tests. In addition to the external tensile load, the influence of residual stresses

caused by restraint temperature load (uniform temperature component, T0 ≈ +20 ◦C, TN,E1 = +20 ◦C,

TN,E2 = +5 ◦C, TN,E3 = −20 ◦C) on the load-deformation behaviour is studied, see Fig. 3.25. With in-

creasing thermal load, the crack initiation occurs at a lower external load level due to a higher prestrain.

Therefore, the tension stiffening of concrete is decreased with increasing restraint thermal condition. The

degradation of in-plane stiffness is obvious in the loading ranges in which the stiffness after each crack

initiation inclines more and more flatter.

00 2 3 
Mittlere Dehnung Em in % 

Figure 3.25: Load-deformation behaviour of thick concrete wall due to external tensile force and uniform
temperature component [352], hor. axis: average reinforcing steel strain εs,m, vert. axis:
relative reinforcing steel stress σs

Based on the presented theoretical and experimental investigations, the depth of the effective concrete area

in tension is recommended in the design guideline DAfStb 466 [227] for centric tension and flexural loading

and varying ratio between h/d1, see Fig. 3.26. This determination is recommended in the Eurocode 2 with

respect to the German National annex [141].

3.1.5 Reinforcing steel

The material properties characterising the mechanical behaviour of reinforcing steel are the yield strength

fy , tensile strength ft and the strain at maximum force εsu. The characteristic yield strength fyk corre-

sponds to the 0.2 % offset in the stress-strain relationship. In the design of reinforced concrete structure,
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Figure 3.26: Effective depth hc,eff depending on load condition and element thickness, based on
DAfStb 466 [227]

the engineers generally expects reinforcement to yield in the ULS before failure of a member or structure

occurs. Indeed, the yield strength can be appreciably stronger than assumed in design [187]. Therefore, a

flexural member may not collapse in a ductile failure mechanism due to the fact that the concrete reaches

the ultimate compressive strain before yielding occurs in the reinforcing steel. An overstrength on the order

of 30 % may be observable in experiments as a general approximation [75]. Diversity and evolution in the

manufacturing processes for bars and wires result in various stress-strain relationships, see Fig. 3.27.
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Figure 3.27: Stress-strain relationship of reinforcing steel, based on [187]

In the case that moment redistribution is taken into account in design, adequate ductility is necessary and

for design purposes four ductility classes are defined for steel grades with a characteristic yield strength of

fyk ≤ 600 MN/m2. These classes are related to the characteristic strength ratio ftk/fyk and ultimate strain

value εuk . These classes are as follows [187]:

ftk/fyk εuk

� class A ≥ 1.05 ≥ 2.5 %

� class B ≥ 1.08 ≥ 5.0 %

� class C ≥ 1.15 and ≤ 1.35 ≥ 7.5 %

� class D ≥ 1.25 and ≤ 1.45 ≥ 8.0 %
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In seismic regions, where high ductility of the structure is required, the classes C and D are commonly used.

For structures in seismically inactive regions, class B reinforcement bars are used [135]. The actual material

behaviour as shown in Fig 3.27 can be simplified in calculations by an idealised bi-linear relationship with the

parameters Es = 200, 000 MN/m2, fy , ft , and εu. A more complex model is investigated by Menegotto

and Pinto [273], which is generally adequate for describing the stress-strain relationship of reinforcing

steel as well as stainless and prestressing steel and may also be applicable for cyclic loading and varying

amplitudes [187]. In that case, the parameters describing the more complex stress-strain relationship should

be adjusted to the relevant characteristic values.

3.1.6 Prestressing steel

For design purposes, the mechanical properties are the upper limit of the tensile strength fpt (UTS), the

0.1 % proof stress fp0.1 (yield stress), and the strain at maximum stress εpu. The grade of the prestressing

steel is often denoted by the UTS value. Indicative stress-strain relationships for prestressing steel in

tension is shown in Fig. 3.28. The nominal value of the modulus of elasticity of prestressing steel Ep can

εs [%]

s [MN/m2]

10 2 3 4 5
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Figure 3.28: Stress-strain relationship of prestressing steel, based on [187]

be approximated as 205, 000 MN/m2 for wires, and 195,000 MN/m2 for strands [187]. In general, this

mechanical property should be declared and certified by the manufacturer. The loss of stress by relaxation

is an important phenomenon in the long-term behaviour of prestressed steel. However, this phenomenon is

not addressed further in this thesis.

The actual material behaviour as shown in Fig 3.28 can be simplified in simulations by an idealised bi-linear

relationship with the parameters Ep, fp0.1, fpt , and εpu. The model by Menegotto and Pinto [273] may

also be used for prestressing steel [187].

3.2 Creep of Concrete

3.2.1 Phenomenon and models

The phenomenon of increasing concrete strain over time, caused by a constant sustained load, is termed

creep of concrete. Creep depends both on internal factors, such as material properties of concrete and its
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composition, and on external parameters, such as ambient climate. In general, creep of concrete does not

depend on its compressive strength or age at loading per se, but rather on its composition and degree of

hydration. With decreasing water/cement-ratio, or cement content, or increasing degree of hydration, the

creep of concrete decreases. Different types of cement result in different degrees of hydration and the creep

depends more on the degree of hydration rather than on the age of concrete for a given time [74].

Experimental studies observed that creep of concrete is a non-linear phenomenon. This non-linearity with

respect to creep-inducing stresses is measured in creep experiments with a constant stress, particularly

when the stress exceeds σc > 0.4fcm(t0) [185]. Moreover, the non-linearity is observable even below this

stress magnitude in experiments with a variable stress history. Microcracking due to shrinkage or high load

levels and stress-induced ageing under load are the main reasons for the non-linear creep behaviour. The

capacity of concrete in tension is less important than the capacity in compression and, thus, the tensile

creep of concrete is not studied in detail. The behaviour for loading below the concrete tensile strength can

be assumed to be approximately similar to the compressive creep behaviour [147, 187]. In a detailed study

by Kordina et al. [229], the tensile creep compliance is investigated to be similar to the compressive creep

compliance and the assumption of equal creep factors for the compressive and tensile zones is proofed for

flexural members. In the case of restrained drying shrinkage, the tensile creep may be a phenomenon that

should be taken into account in the analysis [44].

In case of linear creep, the dimensionless linear creep coefficient ϕc is used to determine the ratio between

the creep strain εc,cr and the elastic strain εc,el . Therefore, the creep of concrete can be described as a

multiple of the elastic concrete deformation:

εc,cr (t, t0) = ϕc (t, t0) εc,el (t0) . (3.69)

The time- and stress-dependent total strain of concrete is defined as (neglecting post-hardening of concrete):

εc,tot (t, t0) = εc,el (t0) + εc,cr (t, t0) = σc (t0)

[
1 + ϕc (t, t0)

Ec,t0

]
, (3.70a)

= σc (t0)

[
1

Ec,t0

+
ϕc (t, t0)

Ec,28

]
. (3.70b)

Instead of utilizing the modulus of elasticity at the time of initial loading (Ec,t0 , Eq. 3.70a), some creep

models, such as [123, 185], relate the creep coefficient to the 28-day value of concrete stiffness (Ec,28,

Eq. 3.70b). Recommendations for the consideration of the post-hardening of concrete can be found in

[206]. The total compliance of concrete Jc (t, t0) is introduced as following:

εc (t, t0) = σc (t0) Jc (t, t0) . (3.71)

Due to the bond between concrete and steel, a permanent redistribution of stresses occurs in composite

cross-sections and structural elements. Therefore, the constant stress or deformation state is not practically

relevant and the creep analysis needs to be modified into integral or differential formulations in order

to consider variable stresses or displacements [185]. The superposition principle of Boltzmann [48] for

linear visco-elastic materials can be used for describing concrete linear creep at variable loading levels.

Different starting points of loading or durations of loading, as defined in an explicit loading history, can

be considered for the computation of creep strains based on the superposition principle [259]. Based on
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the assumption of linearity, the application of the principle of superposition is consistent. The non-linear

behaviour of concrete causes certain unavoidable predicted uncertainty when linear superposition is applied

to creep of concrete under variable stress, particularly for unloading or decreasing strains [74]. Nevertheless,

this principle describes the behaviour of concrete under variable stresses reasonably well if the stresses are

within the service stress range [185]. Therefore, the concrete strain at a certain time according to the

Boltzmann principle is defined as:

εc (t) = σc (t0) Jc (t, t0) + ∆σc (t, t1) Jc (t, t1) + ... + ∆σc (t, ti ) Jc (t, ti ) . (3.72)

This sum can be converted into an integral description [74]:

εc (t) = σc (t0) Jc (t, t0) +

∫ t

t0

Jc (t, τ)
∂σc (τ)

∂τ
dτ , (3.73)

where τ are the time-steps in the time-integration of the load-history analysis. Several theories and ap-

proaches exist based on different descriptions of the total or creep compliance for the determination of

the long-term behaviour of concrete. Theory of elastic creep with the Effective Modulus Method (EMM),

the Age-Adjusted Effective Modulus Method (AEMM) [23, 394], and the solidification theory [35, 36]

are mentioned here. Further discussion can be found in [147, 206]. The models for determining the creep

compliance are only applicable in the case of linear creep, which takes place up to a stress level of approx.

σc < 0.4fcm(t0).

Rheological models [46, 165, 270, 378] or an increase in the linear creep compliance applying a dimen-

sionless, empirically determined stress-dependent factors [31, 35, 187, 83, 150] are approaches which allow

the consideration of non-linear creep behaviour. Moreover, in the thesis by Diener [83] the superposition

principle is assessed to be inadequate in the case of non-linear creep. The stress history σc (t) is converted

into a differential formulation of time and stress, respectively. Therefore, the integral of the creep compli-

ance is converted into a summation [83, 206].

The models described henceforth are commonly used for the description of linear creep theory by computing

the linear creep coefficient. For the analysis of the creep coefficient, either the product or summation ansatz

are applied in these models. Combining a notational creep coefficient, which depends on the concrete age at

loading, and a time function, describing the development of creep with time, the product ansatz is defined

as [206]:

ϕc (t, t0) = [k1 (t0) k2] k3 (t − t0) , (3.74)

in which k1, k2, k3 are functions or coefficients. This approach is considered in the Model Code 90 [74], the

updated knowledge of the MC 90 [185] and in the design guideline of the American Concrete Institute [6].

The summation of visco-elastic and visco-plastic creep components leads to the summation ansatz [206]:

ϕc (t, t0) = k1 (t, t0) + k2 (t, t0) . (3.75)

This approach is considered in the Model Code 2010 [187]. In the majority of research and design practice,

the following prediction models are applied for the time-dependent increase of the creep compliance:
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� American Concrete Institute ACI 209 [6]

� Bažant and Bajewa B 3 [24, 25, 26]

� Model Code 90-99 MC 90-99 [185]

� Gardner and Lockman GL 2000 [123]

The model recommended by the American Concrete Institute ACI 209 is based on the product ansatz,

see Eq. 3.74, and considering a hyperbolic time function [274] and an ultimate creep coefficient ϕc,∞.

Therefore, the linear creep coefficient is defined as:

ϕc (t, t0) = ϕc,∞ (t0)

[
(t − t0)ψ

d + (t − t0)ψ

]
, (3.76)

with the total compliance defined as:

Jc (t, t0) =
1

Ecm,t0

+ Cc (t, t0) =
1

Ecm,t0

+
ϕc (t, t0)

Ecm,t0

. (3.77)

The values of ψ = 0.6 and d = 10 d are recommended and ϕc,∞ (t0) depends on concrete age at the

beginning of loading t0, relative humidity RH, concrete mixture, volume-surface ratio V /S , and fresh and

hardened concrete properties.

The model by Bažant and Bajewa B 3 follows the summation ansatz, see Eq. 3.75. The creep compliance

is subdivided into the instantaneous compliance q1, the basic creep compliance Cc,0, and the drying creep

compliance Cc,d . The total creep compliance is defined as:

Jc (t, t0, td ) = q1 + Cc,0 (t, t0) + Cc,d (t, t0, td ) , (3.78)

in which q1 is the instantaneous compliance, Cc,0 the basic creep compliance, and Cd ,0 the drying creep

compliance. The basic creep compliance considers visco-elastic, nonaging visco-elastic, and visco-plastic

components with a certain time function for each component. Moreover, the influence of temperature can

be considered in this model. In contrast to the other models presented in this section, the time-independent

compliance is computed by 1/E0 = 0.6/Ecm,28 instead of 1/Ec,t0 . Therefore, the asymptotic instantaneous

modulus E0 is based on the Ecm,28 secant modulus of elasticity at 28th day. Hence, the short-term creep

compliance, which is included in any experiment for the determination of the modulus of elasticity, is

effectively separated. Therefore, this model is a description of the phenomenon with the most physical

background information of the considered models and is based on the solidification theory [207].

Based on the recommendations of the International Federation for Structural Concrete (fib), the creep model

defined in the MC 90-99 is investigated considering the product ansatz. This model is generally similar

to the model ACI 209 except the definition of the notional creep coefficient ϕc,0. The creep coefficient is

related to the 28-day value of modulus of elasticity and is defined as:

ϕc (t, t0) = ϕc,0βc t, t0 = ϕc,0

[
(t − t0)

βH + (t − t0)

]0.3

, (3.79)

with the total creep compliance defined as:

Jc (t, t0) =
1

Ec,t0

+ Cc (t, t0) =
1

Ec,t0

+
ϕc (t, t0)

Ec0,28
. (3.80)

83



3. Modelling aspects of restraint sensitive concrete structures

In contrast to these models, the model by Gardner and Lockman GL 2000 is a purely empirically

developed regression model. The experimental creep data is used from the RILEM database (518 creep

tests) [287]. The creep coefficient refers to the 28-day value of modulus of elasticity and can be determined

by:

ϕc (t, t0) = Φ (tc )

[
2

(
(t − t0)0.3

(t − t0)0.3 + 14

)]
+

(
7

t0

)0.5( t − t0

t − t0 + 7

)0.5

+ Φ (tc )

[
2.5
(
1− 1.8086 RH2

)( t − t0

t − t0 + 0.15
(

V
S

)2

)]
. (3.81)

The creep compliance can be analysed identically to Eq. 3.80. The creep coefficient is defined by relative

humidity, cement type, and volume/surface ratio. No ultimate creep coefficient is assumed as it is deter-

mined in ACI 209 and MC 90-99. Even for a large load duration, a steady increase in the creep compliance

is predicted by these models. The factor Φ (tc ) takes into account the drying before loading.

3.2.2 Comparison and evaluation of creep models

Randomness in material properties and environmental conditions, and the error in the models can cause a

considerable predicted uncertainty in the structural analysis. In general, this predicted uncertainty is higher

after short loading durations than after long loading durations [74]. In the design guideline MC 90-99, the

variation in the prediction of the creep compliance is estimated with CVMC 90-99 = 0.2 [74]. Comparison

of these creep models to experimental data (RILEM data bank [287]) is investigated by Gardner [122].

If all available input information is used, GL 2000 is the best predictor of the compliance, followed by B 3

and MC 90-99, see Tab. 3.7. For the case that only the concrete strength is used as input information,

GL 2000 and B 3 show higher accuracy in comparison to ACI 209 and MC 90-99. In the study of Goel et

al. [148], predicted values of creep are compared with the experimental results of [358] and the RILEM

data bank [287]. Conclusions based on the comparison between the prediction of the creep compliance and

the experimental measurements are: ACI 209 underestimates the experimental compliances, MC 90-99 is

reasonable, B 3 agrees better, and GL 2000 performed best out of these models. In the statistical evaluation

of creep models by Al-Manaseer et al. [2], model MC90 -99, B 3 and GL 2000 are considered the best

models to predict the creep measurements based on the RILEM data bank. In general, these models tend

to underestimate the creep phenomenon.

In the unbiased statistical comparison of creep prediction models by Bažant et al. [32], the variation

of the prediction error is quantified in comparison to the experimental data, see Tab. 3.7. This method

introduces a weighing data, which is capable of eliminating the bias due to improper data sampling in the

database. The statistics of prediction errors are evaluated by the method of least squares with the maximum

likelihood criterion. In the statistical comparison by Gardner [122], each time interval is equally weighted

and the overall standard deviation of the data from the model predictions is not statistically justified.

Instead of averaging the squared errors, the averaging in the model assessment by Gardner is linear in

the standard deviation. This linear averaging dismisses the validity of the maximum likelihood criterion and

central limit theorem of the theory of probability. Similarly, Al-Manaseer recommends a careful prove the

selection and interpretation of the data and the evaluation/statistical methods. The conclusions regarding

the accuracy of the model prediction are strongly dependent on the strategy chosen for both issues.

Concrete of different mixtures tested in experiments shows that the relative increase in time-dependent
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deformation differs much less than the total increase. Therefore, other influencing parameters are excluded

in the statistical analysis and the relative compliance is defined by [32]:

Jc

(
t, t
′
)

= Jc

(
t, t
′
)
/J0 , (3.82)

in which J0 is the initial creep compliance for three-day sustained load. In the results of [32], the model

B 3 is evaluated to be the most accurate, followed by GL 2000, and the ACI 209 is the least accurate.

Table 3.7: Coefficients of variation [-] of prediction errors of various creep models

Prediction ACI 209 B 3 MC 90-99 GL 2000
Model [6] [24, 25, 26] [185] [123]

Gardner [122]
only fcm 0.30 0.29 0.37 0.26
all data 0.30 0.27 0.29 0.22
Bažant et al. [32]
compliance 0.388 0.283 0.306 0.285
relative compliance 0.590 0.244 0.293 0.273

In the study of Keitel [208], sensitivity and uncertainty analysis for both correlated and uncorrelated

input parameters is studied. The predictions according to ACI 209 and GL 2000 are most sensitive to the

modulus of elasticity. The models GL 2000 and B 3 are evaluated to be more accurate in comparison to the

other models, which show a very high model uncertainty up to 0.33. In the case that specific experimental

data is available for a certain concrete, an evaluation method based on Bayes updating is presented in

[209]. This methodology extends the method by Bažant and Chern [27] in order to take into account

inaccurate measuring data. One major conclusion is that increasing the measurement error leads to an

increasing uncertainty of the identified parameters and the model prognosis. Moreover, two different eval-

uation methods, the stochastic model selection and uncertainty quantification, are presented in order to

compare different models in a quantitative procedure. The quantification of total uncertainty in the model

predictions is found to be a more reliable assessment method, due to the insensitivity to the number of

measuring points. Furthermore, the uncertainty quantification is suitable for the assessment of creep models

even for durations exceeding the experimental duration.

An evaluation method, which is capable of quantifying the uncertainties of creep prediction from selec-

tion of a creep model, time-integration method, and from parameter uncertainty is presented in [207]. A

numerical example for a commonly used concrete column cross section under varying stresses quantifies

the uncertainty, caused mainly by the selection of creep models and to some extent from parameter un-

certainty. The selection of time-integration is much less sensitive to the uncertainty in the prediction of

creep. Increases in the reinforcement ratio and in load duration are more significant for the time-integration

method, but it is still low in comparison to the two other sources of uncertainty.
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3.3 Shrinkage of Concrete

3.3.1 Phenomenon and models

The shrinkage of concrete describes the phenomenon of volume change without any external load. This

physical process can be separated into drying and chemical shrinkage. On one side, the drying shrinkage is

induced due to the loss of volume caused by temperature reduction and moisture exchange of the concrete

with the environment [335]. On the other side, the hydration of cement to cement paste, as well as car-

bonation, determines the chemical shrinkage process. For purposes of structural analysis, both processes

can be combined to give the cumulative shrinkage [147].

The interactions between the pure shrinkage strain, elastic, and creep strains caused by concrete shrinkage

result in a linear strain distribution over the cross-section depth. In the case of same environmental con-

ditions at both surfaces, the shrinkage strain distribution is constant. Shrinkage cracks may occur at the

surfaces of the cross-section due to the tensile stresses (local residual stresses), which are one major reason

for cracks in concrete structures [147, 378].

Further stresses occur due to structural constraints or reinforcement bars in composite cross-sections. In

the case of unrestrained conditions, no further forces are generated besides these local stresses. Especially

in over-reinforced concrete cross-sections, the stiffness of the reinforcement bars induces an internal re-

sistance against the shrinkage concrete strains. Therefore, a residual stress state exists which results in a

negative pre-strain in the composite section [220]. In general, tensile stresses in the concrete and compres-

sive stress in the reinforcing steel arise. A high shrinkage strain, reinforcement ratio, and a low concrete

tensile strength can cause a predetermined crack pattern. Moreover, an asymmetrical reinforcement layout

causes an additional curvature and, thus, vertical displacements of reinforced concrete beams.

Microcracking starts to occur inside the concrete when sufficient residual stresses are developed, which is

approximately above 50% of the tensile strength [180]. As the residual stresses increase, these microcracks

develop more extensively. Finally, microcracks begin to fuse and a single crack can be localised in the

concrete element. This process is not exclusively dependent on the properties of the concrete mixture,

because the degree of restraint is additionally a major influence factor [335]. The additional shrinkage term

may be generally greater in comparison to strain induced by direct external loads. The computation of the

mean reinforcing steel strains (tension stiffening, see Sec. 3.1.4) is not influenced by the concrete shrinkage

strains [220].

Water content, water/cement ratio, aggregate type, humidity, and the shape and size of the concrete el-

ement are the main influence for the shrinkage strain. The shrinkage deformation occurs when hardened

concrete is exposed to air with a relative humidity less than 100 %. A larger shrinkage strain occurs for either

a higher water content or a lower environmental humidity. Moreover, a smaller volume-to-surface-ratio V /S

results in greater shrinkage and a steeper evolution shrinkage curve [206]. With decreasing water/cement

ratio and cement content, the shrinkage of concrete decreases [74]. Structures which are sensitive to such

restrained drying shrinkage caused by a low volume to surface ratio are e.g. pavements, bridge decks, walls,

and industrial floors [405, 407].

Several shrinkage models are proposed but still a huge difference is asssessed between model predictions

and a large number of experiments studied in the RILEM data bank (426 shrinkage tests) [287]. Even more

complex models such as those proposed by Bažant and Bajewa [25], or models with a high number

of required input parameters such as ACI 209 [6], show differences when compared to the experimental
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data. Similarly, simpler models or models with less input parameters such as Model Code 2010 [187] and

Gardner and Lockman [123] show some discrepancy when compared to the experimental investigations.

These models are based on exponential and power functions which are shown in in the following (td ... age

of concrete [d] at the beginning of shrinkage).

American Concrete Institute ACI 209 [6]

εc,sh (t, td ) = εshuγsh
(t − td )

f + (t − td )
(3.83)

εshu ... ultimate shrinkage

γsh ... humidity, concrete composition, and geometry

f ... time-ratio, 35 d/55 d

Bažant and Bajewa B 3 [25]

εc,sh (t, td ) = −εsh∞kh tanh

(
(t − td )

τsh

)0.5

(3.84)

εsh∞ ... ultimate shrinkage

kh ... humidity coefficient

f τsh ... shrinkage half-time

Model Code 90-99 MC 90-99 [185], Model Code 2010 MC 10 [187]

εc,sh (t, td ) = εds0 (fcm)βRH

(
(t − td )

0.035h2 + (t − td )

)0.5

+ εas0 (fcm)
(

1 + e−0.2
√

t
)

(3.85)

εds0 ... ultimate drying shrinkage

εas0 ... ultimate chemical shrinkage

βRH ... humidity coefficient

h ... cross-section geometry parameter

Gardner and Lockman GL 2000 [123]

εc,sh (t, td ) = εshu (fcm)βRH

(
(t − td )

t − td + 0.15 V
S

2

)0.5

(3.86)

εshu ... ultimate shrinkage

βRH ... humidity coefficient

V /S ... cross-section geometry parameter

3.3.2 Comparison and evaluation of shrinkage models

In the design guideline MC 10, the variation in the prediction of the shrinkage is estimated with CVMC 10 =

0.35 [187]. Comparison of these shrinkage models to experimental data (RILEM data bank [287]) is investi-

gated by Gardner [122]. If all available input information is used, GL 2000 and B 3 models are significantly

more accurate predicting shrinkage based on the normalised root mean square (RMS, unbiased indicator)
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errors of 0.19 < CVRMS < 0.20, see Tab. 3.8. In the case that only the concrete strength is used as input

information, GL 2000 is better than the other methods with CVRMS = 0.25.

In the study by Goel et al. [148], predicted values of shrinkage are compared with the experimental results

of [358] and the RILEM data bank [287]. Conclusions from the comparison between the shrinkage predic-

tion and the experimental measurements are: ACI 209 shows much scatter and illogical trends, due to the

lack of size effect in the time term of the prognoses; MC 90-99 underestimates shrinkage; B 3 is in better

agreement; and GL 2000 is almost as good as the B 3 model. In the statistical evaluation of shrinkage

models by Al-Manaseer et al. [2], the B 3 and GL 2000 models are the best in comparison with the

models presented above. In general, B 3 tends to underestimate the shrinkage strains while the GL 2000

model overestimate the experimental data from the RILEM data bank.

Table 3.8: Coefficients of variation [-] of prediction errors of various shrinkage prediction models

Prediction ACI 209 B 3 MC 10 GL 2000
Model [6] [24, 25, 26] [185] [123]

Gardner [122]
only fcm 0.34 0.31 0.32 0.25
all data 0.41 0.20 0.25 0.19

Bažant et al. [32]
shrinkage 0.444 0.374 0.481 0.433
relative shrinkage 0.518 0.418 0.479 0.483

In the unbiased statistical comparison of shrinkage prediction models by Bažant et al. [32], the variation

of the prediction error is quantified in comparison with the experimental data which is listed in Tab. 3.8.

Comments regarding the results of Gardner are included in Sec. 3.2.2. The relative shrinkage is defined

as [32]:

εc (t, t0) = εc (t, t0) /ε0 , (3.87)

in which ε0 is the initial shrinkage strain for 28 days of drying. The uncertainties in the model predictions

are assessed to be CVACI 209 = 0.444, CVB 3 = 0.374, CVMC 10 = 0.481, and CVGL 2000 = 0.433. Relative

to the lowest model uncertainty, found in the B 3 model, the partial model quality may be assessed as:

� ACI 209 MQACI 209
PM = 0.374/0.444 = 0.84

� B 3 MQB 3
PM = 0.374/0.374 = 1.00

� MC 10 MQMC 10
PM = 0.374/0.481 = 0.78

� GL 2000 MQGL 2000
PM = 0.374/0.433 = 0.86
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3.4 Thermal action on concrete structures

3.4.1 Prediction of temperature

In the design of structures, especially bridges, thermal effects are recognised as an important design factor

n the case that the thermal movements are restrained [93, 120]. Bridges are generally more sensitive to

thermal actions compared to buildings. The massive concrete volume and the exposed condition to solar

radiation cause this higher significance of thermal actions [383]. For statically indeterminate structures, a

combination of restraint forces and displacements arises due to the temperature distribution whereas in

determinate structures only displacements occur.

In the past decades, many cracks in prestressed concrete bridges can be attributed to non-uniform tem-

perature variations [93]. For example, Leonhardt et al. [247] reported damage in a two span continuous

box girder bridge within five years of completion. Large cracks were observed along one of the webs in the

shorter span with crack widths greater than 5 mm (insufficient shear reinforcement enabled the cracks to

extend horizontally). In general, such thermal cracks may occur in the deck slabs or in the webs of concrete

box girder bridges, depending on the stiffness ratio between both components and on the solar radiation

path [114]. Moreover, several cracks are found in many box-girder bridges in Sweden, with cracks being

more frequent in the south side than the north. This indicates that concrete bridges may be sensitive to

solar radiation which can cause large stresses [237]. Therefore, partial prestressing is recommended in the

design for temperature sensitive structures in combination with sufficient reinforcing steel.

In particular, the adequate determination of the thermal response of modern long-span prestressed con-

crete bridges with limited numbers of expansion joints and bearings is significant for the structural design

[20]. The thermal response of structures, especially bridges, is a complex transient phenomenon. Many

parameters influence the temperature distribution in concrete cross-sections. A fundamental factor is the

time-dependent solar radiation. In addition, the thermal response is affected by ambient temperature, wind

speed, material properties, surface characteristics and section geometry [324, 385], see Fig. 3.29. Moreover,

climatic influence factors such as daily and seasonal variations of the outside air temperature, rain, snow,

and so on, cause changes in the temperature distribution of bridge structures [418].

A thermal interaction exists between the deck and its environment which is considered in a prediction model

for the first time by Emerson [96]. This in and out heat flow of the structure is affected by convection and

radiation. The phenomenon of thermal action in concrete structures/bridges is commonly determined by

the Fourier heat flow equation. In general, the Fourier conduction equation can be applied for the analysis

of the thermal response of an isotropic solid with a boundary, in contact with air. Conductivity of the

material is assumed to be independent of the temperature and axis orientation. Such thermal response is

caused by variations in ambient temperature Θa and the rate of heat q transferred from the environment

to the concrete surface. It is defined as [238, 324, 322, 359]:

λ

[
∂2Θ

∂x2
+
∂2Θ

∂y 2
+
∂2Θ

∂z2

]
+ qv − ρC

∂Θ

∂t
= 0 , (3.88)

with the boundary condition (heat exchange between structural surface and surrounding environment):

λ

(
∂Θ

∂x
nx +

∂Θ

∂y
ny +

∂Θ

∂z
nz

)
− q = 0 . (3.89)
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Figure 3.29: Influence factors affecting thermal response, based on [324, 385], vertical lines 1-1, 2-2, 3-3
necessary for one-dimensional analysis

In Eq. 3.88 and Eq. 3.89, Θ is the temperature, qv is time rate of heat generated per volume (e.g. heat

of the hydration reaction of cement) caused by hydration of cement, λ is isotropic thermal conductivity, ρ

is density, C is specific heat capacity of the solid, Θo is solid boundary temperature, hc is boundary heat

transfer coefficient (mainly dependent on the speed of air across the boundary), t is time, and nx , ny , nz

are the cosine directions of the outward unit vectors normal to the boundary surface.

In general, the challenging task for the prediction of temperature in a structure is the determination of

the boundary conditions and the climatic exposure [236]. For simplicity, the heat exchange at the surface

may be reduced to purely convective heat exchange qc [120, 359], see Eq. 3.90b. Thermal power due to

the direct and diffuse solar radiation qs , thermal power produced by long-wave radiation qr , and absorbed

through the material surface, and emissivity of the surface can be additionally considered [359] in the

boundary conditions:

q = qs + qc + qr (3.90a)

or simplified:

q = qc = hc (Θo −Θa) (3.90b)

The thermal material properties are listed in Tab. 3.9, which are generally liable to many variances (pa-

rameter uncertainty). The determination of average values used in several research studies even varies

significantly for the thermal properties conductivity λ and specific heat capacity C .

Sine the parameters q, Θa and h are general complex functions of time, direct analytical solution of the

Fourier heat equation is a non-trivial procedure and impractical since the equation of heat conduction

becomes non-linear [359]. Therefore, the application of three-dimensional FE simulations is generally more

applicable and appropriate [324, 419].
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Table 3.9: Thermal material properties

Material Conductivity Density Specific Heat Capacity Reference
λ [W/(mK)] ρ [kg/m3] C [J/(kgK)]

concrete 1.50 2400 1000 [50]
1.50 2400 960 [89, 94]
2.10 2400 1000 [115]
1.50 2480 900 [120]
1.40 2400 960 [159]
2.50 2400 900 [236]
1.50 2400 960 [248]
1.38 2480 922 [321]
1.81 2350 792 [359]

asphalt 0.80 2200 900 [50]
0.93 2100 920 [89, 94]
0.75 2240 1080 [115]
0.70 2300 900 [120]
1.10 2100 900 [159]
0.70 2200 880 [239]
1.00 2240 920 [248]
0.74 2240 838 [321]

still air 0.0225 1.3 921 [120]
0.0225 1.3 922 [321]

The three dimensional differential equation can be substantially simplified for ambient thermal loading of

bridges. For example, the heat flow, even for sections of complex geometry (superstructure), caused by

solar radiation and ambient temperature variations is mainly perpendicular to the deck surface [322]. The

variation of temperature distributions in the direction of the longitudinal axis of the bridge is usually not sig-

nificant. For example, the long-term monitoring program of a 220 m continuous concrete box girder bridge

(“Casilina” bridge in Central Italy) by Froli et al. [120] confirm this assumption, because two different

monitored segments show nearly identical temperature distributions. For that reason, a two-dimensional

finite element representation may be analysed in order to simulate the temperature distribution in the cross

section and subsequently assigned for the entire structure [94]. The study by Lanigan [235] adopted

this approach with comparison of theoretical and experimental results of laboratory specimens subjected

to input radiation on one surface. Moreover, it has been shown in [323] that for most bridge sections,

transverse heat flow in bridge sections is insignificant. Heat flow through the depth may be considered one-

dimensionally because of the large thermal inertia and relatively low diffusivity of concrete [383]. Hence,

the three-dimensional case according to Eg. 3.88 can be further simplified to the one-dimensional form:

λ
∂2Θ

∂z2
+ Q = ρC

∂Θ

∂t
, (3.91)

which can be solved in conjunction with Eq. 3.89 by numerical solution techniques. For more complex

cross-section such as a box-girder, it may be necessary to compute more than one vertical line and finally

combine the results of various vertical lines, see vertical lines 1-1, 2-2, 3-3 in Fig. 3.29. Nevertheless, a

two-dimensional simulation is more accurate for analysing more complex sections and is currently com-

monly applied [237, 238, 240]. In order to compute temperature distributions in box girder bridges, both
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two-dimensional temperature field and bi-directional heat flow should be considered in the analysis. Super-

structure depth and the ratio between the deck’s upper and bottom slab widths are the most influential

geometric parameters for box girders [281]. Unicellular and multicellular concrete box girders have very

similar thermal responses. Former observations by Capps [59] and Emerson [95] indicate that the tem-

perature of the air trapped in the cells of cellular decks changes by only 1 or 2 ◦C throughout the day.

Hence, it is reasonable to assume that this air temperature is constant for design purposes [159].

The response of structures subjected to external loads such as dead and live loads are comparatively in-

sensitive to the material properties in comparison to thermally induced stresses caused from constraint

deformations [322]. In contrast, the accuracy of the theory for structural and sectional analysis is more

sensitive to external loads. On one side, the thermal response is mainly influenced by thermal conductivity,

density, and specific heat. On the other side, modulus of elasticity and coefficient of thermal expansion αT

significantly influence the thermal response of structures.

Table 3.10: Coefficients of thermal expansion for water-cured concrete with several aggregate types
[260, 322]

Aggregate Coefficient of thermal expansion αT Aggregate Coefficient of thermal expansion αT

Type [10−6/K] Type [10−6/K]

Limestone 6.0 Basalt 9.5
Andesite 6.5 Sandstone 10.0
Pumice 7.0 Greywacke 11.0
Foamed Slag 9.0 Quartzite 13.0
Granite 9.0

The basis for thermal actions in structures is the thermal expansion capability of the materials which is

physically determined by the coefficient of thermal expansion. For concrete, this coefficient is generally

in the range of 5 · 10−6/K and 15 · 10−6/K and mainly depends on the aggregate type. Andesites and

limestone result in lowest values and quartzites typically give highest values, see Tab. 3.10. For structures

which may be sensitive to thermal actions caused by restraint effects, it is appropriate to investigate the

thermal expansion for the actual concrete mixture by experimental tests [260]. The thermal expansion

coefficient for structural steel is recommended in design guidelines to be αT = 12 · 10−6/K [129, 104]. In

a structural analysis of composite materials like reinforced concrete, the coefficient can be assumed to be

αT = 10 · 10−6/K for both materials within the temperature range of −20 ◦C and +180 ◦C [187, 104].

For prestressed steel, this material property can be taken as 10 · 10−6 1/K within the temperature range of

−40 ◦C and +180 ◦C [187].

In the study by Fouad [115], a non-linear simulation of instationary temperature fields in structures sub-

jected to thermal action are investigated and validated against monitoring data of structures. Based on

Finite Element Method, the main matrix equation is determined by:

[K] {Θ}+ [C]
{

Θ̇
}

= {Q} , (3.92)

in which [K] is the sum of thermal conductivity, convection, and radiation matrix, [C] is the specific heat

capacity matrix, Θ is the nodal temperature vector, Θ̇ is the temperature flow vector, and Q is the element

nodal heat flux vector considering heat flow due to internal heat generation, convection, radiation, and
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conduction [114]. This numerical model is validated according to a long-term monitoring program at box

girder bridges in Germany (“Brohltal”, “Ahrtal”, measured by German “Federal Highway Research Insti-

tute” BASt). The maximum difference between predicted and measured temperature is assessed to be 2 K

over the entire monitoring program, which illustrates a very good agreement, see Fig. 3.30 [385].

 

 

Fig. 4 shows a comparison between the measured and calculated temperatures at 
different sections of the cross section of the Brohltal Bridge. The numerical model 
which was described before in which the evolution of the box air temperature, the 
shading of the side webs and the mutual radiation of the inner box girder surfaces were 
considered, present results that show a good agreement with the experimental data. 
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 Fig. 4:  Comparison of results of temperature calculations at different points of the 
Brohltal Bridge cross section  

 

Fig. 5 shows the calculated deformation of the box girder cross section due to thermal 
loading just before sun rise and also three hours after noon. 

 

 

 

 
                       ( 4 AM )            ( 6 PM ) 

  Fig. 5: Deformation of the box girder cross section due to thermal loading only 
(exaggerated) 

 

 2.3.3  Temperature distribution and deformation of a high bridge pier 

The temperature distribution of a high bridge pier (H=40,68 m, fig. 6) were measured 
over a period of one year. During this year the super structure (double box girder) was 
not yet built. The max and min ambient air temperatures and the max and min inner air 
temperatures of the pier were measured. Solar radiation and wind speed were not 
measured. For this reason, the solar radiation were calculated according to [2] 
considering a clear atmosphere (no clouds). 

Figure 3.30: Validation of numerical model by Fouad for simulation of temperature distributions, [114]

In addition, a parametric study for box girder cross-sections of varying depth, web thickness, upper and

lower deck thickness, web inclination angle, ratio between cantilever length and web depth, and surface

thickness is performed in order to obtain the sensitive geometrical parameters and finally to determine

critical thermal effects. The uniform temperature component is assessed to be independent of the bridge

orientation. The vertical temperature gradient is similarly independent of the bridge orientation. For the

transverse gradient, the bridge orientation is very sensitive with the greatest gradients for east-west orienta-

tion and lowest gradients for north-south. The simulation results and the experimental data both illustrate

that temperature differences induce not only continuity but also large residual stresses in a concrete box

girder. Maximum stresses are obtained mostly in summer time when solar radiation is at a maximum. More-

over, a significant geometric parameter applies to the overhanging slabs in the temperature distribution of

box girders [114].

In the study by Lichte and Mangerig [248, 260], multi-year climate data set (1980-2000) with hourly

measurement data of air temperature, wind speed and solar radiation are used in a numerical simulation.

An improvement in the model is investigated according to the long-wave atmospheric radiation. In addition,

the external thermal boundary conditions are enhanced by more adequate ansatz functions which increase

the model accuracy. Separation of the temperature components into a time period and a random temper-

ature component allows the determination of seasonal and stochastic properties of the thermal action. For

double T-beams with given structural and environmental conditions, the range of these temperature parts

under the given meteorological data is determined and the corresponding combination rules are analysed.

One major conclusion is that the thermal actions in steel, composite and concrete decks cause different

combination surfaces between the uniform and linearly varying temperature components, see Sec. 3.4.3.

This is in accordance with the different thermal behaviour of these cross-section types. Moreover, the

analysis evaluated that even short-term weather events, such as a thunderstorm, may adversely affect the

temperature distribution in the investigated composite deck.
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3.4.2 Prediction of stress levels

The temperature distribution of an arbitrary cross-section is computed relatively to some convenient datum

∆T (z). In the case of totally unrestrained expansion at all heights in a cross-section, the free strain profile

is:

εc,t,free (z) = αt · T (z) (3.93)

where αt is the linear coefficient of thermal expansion, see Fig. 3.31.

cross-section temperature 
change

longitudinal 
strains

T (z)
εc,t,free (z)

εc,tot (z)z
ii

Figure 3.31: Vertical distribution of longitudinal thermal strain, based on [324]

Considering the Bernoulli hypothesis that cross-sections remain plane under deformation process leads to

the total strain distribution εc,tot . The difference between the free strain εc,t,free and the resulting plane

strain distribution εc,tot implies residual stresses σc,t,res with the magnitude:

σc,t,res(z) = Ec · (εc,tot(z)− εc,t,free(z)) = Ec · (εc,tot(z)− αtT (z)) . (3.94)

In statically determinate structures, the residual stresses are self-equilibrating [93]. The maximum stresses

calculated near top surfaces are primarily controlled by the high local temperatures and relatively little

by the precise shape of the temperature distribution. Fairly crude approximations for the temperature

distribution away from the surfaces can be made without seriously affecting accuracy [159]. In summer

when the solar radiation is at a maximum and the length of shade of the overlapping part over the webs is

large, a temperature distribution in the cross-section occurs with largest residual stresses [94]. Moreover,

design for critical conditions may appear in the case of a large daily range of ambient temperature and

a minimum wind speed. An asphalt deck accentuates the stresses caused by temperature. With a larger

cross-section depth, the residual stresses increase and are not much different between a solid slab, cellular

slab, and box girder. Integration of Eq. 3.94 over the section depth h results in the axial force:

Fc,t,res(z) = Ec ·
(
εc,tot(z) − αtT (z)

)
· b(z) dz , (3.95)

where b(z) is the net section width at height z . The internal moment about the neutral axis due to the

temperature distribution T (z) can be computed by:

Mc,t,res(z) = Ec ·
(
εc,tot(z) − αtT (z)

)
· b(z) · z dz . (3.96)

As a consequence of cracking, section properties, moments and forces vary along the span. The neutral axis

changes as thermal expansion (or contraction) near the neutral axis closes (or extends) the cracks [159].

In comparison to uncracked sections, the thermal behaviour is more complicated for cracked cross-sections

and structural members. The simulation method considered in this thesis are appropriate to consider the
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interaction between concrete cracking and thermal response. For a combination of external loading and

temperature loading, the structural response based on non-linear simulations is analysed in Sec. 3.5.

3.4.3 Design recommendations

The temperature field simulations as studied by Fouad [115] and Lichte [248] may be characterised by

a very highly complex time-dependent analysis of structures such as bridges. For engineering applications,

it may not be of interest to establish a temperature field simulation and subsequently analyse the time-

dependent temperature distribution. Hence, the application of such simulations in the design is impractical,

inefficient, and may only be applied in exceptional cases. The design of bridges is more focused on the

control of the representative temperature loads. On the basis of these transient heat flow analyses discussed

in Sec. 3.4.1, it is possible to establish representative design temperature components, which generally rep-

resent maximum temperature states with a certain probability of occurrence.

For beams considering the Bernoulli hypothesis, the non-uniform temperature distributions can be de-

scribed with idealised temperature components [260]. The method to access design values (representative

temperature loads) can be separated into four major phases:

¬ measuring temperature in long-term monitoring program,

­ establishing numerical model and validation according to measurements,

® parametric study and determination of representative values, and

¯ assessment of significance of representative values for serviceability and ultimate limit state.

Local ambient characteristics like variation of solar radiation, ambient temperature and wind speed are

used for the prediction of the representative design gradients. These design gradients are subsequently

used in the computation of stress levels. The critical design gradient, according to Priestly, shows that

thermal gradient, likely to occur within the expected life of the bridge, which induces maximum soffit

tension stresses [324]. The overall distribution can be represented in a temperature profile which subdivides

the non-uniform temperature distribution into different components, see Fig. 3.32. These components are

determined in such a way that they correspond to mechanical quantities (displacement, curvature) and

internal forces (normal force, moment). The temperature profiles are commonly recommended in design

codes such as EC 1-1-5 [104], which defines certain values for thermal actions and temperature profiles.

These are the characteristic value (with return period of 50 years), infrequent value (with return period of

1 year), frequent value (with return period of 2 weeks), and the quasi-permanent value (with return period

of 6 days) [383].

z

y x
= + + +

a) b) c) d)
TMyTMzTN TE

Figure 3.32: Temperature profile according to EC 1-1-5 [104]

In order to design structures using a practical and efficient approach, the temperature distribution in a
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cross-section according to Fig. 3.32 can be represented by the following temperature components:

� a) TN uniform temperature component may cause normal force N ,

� b) TMz linearly varying temperature difference component may cause bending moment Mz ,

� c) TMy linearly varying temperature difference component may cause bending moment My , and

� d) TE non-linear temperature difference component .

In the EC 1-1-5, these temperature components are separately assessed for different bridge types containing

the following categories [104]:

� Type 1 Steel deck: steel box girder, steel truss or plate girder

� Type 2 Composite deck

� Type 3 Concrete deck concrete slab, concrete beam, concrete box girder

The characteristic values of minimum and maximum shade air temperatures for the construction site loca-

tion may be obtained, e.g. from national maps of isotherms. These values represent shade air temperatures

for mean sea level in open country with an annual probability of being exceeded by 0.02 [104]. The German

National Annex for thermal action [139] defines the minimum Tmin = −24 ◦C and maximum characteristic

shade air temperature Tmax = +37 ◦C. Moreover, an additive term considering the characteristic of the

different cross-section types Tmin/max,cs is recommended, see Tab. 3.11. For structural design, the char-

acteristic value of the maximum negative change (contraction) of the uniform temperature component

∆TN,con is recommended to be:

∆TN,con = T0 − Te,min , (3.97)

and the maximum positive change (expansion) of the uniform temperature component ∆TN,exp is defined

as:

∆TN,exp = Te,max − T0 , (3.98)

where T0 is the datum temperature in the design of the structure. The temperature at that time when the

bride is restrained should be used for this temperature reference value [383]. In the case T0 is unknown,

EC 1-1-5 [104] recommends to use T0 = 10 ◦C.

One one side (approach 1), the effect of vertical temperature differences can be considered by applying

an equivalent linear temperature component ∆TM,heat and/or ∆TM,cool. For the “heat” state, the upper

cross-section surface is subjected to a higher temperature than the lower surface, and for “cool” it is the

opposite. These temperature components should be applied between the top and the bottom of the bridge

deck and are listed in Tab. 3.11 for an asphalt surface thickness of 5 cm. For other surface thicknesses,

these values should be multiplied by the factor ksur, which are also listed in Tab. 3.11.

On the other side (approach 2), the effect of the vertical temperature differences can be considered by

the analysis of non-linear temperature components ∆T . In Fig. 3.33. The term ‘heating” refers to a state

in which solar radiation, among other factors, causes a gain in heat through the top surface of the bridge

deck. In contrast, “cooling” indicates conditions such that heat is lost from the top surface of the bridge

deck as a result of re-radiation, among other factors. This temperature difference ∆T incorporates ∆TM

and ∆TE together with a small part of the component ∆TN . This latter part is already included in the

uniform bridge temperature component ∆TN [104]. Hence, the integration of ∆T along the cross-section
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Table 3.11: Characteristic values of temperature components according to DIN EN 1991-1-5/NA:2010-12
[139], linear gradients for asphalt surface thickness of 5 cm

Temperature Unit/ Type 1 Type 2 Type 3
Component Surface Steel Deck Composite Deck Concrete Deck

Thickness Box Girder Beam Slab

Tmin,cs
◦C −3 +4 +8

Tmax,cs
◦C +16 +4 +2

Te,min
◦C −27 −20 −16

Te,max
◦C +53 +41 +39

∆TM,heat [K] 18 15 10 15 15
∆TM,cool [K] 13 18 5 8 8

ksur,heat

0 cm 0.7 0.9 0.8
10 cm 0.7 1.0 0.7
15 cm 0.7 1.0 0.5

ksur,cool

0 cm 0.9 1.0 1.1
10 cm 1.2 1.0 1.0
15 cm 1.2 1.0 1.0

depth leads to a certain uniform component, which should be considered by a reduction of the uniform

bridge temperature components ∆TN .

The non-linear temperature difference causes residual stresses in the cross-section due to the principle of

plain strain distribution over the cross-section depth [269]. In common design practice, the uniform tem-

perature component and the linearly varying temperature difference are the most important components

[383]. For example, the German National Annex [139] recommends first approach considering the uniform

temperature and the linearly varying temperature component ∆TM . Nevertheless, the non-linear tempera-

ture component ∆T can generally be applied for design purposes as recommended by EC 1-1-5 [104] and

Emerson [95, 97, 98].

Based on EC 1-1-5 [104], a simultaneous consideration between uniform ∆TNexp (or ∆TNcon) and tem-

perature component ∆TM,heat (or ∆TM,cool). This combination of both components may be necessary for

e.g. frame structures. The combination of both components can be determined by the following expressions

which should be interpreted as load combinations:

∆TM,heat (or ∆TM,cool)⊕ ωN∆TN,exp (or ∆TN,con) , (3.99)

or

ωM∆TM,heat (or ∆TM,cool)⊕∆TN,exp (or ∆TN,con) , (3.100)

where the most adverse effect should be chosen. Combination factors for the concurrent occurrence of

both temperature parts (ωN = 0.35, ωM = 0.75) are included to account for their coincident probability

[104, 139]. For the second approach with consideration of the non-linear temperature component ∆T , the

term ∆TM should be replaced in Eq. 3.99 and Eq. 3.100 by ∆T , because the non-linear component includes

∆TM and ∆TE . For hollow or solid concrete piers, a linear temperature difference between the opposite

outer faces should be taken into account. The recommended value for the linear temperature difference is

∆TM,pier = ±5 K [104, 139].

As an example for the design load conditions in a frame bridge, Fig. 3.34 shows the load cases for a com-
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Figure 3.33: Temperature differences for concrete bridge decks according to EC 1-1-5 [104]

bined loading of external loads and temperature components. In this study [11], the section forces NEd

and MEd are investigated in the ultimate limit state based on the linear-elastic stiffness of the frame bridge

with the dimensions L = 14.0 m and H = 5.5 m. At the frame corner, the amount of necessary reinforce-

ment increases by 17 % and by 25 % in the frame span when considering the thermal action. Therefore, in

structures which are sensitive against thermal actions, the design might be crucially dependent on the tem-

perature loading condition in addition to the external loads. Nevertheless, the analysis with the uncracked

elastic stiffness is generally not appropriate for the computation of restraint effects, which is discussed in

Sec. 3.5. Non-linear simulation determines the structural behaviour much more adequately by considering

the material non-linearities and resulting in stiffness degradation. This allows for the consideration of re-

straint force degradation and finally leads to a much more reliable, safe, and improved economical design

of the structure.

In the study by Lichte [248], the consideration of wind speed course in the temperature field simulation,

instead of a seasonal wind speed average value, leads to higher variation in the daily extreme values of the

temperature components. In addition, singular events such as thunderstorms or slow wind speeds on very

warm days are considered in this study. Therefore, the extreme value’s distribution and the corresponding

extrapolation of the rare extreme events are influenced by these additionally considered meteorological

information. A great difference is observed in the comparison between the results of this study and the

design recommendations (characteristic values), see Tab. 3.12. Nevertheless, the design recommendations

of EC 1 are evaluated for various cross-section types and geometrical parameter combinations, varying sys-

tem parameters, environmental conditions and a subsequent statistical evaluation. Therefore, the direct

comparison between both results should be carefully checked. The difference should only illustrate the high

sensitivity of the temperature field conditions in the estimation of characteristic temperature values.

The combining factors between uniform components and linearly varying temperature components are
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Figure 3.34: Load cases for combined loading of external load and temperature in a frame bridge, based
on [11]

assessed for the different types of cross sections, see Tab. 3.12. These results are only valid for the charac-

teristic values assessed in this study [248]. The critical condition for the combination is found in midsummer

with high levels of solar radiation which causes high ∆TN,exp and ∆TM,heat. The bridge orientation is not

sensitive to the combination between both temperature components. For the steel and concrete decks,

the occurrence of a uniform temperature component lower than 0 ◦C with a simultaneous, linearly varying

“heating” component is not analysed for the entire temperature field analysis. For concrete box girders,

Lichte [248] expects combination factors much smaller than 0.9. Finally, the percentage of the combina-

tion between both components by applying combination factors is generally applicable. The general design

recommendation mentioned above is independent of the type of structures and may therefore be extended

to consider different cross sections and material characteristics.

Table 3.12: Characteristic values of temperature components and combination factors according to
Lichte [248] (reference temperature T0 = 10 ◦C) in comparison to
DIN EN 1991-1-5/NA:2010-12 [139], 100 % equal to DIN EN 1991-1-5, linear gradients for
asphalt surface thickness of 5 cm

Temperature Unit/ Type 1 Type 2 Type 3
Component Surface Steel Deck Composite Deck Concrete Deck

Thickness Beam

∆TN,neg
◦C −16 40 % −10 38 % −7 39 %

∆TN,pos
◦C +51 86 % +42 120 % +35 113 %

∆TM,heat [K] 22 122 % 23 153 % 18 120 %
∆TM,cool [K] 9 69 % 24 133 % 6 75 %

ωN [-] 0.84 240 % 0.67 191 % 0.92 263 %
ωM [-] 0.69 92 % 0.54 72 % 0.89 119 %

Until the release of the design recommendation DIN FB 101 in 2009 [129], the partial safety factor for the

thermal action was defined as γQ,T = 1.5, similar to a variable load. This factor considers uncertainties

due to variation in the thermal expansion coefficient, approximation errors caused by the uniform temper-

ature components, structural model, and high uncertainty in the actual temperature at that time when

the structure is restrained. Based on the research studies [118, 248], Mangerig et al. [260] assessed the

existing design recommendations for thermal actions in order to check the general validity for future design
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projects. The common approach of linear temperature components is still used in order to allow a practical

design procedure. The design temperature value is defined as:

ET = γQ,T [αT Csys (Tt,k − T0,k )] , (3.101)

and considering the separate uncertainty sources leads to:

ET =
(
γαT

γCsysγTN,M

) [
αT Csys

(
Tk −

T0 ± T ∗0
γTN,M

)]
, (3.102)

in which γαT
considers the variance in the thermal expansion coefficient, γCsys considers modelling uncer-

tainties, γTN,M
takes into account the variance in the characteristic values, and T ∗0 represents the uncertainty

related to the temperature at the time when the structure is restrained. Due to the unavoidable variance in

determination of αT , it is common in bridge engineering to use a partial safety factor of γαT
= 1.05 [260].

In the last decades, some extreme air temperature events have occurred, such as 40.3 ◦C in Perl-Nennig

(2003-08-08), 40.2 ◦C in Karlsruhe (2003-08-09, 2003-08-13), and −42.0 ◦C in Albstadt (2001-12-24).

These events initiated a discussion about the safety requirements for thermal action on bridges. Moreover,

the daily extreme values reported over more than 100 years in Hamburg, Berlin, and Munich show a shade

air temperature range between −31.7 ◦C and 37.7 ◦C. Nevertheless, Mangerig et al. [260] concludes that

the characteristic positive shade air temperature of 37 ◦C is reasonable, because the upper limit value for

the determination of the safety factor for Germany is defined as 40.5 ◦C. In contrast, the obviously lower

deviation of the negative shade air temperature might not be appropriate. Hence, the temperature range

between −30 ◦C and 40 ◦C is used in this study [260] in order to analyse the required safety factor. In the

assessment of the linearly varying temperature component, a small difference between the design guide-

lines and the determined results is obtained. Finally, the safety assessment of the temperature components

defined in the design guideline EC 1-1-5 [139] leads to a proposed safety factor of γQ,T = 1.35 [260].

In conclusion, in this thesis the thermal action is represented as partial models in the model class temper-

ature recommend by the temperature profiles defined in the design guideline Eurocode 1 [139]:

� vertical temperature gradient with uniform temperature component,

ωN ·∆TN ⊕∆TM ⊕∆TM,pier

� uniform temperature component with vertical temperature gradient,

∆TN ⊕ ωM ·∆TM ⊕∆TM,pier,

� non-linear component with uniform temperature

ωN ·∆TN ⊕∆T ⊕∆TM,pier, and

� uniform temperature with non-linear component

∆TN ⊕ ωM ·∆T ⊕∆TM,pier.

3.4.4 Monitoring temperature in concrete structures

In some applications, particularly for monitoring existing structures, it may be impractical to set up tem-

perature sensors especially at depths inside the structural members. Measuring surface temperatures and

applying the heat flow analysis may be adequate for predicting the internal temperatures in the cross sec-

tions [322].

Direct measurements of surface temperatures lead to typical relationships between temperature and time,
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3.4. Thermal action on concrete structures

see Fig. 3.35. These temperature data indicate the daily distribution throughout a hot day for top and

bottom surfaces of a bridge deck. The periodic nature of temperature distribution on a cool day is similar,

but the temperature changes induce a smaller amplitude of variation and a cooler top than bottom.

Θ [°C]

00:00 12:00 24:00

0

25

50

t [h]

top surface

bottom surface
(shade)

Figure 3.35: Temperature distribution of bridge deck during a hot summer day [159]

Based on measurement data ∆Tmeas, the constant temperature component can be determined by [120,

238, 269, 385]:

∆TN =
1

A

∫
A

∆Tmeas(y , z) dA , (3.103)

the temperature gradient may causing bending moment My to be:

∆TMy =
h

Iy

∫
A

∆Tmeas(y , z) · z dA , and (3.104)

and the non-linear temperature component to be:

∆TE (z) = ∆Tmeas(z)− [∆TN + ∆TMy (z)] . (3.105)

For the development of the Eurocode recommendations, Soukhov [383] analysed both statistical data of

temperature distributions and meteorological data, and performed numerical simulations for a parametric

study, which is initially validated with the measurement data. These data are recorded between 1984-1985

at the “Lucka” bridge in Thuringia (Germany) and analysed in [117]. Moreover, climatic data for a time

period of 10 years between 1981-1990 are used for the parametric study computed by numerical simulation

with the meteorological data of Giessen in Hessen (Germany, representative for Central Europe). For the

box girder, T-girder, and slab cross sections, the representative values are assessed and the characteristic

values are listed in Tab. 3.13. The temperature distribution is a stochastic process and the representative

values are computed based on an extreme value distribution type III (for maximum). Moreover, the com-

bination factors ψ for the representative infrequent value 0.8, frequent 0.6, and quasi-permanent value 0.5

are proposed.

All these results are analysed for a surface with thickness of 5 cm. Differences in the surface thickness will

only affect the linear temperature gradient [383]. Multiplying the characteristic values listed in Tab. 3.13

with the correction factor ksur can account for this effect. It is proposed that for the surface thickness of

15 cm, ksur = 0.5, for 10 cm, ksur = 0.7, and without any surface, ksur = 1.5.

Statistical analysis of the temperature distribution for the “Casilina” bridge in Central Italy (prestressed

continuous concrete box girder bridge, mentioned in Sec. 3.4.1) is performed for a three-year monitoring
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3. Modelling aspects of restraint sensitive concrete structures

Table 3.13: Characteristic values of thermal action assessed by Soukhov [383] using measurement and
meteorological data, T0 = 10 ◦C

Cross-Section Depth ∆TN ∆TMy

Type [m] [K] [K]

box girder 1.95 26.6 11.4
2.00 27.9 11.5
3.30 27.4 10.3
4.70 26.9 9.6

T-girder 1.20 28.5 19.0
1.80 27.8 16.0
2.40 27.3 14.1

slab 0.60 27.6 18.0
0.90 26.5 13.8
1.20 25.9 10.8

program [20]. Based on the measurement data and the statistical assessment, the correlation between the

uniform temperature component Te,max, Te,min and the ambient air temperature Tmax, Tmin are deter-

mined by the long-term monitoring program and subsequently compared to the empirical formulation of

EC 1, which is originally studied from bridges in the United Kingdom reported in [98]. The linear relationship

recommended in the EC 1 is contained within the dispersion band of the monitoring data. A good agree-

ment is observed despite the latitude difference between the UK and Central Italy. Therefore, an acceptable

degree of reliability for the recommendations of EC 1 is assessed for the correlation between ambient shade

air temperature and the structural uniform temperature [20].

In a long-term monitoring progam by Maurer et al. [269], a concrete prestressed girder bridge (5 spans,

Ltot = 171.0 m, maximum slenderness ratio λmax = 39/1.05 = 37) designed with high performance con-

crete (HPC, C 70/85) was monitored with 28 measurement points over the time period between 05/2001

and 05/2004. The extreme values measured in this monitoring program are shown in Tab. 3.14, in which

the measurements for the bridge without surface are measured during 2001/07/01 - 2002/06/30 and with

surface during 2002/07/01 - 2004/05/21. In Fig. 3.36(a), a representative time interval is shown for the

summer time. The daily variations are apparent and the maximum temperature gradient reaches the min-

imum value at 8 a.m. and the maximum value TM,heat = 12.4 K at 6 p.m.. Moreover, Fig. 3.36(b) shows

the computed temperature components which are based on the previously mentioned equations.

Therefore, the maximum uniform bridge temperature component is analysed to be Te,max = +37◦C and

the minimum component to be Te,min = −17◦C. The temperature gradient is determined without surface

to TM,heat = 1.5 · 15 = 22.5 K, TM,cool = −8.0 K, and with surface to be TM,heat = 0.82 · 15 = 12.3 K,

TM,cool = −8.0 K. Comparison with the temperature values defined in DIN FB 101 [129] shows that the

TM,heat value agrees very well, because the design recommendation is TM,heat = 12.4 K instead of the

computed TM,heat = 12.3 K. In contrast, the analysed value for the construction state (without surface) of

TM,heat = 22.5 K is very conservative in comparison to the design recommendation of TM,heat = 12.8 K.

Nevertheless, Maurer et al. [269] and Arnold [11] conclude that the long-term measurements confirm

the design recommendations.
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Maximaler bzw. minimaler Wert des konstanten Tempera-
turanteils im Bauwerk
Te,max = +37 °C Te,min = –17 °C (entspricht TN)

Linearer Temperaturunterschied ohne Belag
max ΔTM = 1,5 ⋅ 15 = 22,5 K min ΔTM = –8,0 K

mit Belag
max ΔTM = 0,82 ⋅ 15 = 12,3 K min ΔTM = –8,0 K

Das heißt, max ΔTM wurde für den Fall mit Belag an ei-
nem Sommertag erreicht und sogar mit 12,4 K gegenüber
12,3 K geringfügig überschritten. Dagegen erweist sich für
den hier vorliegenden Fall die Abschätzung für max ΔTM
im Bauzustand ohne Belag als sehr konservativ (22,5 ge-
genüber 12,8 K).

Bild 11 enthält einen Ausschnitt aus den Messungen
während der heißen Jahreszeit mit starker Sonnenein-
strahlung. Deutlich zu erkennen sind die Temperatur-
schwankungen im Tagesgang. Der Gradient erreicht sein
Minimum gegen 08:00 Uhr morgens (fast Null), sein Ma-
ximum gegen 18:00 Uhr. 

Bild 12 zeigt die Anteile TN, ΔTM und ΔTE über den
Querschnitt. Die Meßwerte ergeben teilweise deutlich un-
terschiedliche Temperaturgänge innerhalb der Quer-
schnittsbereiche des Überbauquerschnitts in Abhängigkeit
von der örtlichen Bauteildicke. Hieraus resultieren ent-
sprechende Eigenspannungen im Querschnitt, insbeson-
dere zwischen den dünnen Kragarmen und der massiven
Platte. Diese werden üblicherweise im Rahmen der stati-
schen Berechnung nicht berücksichtigt. Der nichtlineare
Temperaturanteil ruft auf der Grundlage des Ebenbleibens
der Querschnitte Eigenspannungen hervor. Die maxima-
len nichtlinearen Temperaturanteile über die Querschnitt-
dicke mit Zugeigenspannungen am Querschnittrand erga-
ben sich aus den Messungen entsprechend Bild 13. Die
dazugehörigen Zugeigenspannungen am Querschnittrand

Der charakteristische Wert max ΔTM
nach DIN-FB 101 wurde erreicht.
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können vereinfacht aus der Kompatibilitätsbedingung
(Ebenbleiben des Querschnitts) wie folgt abgeschätzt
werden:

3.2 Dehnungsmessungen

Die Langzeitdehnungsmessungen haben das Ziel, Er-
kenntnisse über das zeitabhängige Verformungsverhalten
des Betons infolge Kriechens und Schwindens am Bau-
werk zu gewinnen.

3.2.1 Anordnung der Meßtechnik

Die Gesamtdehnungen des Überbaubetons wurden in drei
Meßquerschnitten und in einer Koppelfuge mit jeweils
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Fig. 11. Temperature gradients over 10 days in the summer
2002, bridge with pavement (max ΔTM = 12,4 K)
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Bild 12. Temperaturverlauf über den Querschnitt infolge
klimatischer Einflüsse, maxΔTM = 12,4 K
Fig. 12. Temperature gradients over the cross section due to
climate influences, maxΔTM = 12,4 K
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Bild 13. Gemessene extremale, nichtlineare Temperatur-
anteile, Brücke mit Belag: 12.07.2002 6:30 (maximale Zug-
eigenspannungen am Querschnittsrand)
Fig. 13. Measured extremal values of non-linear temperature
fractions, bridge with pavement: 12.07.2002 6:30 (maximum
inherent tension stress at the extreme fibre of the cross
section)

(a) 10 days in summer 2002 with TM,heat = 12.4 K, hor.
axis: time, ver. axis: temperature
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(b) temperature components due to time at
TM,heat = 12.4 K, hor. axis: temperature, ver. axis:
cross-section depth

Figure 3.36: Temperature measurements and computed gradients of long-term monitoring of prestressed
concrete girder bridge assessed by Maurer et al. [269]

Table 3.14: Extreme temperature values of monitoring of HPC prestressed girder bridge in Germany
between 05/2001-05/2004 [269]

Temperature Component Symbol Unit without surface with surface
max min max min

air temperature Tair [◦C] 33.5 -16.7 32.9 -11.8
average temp. in structure TN [◦C] 30.0 -6.4 31.1 -9.3
temperature gradient ∆TM [K] 12.8 -3.2 12.4 -4.1
temperature at upper surface Tup [◦C] 40.9 -7.6 39.8 -10.9
temperature at lower surface Tlo [◦C] 27.5 -7.1 30.6 -9.3

3.5 Restraint effects

3.5.1 Theory and experimental studies

Loading conditions in structures can be generally distinguished between direct actions (such as dead, live,

traffic, snow, wind load) and indirect actions which are caused by imposed deformations and their re-

straint/constraint in structures (such as temperature changes, creep, shrinkage, settlements), see Fig. 3.37.

Different phenomena cause restraint effects in concrete structures, which can be subdivided into internal

(e.g. changes in temperature, creep, shrinkage) and external (e.g. support settlements, imperfections) indi-

rect loading conditions. In general, the magnitude of restraint effects is mainly influenced by the constraint

conditions and absolute and relative stiffness distribution in the structure. Therefore, the adequate and

reliable prognosis of restraint effects is only feasible for prediction models which are able to consider the

stiffness degradation due to concrete cracking [92].

In design guidelines, either linear-elastic computation of the section forces with subsequent non-linear di-

mensioning of critical cross sections, or global non-linear structural simulations with the check of material

limit stresses/strains can be generally used in the design of engineering structures. These design procedures

strongly interact with the resulting magnitude of restraint effects which should be considered in the design.

The linear-elastic analysis is adequate for the computation of section forces and moments as the basis for

the design of structural components, such as statically determined flexural members. Internal forces due to
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Action on 
Structures

Direct Action Indirect Action

dead load

live load

traffic load

snow load

wind load

…
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creep
hydration

heat
imperfection

temperature
changes

shrinkage settlement

internal force distribution 
depends on stiffness ratio

(e.g. support / span, side span / mid span )

relative stiffness dependency

restraint effects depends 
on stiffness ratio and 
local stiffness quantity

relative and absolute stiffness dependency

Figure 3.37: Distinction of action on structures into direct and indirect action

restraint require a more complex non-liner simulation [85]. Therefore, cracking and stiffness degradation for

short-term, and additionally creep, and shrinkage in long-term analysis should be considered in the analysis

of restraint effects. This ensures an economical and reliable design of the structure. In structures with con-

fined boundary conditions, the influence of the restraint loading cannot be neglected in the serviceability

assessment. In the ultimate limit state, the restraint effects may be significantly reduced and no longer

affect certain structural response values, such as internal forces and stresses. Nevertheless, this should be

assessed based on a non-linear simulation of the structure in order to determine an accurate estimation of

the restraint effects in the serviceability as well as ultimate limit states.

Thermal action

Reinforced concrete bars are tested by Falkner [107] with a length of l = 6 m and several reinforcement

ratios. These elements (7 specimens) are loaded with constant temperature distribution over the cross

section depth ∆TN = −60 K and, thus, a centric restraint condition is investigated. The single crack for-

mation stage is reached due to the contraction temperature condition, but the completed crack formation

is not found in these experiments. The resulting restraint normal force measured in the experiment is about

≈ 12 % of the analytical computed value using the uncracked in-plane stiffness EAI
i [85]. But, the measured

restraint force is still much higher than the forces computed by the pure cracked stiffness EAII
i .

In order to develop and validate an engineering model for predicting the influence of cracking on the thermal

response of reinforced concrete bridges, Thurston et al. [392] performed experimental tests for simply

supported and continuous T-beams (bridges in 1/5 scale models) subjected to thermal and gravity loads.

The top surface of the cross sections are heated by infrared lamps up to a test temperature of 40 ◦C to

60 ◦C. The primary thermal stresses induced in simply supported bridges are small and may be ignored.

A discrepancy of 45 % between the measured temperature restraint moment and the computed moment

based on linear-elastic stiffness is analysed for the continuous beams. The authors suggest the significance

of concrete cracking, which causes stiffness degradation and, therefore, a reduced significance of thermal
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action, even for concrete bridges where cracking may occur.

Symmetrical reinforced concrete beams (15) under combined loading of external load and temperature gra-

dient ∆TM are studied by Alavizadeh-Farhang [3, 4]. Two test series are performed based on simply

supported beams and beams with partial fixity using prestressed steel tie rods. The prestressing force acts

in such a way, that the support moment is smaller than in the span and, therefore, the redistribution is

initiated in the span. The temperature gradient causes restraint moments without any restraint normal

force. The nominal length l , height h and width b of the beam are 3.60, 0.25 and 0.15 m, respectively. One

major finding for the statically determinate beams is that the temperature gradient does not significantly

affect the ultimate moment of the doubly reinforced concrete beams subjected to combined short-term me-

chanical and restraint loads. For the statically indeterminate beams, a 5 % reduction in the ultimate load

occurs due to the presence of the temperature gradients. In the ultimate capacity of concrete structures,

such small differences in an experimental study can be caused by the variation in the material properties

and is not caused by the physical interaction between temperature restraint and structural behaviour [11].

In contrast, the temperature influences the rotational capacity of the beams. Some amount of the available

plastic strain is dissipated in the range of the yielding zones caused by the additional temperature strains.

Thus, a certain rotational capacity is absorbed by the thermal loading.

Experiments on statically indeterminate beams subjected to combined loading of external load and temper-

ature gradient (heating: ∆TM = +80 K, cooling: ∆TM = −80 K) are performed by Jokela [194] in the

serviceability as well as ultimate load level. The measurements show no significant influence of the thermal

action on the ultimate capacity.

In the study by Kühlen [233], four-point supported beams exclusively loaded by a temperature gradient

are investigated in experiments. The major conclusion is that the completed crack formation stage can not

be reached or exceeded purely from the restraint loading condition.

Theoretical studies on the load-deformation behaviour of two-span reinforced concrete beams due to com-

bined line loading and temperature gradient ∆TM = 35 K are performed by Holschemacher [174]. The

load level of the external load is in the range of 70 % of the ultimate load and, hence, in the serviceability

range. Stiffness degradation in the support (23 % of EI I ) and span (42 % of EI I ) cross sections occurs,

but some sections still remain in the uncracked state. The remaining restraint bending moment due to the

temperature gradient, based on the non-linear simulation, is only ≈ 25 % of the section forces based on

the full liner-elastic stiffness.

Support settlement

Short- and long-term experiments on reinforced concrete beams subjected to combined loading of external

point loads and support settlement are performed by Kordina et al. [228]. The reinforcement layout

are designed according to the external load except for one beam where the additional restraint loading

condition is considered in the design with a simplified approach of EI = 0.70EI I . All tested beams are at

one side fixed and at the other side simply supported, where upward or downward support settlements are

adjusted after reaching an external load condition similar to serviceability condition. In the experiments

it is observed that the restrained forces continuously decrease with increasing external loading level. An

exception is investigated for the beam with additional embedded reinforcement, in which the resulting

restraint effect is even higher than computed by the ansatz EI = 0.70 · EI I . For most of the tested beams,

the restraint forces degraded fully caused by concrete cracking and less beam stiffness.

Ultimate capacity tests on 6 reinforced, continuous T-beams (b/H/l = 1.50/0.40/6 [m]) are studied by
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Woidelko et al. [409, 410] by combined loading of external load and support settlement. The restraint

effects are measured to decrease significantly with increase in external load, which causes stiffness degrada-

tion. An influence of the support settlements on the ultimate capacity is not observed. The general approach

of applying a crude general reduction of linear-elastic stiffness is not capable of predicting responses reliably,

because the restraint forces are excessively overestimated in comparison to the measurements.

The interaction between design procedures (material modelling) and the restraint effects is studied by [389]

for a statically indeterminate reinforced concrete beam forced by a direct loading p and an indirect support

settlement s, see Fig. 3.38.

As2 = 4.37 cm2As1 = 21.84 cm2

As2 = 4.37 cm2 As1 = 21.84 cm2
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Figure 3.38: System for analysis of restraint effects based on several design procedures, based on [389]

The influence of the restraint effects on the load-bearing behaviour is analysed based on the following design

procedures: linear-elastic, general stiffness degradation of linear-elastic stiffness, and non-linear analysis. The

comparison of the results, presented in Tab. 3.15, shows that the influence of the restraint effects decreases

with increasing external load p. In the case of an equal ultimate bending moment capacity Mu and ultimate

support settlement su for all design procedures, the non-linear simulation enables a 68 % higher ultimate

load pu in comparison to the linear-elastic computation and a 25 % higher load compared to the general

stiffness degradation (EI ≈ 60 % EI I ). Therefore, the stiffness degradation in the highly loaded regions

decreases the magnitude of the restraint moment ∆Mrestr,su until the bearing capacity is reached, see

Eq. 3.109a. For the non-linear simulation, the restraint moment caused in combination with the ultimate

load contributes only 12 % to the bearing capacity moment, 25 % to the general stiffness degradation and

44 % to the linear-elastic simulation, respectively. Moreover, the maximum resisting support settlement

smax for a purely restraint loading condition p = 0 is 14.2 cm for the non-linear simulation, 6.5 cm for the

general stiffness degradation, and 4.0 cm for the linear-elastic analysis.

Table 3.15: Influence of restraint effect caused by support settlement depending on design procedure,
based on [389]

Response Unit Linear-Elastic General Stiffness Degradation Non-Linear
EI I 60 % EI I EI nonl

pu [kN/m] 91 122 153
∆Mrestr,su/Mu [%] 44 25 12
p = 0, smax [cm] 4.0 6.5 14.2

Remarks about restraint effects

The magnitude of restraint effects can be extremely reduced by stiffness degradation due to cracking and

yielding, which tends to relieve these areas caused by disproportionately decreasing cross section stiffness.
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The simulation of concrete structures considering material non-linearity allows the assessment of absolute

stiffness degradation and redistribution of section forces caused by relative changes in stiffness between the

structural components and sections, respectively. These non-linear effects are strongly dependent on the

reinforcement ratio and level of pre-stress as well as on the load level. Furthermore, such redistributions

require adequate rotational capacity of the cracked sections which can generally be provided by the material

models considered in the non-linear simulation.

Restraint effects in statically indeterminate structures cause section forces that are directly dependent on

the absolute and relative stiffness. Common restraint effects are caused by constrained thermal action,

concrete shrinkage, hydration heat, and support settlements. A highly loaded structure that has undergone

stiffness degradation, as described above, is subjected to a smaller amount of additional section forces due

to restraint. The impact of restraint effects on the structural behaviour highly dependent on the load level.

Therefore, an accurate representation of the structural behaviour, considering the non-linear behaviour, is

necessary for determining the effects of indirect loading conditions in an adequate manner. Simplifications

like assuming linear-elastic behaviour or crude approximations of stiffness degradation may lead directly to

an unreliable, unsafe, or uneconomic design.

The restraint effects cause section forces in the range of the initial crack forces in most cases. The total

cross section area and the tensile strength at that time when the restraint effects occur should be used in

the analysis. In particular, residual stress states caused by shrinkage and hydration heat can significantly

reduce the tensile strength [78, 268], which should be considered in the computation of restraint effects

[325].

In the case of exclusively the restraint loading condition, the crack formation stage (see Sec. 3.1.4.1)

determines the resulting restraint force. For every loading step where the normal force reaches the cracking

normal force, see Fig. 3.16, the unloading branch is flatter when compared to the initial stiffness as a

result of concrete cracking [295]. The exact determination of the discontinuous deformations in the crack

formation stage is critically important for very short structural elements, such as the perimeter centrifugal

concrete mast [296].

The following analysis of the restraint effects on cross sectional and structural levels is based on the study by

Arnold et al. [11, 266], in which the numerical model is validated against the experiments for reinforced

concrete beams [3, 107, 410] and prestressed concrete beams [91, 422]. Moreover, the results of the study

by Djouahra et al. [85, 267] are used for the assessment of restraint effects in a concrete slab system.

The results of Djouahra et al. are computed by non-linear Finite Element simulation considering the

tension stiffening effect. The numerical model is validated against experiments presented in [3, 107, 190].

The results in the following Sec. 3.5.2 and Sec. 3.5.3 are computed either based on the “Energy Method

with Integral Description of the Material Behaviour” (EIM, Sec. 4.1) or are analysed by the Finite Element

Method (FEM, Sec. 4.2). A very good agreement between the simulation results and the results of Arnold

et al. and Djouahra et al. is observed, because all physical phenomena, such as interaction between

concrete cracking and combined loading conditions due to external loads and restraint effects, are reliably

predicted. Therefore, the considered material models and both simulation methods are generally applicable

for non-linear simulations and the assessment of restraint effects in concrete structures.

3.5.2 Cross sectional analysis

The results presented for the cross sectional analysis are predicted by the Energy Method (EIM). For the

analysis of different cross sections, the following material grades are chosen: The concrete class is C 35/45
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and the reinforcement class is B 500B with a high ductility capacity [134]. The non-linear stress strain

relationship for the concrete under compression and the bi-linear relationship for the reinforcement are used

according to [134]. Tension stiffening is considered after reaching the crack initiation strain (εc > εct)

in concrete according to the exponential function, see Sec. 3.1.4.4. The strength and strain values for all

materials are listed in the appendix in Tab. A.1.

The influence of normal force N is neglected in the computation of load-deformation behaviour. The cross

sections studied here are purely loaded by bending moment My . A similar study is performed by Arnold

et al. [11, 266] and the obtained results based on the EIM, which are discussed in the following, show a

very good agreement in comparison to Arnold et al. . Moment-curvature (M-κ) diagrams are an effective

way to demonstrate effects like crack initiation, crack growth and plastic deformations. In order to analyse

different deformation behaviours of variable crosssections, it is advisable to define relative (dimensionless)

cross section properties. They depend on geometry dimensions and material properties. The relative bending

moment µ and the normalized curvature κ can be calculated by:

µ =
M

fc bd2
, (3.106a)

κ = d · κ . (3.106b)

The reinforcement ratio is defined as the mechanical reinforcement ratio ωs1 of the cross section and can

be determined by:

ωs1 =
As1

bd

fy

fc
. (3.107)
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Figure 3.39: Geometry of rectangular and box-girder cross section for cross sectional analysis

The amounts of reinforcement area are listed in the appendix in Tab. A.2. The influence of reinforcement

ratio according to M-κ and EI -M (EI = M/κ) for a rectangular reinforced concrete cross section with

dimensions 100/50/95 (height/width/effective depth in [cm], see Fig. 3.39) is shown in Fig. 3.40.

The minimum reinforcement ratio ωs1 = 0.029 is defined according to the recommendation of EC 2

[101, 141]. The curvature is decisively affected by the reinforcement ratio. First, in an uncracked section,

the tensile reinforcement does not affect the curvature (only slightly). When cracks occur, the bending

stiffness is strongly affected by the ratio of longitudinal reinforcement. Typical cracking stages of reinforced
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Figure 3.40: Influence of reinforcement ratio on load-bearing behaviour of rectangular cross section with
dimensions 100/50/95 in [cm]

concrete sections (crack formation stage, stabilised cracking stage, and steel yielding stage) are developed

for a ratio lower than ωs1 = 0.30. For reinforcement ratios of a higher degrees, the section fails due to

brittle concrete compressive failure. Hence, the stiffness degradation is limited caused by a brittle failure

mechanism. In the case that plastic strains occur, the reinforcement bars lead to a great increase in rota-

tional capacity and high stiffness degradation appears for ωs1 < 0.30.

In addition to the rectangular cross section, a typical cross section in bridge structures (box-girder) is

investigated with the dimensions 220/500/210/250/20/25, see Fig. 3.39. The M − κ relation of the box-

girder with different reinforcement ratios is shown in Fig. 3.41. The possible maximum curvatures occur

for reinforcement ratios of ωs1 ≤ 0.05 (box-girder). Reduced plastic deformations in the case of greater

reinforcement ratios are related to a reduced depth of the compression zone. In the case of ωs1 ≥ 0.20,

the section reinforcement does not cause plastic strains. In comparison to lower reinforcement ratios, the

reduction of the bending stiffness after the crack moment is more influenced by the non-linear compressive

range of the concrete for ωs1 ≥ 0.20. For all cross section types, the dependence on reinforcement ratios

according to the load-deformation behaviour remains significant. Due to the fact that restraint effects

are strongly dependent on the absolute and relative stiffness in the system, non-linear analysis should con-

sider such adequate simulation of the load-deformation behaviour of cross sections in the structural models.

3.5.3 Structural analysis

In the study by Djouahra et al. [85, 267], a combined loading of external load and centric restraint is

analysed for concrete slabs in office buildings. The centric restraint deformations are caused by concrete

shrinkage (εc,sh) and temperature variations (constant part ∆TN). A parametric study on the load-bearing

behaviour of two-sided, rigidly supported concrete slabs (system “fix”) is performed to represent the central

span of a continuous slab floor system. The cross section is a rectangular concrete slab with the dimensions

h/b/d = 100/20/17 cm, see Fig. 3.42. In the system “fix”, the computed restraint effects and resulting

vertical displacement and crack width represent the upper limit values. The neighbouring and supporting

structural elements in such office buildings may have some flexibility which results in less constrained sup-
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Figure 3.41: Influence of reinforcement ratio on load-bearing behaviour of box girder with dimensions
220/500/210/250/20/25 in [cm]

port conditions. In addition to the rigid support condition, a horizontal unconstrained support at one side

is adopted in the system “free” in order to analyse the lower limit values of the structural response.
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Figure 3.42: Concrete slab in office building due to external load and temperature restraint, based on
[85, 267]

The load-deformation behaviour of the concrete slab is analysed by simulations based on Finite Element

Method (Sec. 4.2) and the tension stiffening model “multi-lin” (Sec. 3.1.4.3) and the results are subse-

quently compared to the simulations of Djouahra [85] which used a modification of the reinforcing

steel stress-strain relationship. The characteristic loads are gk = 8.5 kN/m, qk = 5.0 kN/m and the quasi-

permanent load combination with the combination factor ψ2 = 0.5 leads to qperm = 11 kN/m in the

serviceability limit state (SLS). For the ultimate limit state (ULS), qEd = 19 kN/m is defined according

to EC 0 [100]. The non-linear response of the structure due to external load q is shown in Fig. 3.43. The

structural system with a one-sided horizontal unconstrained support condition is labelled “free” and the

two-sided is labelled “fix”. High compressive strains occur in the case of the fixed support conditions.

Hence, the load-deformation behaviour does not have a distinct yielding in the reinforcement. The struc-

tural system fails due to the exceedance of ultimate concrete compressive strain. In contrast, the “free”

systems show a much more ductile behaviour and the support and span cross sections are already cracked

in the SLS.

For the combined loading due to external load and temperature, a constant temperature contraction state
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Figure 3.43: Load-deformation behaviour of concrete slab due to external load q, results: Djouahra
[85], compared to own simulations by multi-lin model according to Sec. 3.1.4.3

is used according to either an indoor (∆TN,cont = −15 K ) or an outdoor (∆TN,cont = −30 K ) construction

element. Therefore, no curvatures are forced in the cross sections by assuming an equal thermal expan-

sion coefficient αT for concrete and reinforcing steel. In the system “free”, no influence of the constant

temperature contraction on the prediction of the section forces and displacements occurs. Therefore, the

combined loading is analysed for the fixed support condition. Similar to shrinkage, the contracting loading

state causes a tensile restraint normal force NT which interacts with the compressive force due to external

load p. The restraint force can computed indirectly by [85]:

NT = N (q + ∆TN)− (q) . (3.108)

In the case of a pure restraint loading condition (q = 0), cracking in the concrete slab occurs for both ther-

mal contraction states. Increase in external load develops a compressive zone, which leads to an increased

computational in-plane stiffness of the already cracked cross sections, see Fig. 3.44(a). Hence, the restraint

normal force increases in some loading levels until cracking occurs in the adjacent cross sections. Moreover,

the restraint effects significantly affect the vertical displacements of the concrete slab, see Fig. 3.44(b). For

example, the displacement at a SLS loading level qperm in the combined loading condition is more than two

times greater than the purely external load condition. The reason for this is the stiffness degradation due

to cracking under restraint forces which decreases the overall stiffness of the concrete slab. In summary,

the additional centric restraint condition significantly influences vertical displacement and crack width. Dis-

placements are most sensitive to the constraint support conditions and the slenderness ratio. Reinforcement

ratio and restraint loading condition mainly affect the crack width [267].

In addition to the two-sided fixed concrete slab, a continuous beam structure is studied with the Energy

Method (EIM). The reference system is a two-span beam with the same span length (l1 = l2 = 10 m) and

reinforcement layout in each span, see Fig. 3.45. It is used to analyse load and restraint effects and moment

redistribution of concrete beams on a structural level. The cross sections have a tensile reinforcement ratio

of ωs1 = 0.10 (As1 = 21.84 cm2) and compression reinforcement of (As1 = 1/5 · As1 = 4.37 cm2). The

concrete and reinforcement properties are listed in Tab. A.1. The restraint strains are induced by a tempera-

ture gradient between the top and bottom across the section depth. The differences are ∆TM,heat = +10 K

and ∆TM,cool = −10 K. Up to a loading level of p = 20 kN/m, the concrete sections are uncracked in
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Figure 3.44: Load-deformation behaviour of concrete slab for combined loading of external load q and
temperature constant ∆TN,cont, results: Djouahra [85], compared to own simulations by
multi-lin model according to Sec. 3.1.4.3
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Figure 3.45: Geometry and loading conditions for continuous reinforced concrete beam subjected to com-
bined mechanical and temperature gradient loading, ωs1 = 0.10

the linear-elastic stage, see Fig 3.46(a). The bending stiffness of the support and span reduces after crack

initiation and subsequently in the crack formation stage. Hence, the restraint section forces are reduced

due to the stiffness degradation of the local cross sections. Depending on the stiffness ratio between both

sections, proportional moment redistribution occurs (relative stiffness dependency). The concrete cracking

decreases the restrained effect and increases the moment redistribution. The restraint section forces are

degraded by exceeding a load level of p = 50 kN/m. Due to the extensive cracking in the crack formation

stage, the restraint moment distribution approaches the moment distribution caused by the direct loading

condition. In the case of an ultimate limit load, the restraint forces are degraded completely. The temper-

ature restraint does not affect the ultimate load of pul = 133 kN/m.

The degradation of the restraint forces due to the concrete cracking can be characterised by the following

sectional force ratio η:

η =
∆Mrestr

M I
restr

, (3.109a)

where

∆Mrestr = M (p + ∆T )−M (p) , (3.109b)
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Figure 3.46: Load-bearing behaviour of continuous reinforced concrete beam subjected to combined me-
chanical and temperature gradient loading, ωs1 = 0.10

where M I
restr is the bending moment due to temperature load in the uncracked stage. Moreover, the loading

condition can be considered by the relative load level λ:

λ =
p

pul
. (3.109c)

With the aid of both dimensionless parameters, the results of the non-linear simulation are demonstratively

compared with those of the linear one. The first crack initiation in the support section for the temperature

load TM,heat decisively reduces the restrained bending moment by a load ratio of λ < 0.2, see Fig. 3.46(b).

This bending moment is reduced up to 60 % in comparison to the linear solution. For TM,cool, the crack

initiation in the support section causes an equivalent behaviour. The main degradation of the restraint

section forces caused by both temperature gradients appears in the range of 10 % to 30 % of the ultimate

limit load (service load state).
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Figure 3.47: Influence of reinforcement ratio ωs1 on degradation of restraint forces caused by temperature
gradient TM,cool = −10 K

The influence of the reinforcement ratio ωs1 on the degradation of the temperature restraint forces for
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TM,cool = −10 K is illustrated in Fig. 3.47. The discontinuous curve shape results from the influence of

the start values in the numerical non-linear optimisation method. With the first initial crack formation, a

significant reduction in the restraint forces is apparent. The reinforcement ratio influences the behaviour

after the crack initiation. In the case of a low reinforcement ratio ωs1 = 0.05, the restraint force is

reduced up to 80 %. They still degrade with a reduction of up to 60 % for higher reinforcement ratios

than ωs1 > 0.10. In the ultimate limit state, the restraint force is completely degraded with ωs1 = 0.05

and ωs1 = 0.10. The range of completed crack formation is extended with higher reinforcement ratios. By

reaching the ultimate concrete compressive strain in the support cross section, the plastic deformations of

the reinforcement bars are limited. Therefore another reduction of restraint force is prevented due to the

confined rotational capacity for the high reinforcement ratios of ωs1 = 0.30 and ωs1 = 0.40.

3.5.4 Restraint sensitive structures

3.5.4.1 Buildings

Structures may be sensitive to restrained drying shrinkage especially for components with a low volume to

surface ratio. These structural components are exemplified by pavements, bridge decks, walls, and indus-

trial floors [405, 407]. Temperature and shrinkage cause restraint effects which may cause large internal

stresses in thick walls [352]. These stresses can cause very narrow cracks that start at the surface. In

the case that the restraint effects continue to develop, incipient cracks between the separation cracks

may occur. Moreover, massive concrete members, such as thick power plant slabs, or waterproof concrete

walls, or wall/foundation slabs, may be highly sensitive to restraint caused by hydration induced stresses.

Such stresses can result in visible crack patterns which reduces durability and concrete impermeability,

see Fig. 3.48(a). An adequate consideration of the stiffness and strength hardening process of concrete,

shrinkage of concrete, and the hydration heat is generally important in order to predict reliable results for

these structural components.

Concrete slabs in buildings constrained to neighbouring components (such as stability cores, utility cores,

walls) may be sensitive to restraint effects caused by shrinkage and temperature. Therefore, concrete slabs

in buildings are subjected to indirect deformations in addition to the main external bending stress state,

see Fig. 3.48(b). The two building cores induce constraint conditions in the concrete slabs and, conse-

quently, restraint effects are caused by the indirect deformations. These additional load conditions lead to

an increased crack formation and may cause positive effects, such as degradation of restraint effects and

moment peaks. In contrast, wide cracks can occur and expose imperviousness, shear force capacity, and

may subsequently force greater displacements of other structural components.

An extensive parametric study by Schnell et al. [371] for reinforced concrete slabs is performed by

varying concrete strength and stiffness, uniform temperature component, slab depth, slab span, and con-

sidering/neglecting creep. Slender slabs or long span slabs tend to sustain excessive vertical displacements

due to stiffness degradation caused by tensile restraint forces. Higher concrete grades lead to even softer

structural behaviour, because the tensile restraint force is higher which causes the concrete to crack. Com-

pact slabs, particularly with a small span, are sensitive to yielding strains in the reinforcement. Consequently,

wide cracks may occur in these types of slabs.

Restrained bending moments caused by temperature gradients significantly influence the required amount

of reinforcement in cooling tower shells [41]. The tensile forces at inner and outside shells caused by tem-

perature bending moment can exceed the loading level due to external wind action. Based on physical and

114



3.5. Restraint effects

bu
ild

in
g

co
re

bu
ild

in
g

co
re

centric restraint

foundation slab

wall

crack

temperature

(a) wall/foundation system

bu
ild

in
g

co
re

bu
ild

in
g

co
re

centric restraint

foundation slab

wall

crack

temperature

(b) structure for restraint sensitive concrete slabs based on [85]

Figure 3.48: Sensitive restraints on concrete wall/foundation and slab system

geometric non-linear analysis, the ultimate bearing capacity of the tower is not influenced by the restraint

forces any longer. In contrast, restraint effects cause forces in the serviceability limit state which results

in considerable stresses and should not be neglected in the design. Structural design with linear-elastic

stiffness and a general assumed stiffness degradation is not adequate and may lead to a very conservative

and uneconomical reinforcement layout.

3.5.4.2 Integral and semi-integral bridges

Integral bridges are gaining more and more interest lately because they are associated with significant cost

savings in building maintenance. The waiving of the non-durable bearings and joints as a result of the

bearingless and jointless connections of the structural components leads to significant cost saving in struc-

tural maintenance. However, the design of these bridges induces very high requirements on the planners,

which have to take into account many complex phenomena for the simulation and the design of such

structure. Integral bridges have superstructures that are monolithically coupled to supports and abutments

at all bridge axes. Semi-integral bridges have bearings on one or both abutments and may additionally have

bearings on the bridge piers. In the United States alone, more than 9, 000 integral and more than 4, 000

semi-integral bridges have been constructed. In Europe, the amount of integral bridges may be less, but a

trend towards more integral-design projects is evident [67, 264]. Nevertheless, simplicity in the construction

of integral bridges due to elimination of expansion joints and bearings is associated with more complexity

in the structural design of the bridges. This relationship is addressed herein.

A lot of complex, partially difficult to captured and challenging to modelled phenomena have to be con-

sidered in the analysis of the entire structure [67, 214, 355, 425]. Therefore, the design of the integral

bridge projects present demanding challenges for structural engineers. In particular, the assessment of the

restraint effects caused by the creep, the shrinkage, the relaxation, the temperature, and their degradation

forced by the cracking of the concrete and the flexibility of the soil and foundation poses high requirements

on the modelling process. The stiffness of the soil, the foundation and the stiffness of the bridge interact

together, especially in the case of the restraint sensitive integral bridges [82, 99, 108, 232].

High demand for the design of integral bridges may be attributed to the horizontal loads and deformations

characteristic of railway bridges, in which these forces are generated from train braking and accelera-

tion. For long railway bridges, such forces may achieve fourteen-time higher values in comparison to road

bridges [264]. The design of the entire structure is significantly influenced by these loading conditions in

combination with the high demand of deformation and vibration control of bridges. In the deformation

process of integral and semi-integral bridges, the bridge’s complete load-bearing behaviour is activated and
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contributes in load distribution and limitation of deformation and vibration. Therefore, the application of

integral bridges includes remarkable advantages in comparison to bridges with superstructures supported

on bearings (conventional bridges).

In integral bridges, temperature expansion or contraction is mainly covered by centric tensile or compres-

sive forces in the superstructure. Internal forces caused by these thermal actions are independent of bridge

length, because of the approximately complete deformation expansion/contraction under constraint condi-

tions (N = EAαT ∆T ). A linear dependency is apparent between these forces and the in-plane stiffness of

the superstructure. Abutments carry the main portion of tensile and compressive forces in the longitudinal

direction. However, relatively little load is transferred into the bridge piers and, hence, a very high horizontal

capacity should be achieved, especially in the abutments. Nevertheless, a certain flexibility in the abutments

appears in the “real” structure which may significantly reduce the temperature forces, especially for very

short integral bridges [264]. Moreover, the increase in bridge length reduces the significance of abutment

stiffness and horizontal forces, due to reduced thermal action. The application of fully integral bridges may

be primarily suitable for short and long bridges.

The load-deformation behaviour of semi-integral bridges is fundamentally different compared to that of inte-

gral bridges, particularly for loading conditions which cause stresses due to restraint effects. In semi-integral

bridges, the bending-resistant bridge piers may generally have a large longitudinal deformation capability

which allows the superstructure to horizontally deform without a significant constraint introduced by the

piers. During interaction with pier bending stiffness and deformable length, significant restraint forces may

occur. Hence, slender and flexible bridge piers are recommended for semi-integral bridges in order to limit

restraint forces [264]. Several types of semi-integral bridges exist which differ primarily in their longitudinal

deformation behaviour, and capacity, see Fig. 3.49.

For bridges with bearings at both abutments, the horizontal force is equally distributed to the piers. This

type of semi-integral bridge is more applicable and suitable for motorway bridges. In contrast, the much

greater amount of horizontal forces due to crossing trains cause an essentially fixed point with correspond-

ing high stiffness and capacity. Either strut bracing at the centre of the bridge or a monolithic connection

at one abutment are commonly used in semi-integral railway bridges. Nevertheless, restraint effects are

still transmitted into the other bridge piers. Therefore, minimising restraint forces due to pre-stressing of

concrete, creep, shrinkage, and temperature variations is of great importance for the design of the structure

and the choice of construction technology.

semi-integral

fixed point distributed on all 
bridge piers along 
superstructure length

semi-integral with fixed point by struts

fixed point by strut bracings 
at centre of superstructure

fixed point by monolithically 
connection at one abutment

semi-integral with fixed point at one abutment

Figure 3.49: Different types of semi-integral bridges, bearing at the abutments, except the semi-integral
bridge with a fixed point at one abutment, based on [264]
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Advantages of frame and integral bridges in comparison to conventional bridges with bearings can be

summarised to (based on arguments as [263, 264, 425]):

� distribution of static and dynamic loads to all components

� increase in ductility, durability, robustness, and redundancy

� higher achievable slenderness

� increase in structural ultimate capacity despite slender elements

� reduced buckling length of piers

� favourable transmission of horizontal loads

� enhanced response behaviour during seismic or other extreme events

� more simplified construction without bearings

� high economic potential due to elimination of expansion joints and bearings

Nevertheless, such structures cannot be considered as a “maintenance-free” type of structure due to several

predicted uncertainties involved in the design of the structure [425]. In principal, on-site temperature changes

and mechanical properties of the soil are comparatively challenging for determining a highly accurate

assessment in the preliminary design. Therefore, analysis of the interaction between superstructure and

soil should be carefully considered in the corresponding time-dependent deformation process caused by

seasonal temperature variations, shrinkage and creep [326]. These uncertainties may lead to a discrepancy

between simulation results and the real structural behaviour. Therefore, parametric and sensitivity studies

are commonly effective in assessing the expected structural response. For the analysis of structures which are

sensitive to creep and shrinkage, Bažant [27] recommends performing short-term measurements for the

actual concrete mixture. Afterwards, the long-term concrete behaviour can be extrapolated by combining

the measured data with prior statistical information on creep and shrinkage of concrete in general. The

Bayes’ian statistical approach may be used for this concern, see Sec. 2.5.2. In a similar way, Brokks [54]

endorses experimental tests for modulus of elasticity or short-term creep and shrinkage in order to obtain

a more accurate estimate for the long-term concrete behaviour.

In order to limit and reduce restraint effects in integral bridges, a very efficient and effective design aspect

is to reduce the in-plane stiffness of the superstructure by as much as possible. Reducing cross section

surface or avoiding pre-stressing of concrete may be reasonable ways to permit reduced stiffness. The

construction process influences the amount of restraint effects caused by concrete shrinkage significantly

[263]. Therefore, an efficient construction process may effectively reduce forces due to indirect loading

conditions. Reduction in rotational and lateral foundation stiffness of the bridge piers can decrease the

restraint forces in the piers. Therefore, the application of one instead of two or more pile rows in the

longitudinal bridge direction at each axis is a sufficient solution for the structural design, see Fig. 3.51.

Moreover, concrete hinges may be applied, which are another design aspect to help limit the amount of

restraint forces but still allow bearingless bridge construction [264].

The semi-integral solution of superstructure, piers, and piles according to Fig. 3.51(b), was applied in the

railway valley bridge “Viaduct Scherkondetal”. This bridge was completed in 2010 and has a total length

of 576.5 m and a regular span length of 44.0 m, see Fig. 3.50. The cross section is a single box girder with

a depth of 2.00 m at the span and 3.50 m at the supports resulting in a slenderness of 44/2 = 22, which

is generally very high for high-speed railway bridges [264]. Due to the high horizontal train loads, a fixed

point solution is applied at one abutment and, wherever it is possible, moment-resisting connections between

piers and superstructure are designed [366]. The final stage of bridge pier inclination due to the long-term
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3. Modelling aspects of restraint sensitive concrete structures

behaviour of the superstructure (pre-stressing, shrinkage, creep) may be minimised by the construction

process. Therefore, the piers can be reversely constructed compared to their final position. The subsequent

connections between superstructure and piers and their corresponding long-term behaviour finally lead to

the desired vertical alignment of the bridge piers.

Figure 3.50: Semi-integral “Viaduct Scherkondetal”

In the following, semi-integral bridges are mentioned in addition to the “Viaduct Scherkondetal”, which are

newly built bridges for the high-speed line Erfurt to Leipzig/Halle (Germany) which are all a part of the

trans-European train axes Berlin-Verona/Mailand-Bologna-Neapel-Messina-Palermo. These bridges are:

� “Viaduct

Unstruttal”,

semi-integral bridge, Ltot = 2, 668 m, 4 continuous joint- and

bearingless 10 span girders with individual length of 580 m, regu-

lar span between two piers of 58 m, single box girder, arch-shaped

strut bracing at centre of each continuous girder, 41 very slen-

der piers with stiff transverse and flexible longitudinal stiffness,

structural joints applied by separating piers

[264, 366]

� “Viaduct

Gänsebachtal”,

semi-integral bridge, Ltot = 1, 012 m, continuous superstructure

segments of span 112 m, average span between two columns

of 24.50 m, double-tracked and double-web pre-stressed T-beam

with construction height of 2.08 m, circular concrete columns of

diameter 1.00 ... 1.10 m, stiffened braking span at centre of each

section

[264, 365]

� “Viaduct

Stöbnitz-

talbrücke”.

semi-integral bridge, Ltot = 297 m, circular concrete columns,

horizontal load distribution due to frame construction of super-

structure, piers and pile cap with piles, separating columns, single

pile rows under normal piers resulting in five-time less stiffness

compared to pile cap solution of frame construction

[199]

These bridge examples show that semi-integral bridges can be designed even for highly loaded structures

and long span bridges. In every one of these projects, the significance of restraint effects, their adequate

modelling, and limitation of resulting forces in terms of the entire structure is mentioned to be absolutely
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essential for the design and construction of these bridges. The most influential restraint effects are caused

by concrete creep, shrinkage and temperature variations (shortening of superstructure due to pre-stressing

also affects this) resulting in deformation and section forces which are very critical aspects of the de-

sign. These horizontal deformations and bending moments in the pier-superstructure connection should be

minimised in order to reduce the amount of reinforcement at these sections. The control and limitation

of restraint effects based on reliable and accurate simulations and experimental studies are a key design

aspect in integral and semi-integral bridges.
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3.6 Besonderheiten der Brückenausrüstung

Der Oberbau wird als Feste Fahrbahn errichtet, die ent-
sprechend den Forderungen aus der Planfestestellung mit
einer elastischen Dämmmatte hergestellt werden muss.
Zum Ausgleich der Längenänderung des Oberbaus infolge
von Temperatureinflüssen und Bauwerksbewegungen
werden in der Achse 13 eine große offen Querfuge und je
Gleis ein Schienenauszug angeordnet. Der große Fugen-
spalt muss außerdem mit einer Fahrbahnübergangskon-
struktion als Ausgleichsplatte als Stahlverbundkonstrukti-
on mit in Längsrichtung schwimmender, höhen- und sei-
tenverstellbarer Lagerung überbrückt werden [1]. 

Die Brückenentwässerung wird im Feldbereich in-
nerhalb einer Aussparung unter dem Überbau und im Be-
reich der Vouten in einem Mantellrohr geführt. Da im Be-
reich der Vouten die Inspektion der innen liegenden Ent-
wässerung nicht möglich ist, wurden für diese Bereiche er-
höhte Anforderungen an die Dauerhaftigkeit gestellt. 

3.7 Wirtschaftlichkeit

Bei einer technisch optimalen Konstruktion können für
integrale Bauwerke sowohl die Baukosten als auch die Le-
benszykluskosten deutlich reduziert werden. Am Beispiel
der Scherkondetalbrücke wurde durch einen Kostenver-
gleich nachgewiesen, dass das semi-integrale Bauwerk
wirtschaftlicher als der konventionelle Entwurf aus dem
Jahr 1996 herstellbar ist. Wesentliche Aspekte dafür sind
die geringeren Baukosten aus der Reduzierung der Bohr-
pfahlanzahl, der Verzicht auf Lager und Fugen sowie die
entbehrliche Innenschalung bei Pfeilern und Überbauten.
Darüber hinaus ist die Herstellung der Scherkondetalbrü-
cke als semi-integrales Bauwerk durch die Vollquerschnit-
te wesentlich einfacher als vergleichbare konventionelle
Spannbetonhohlkästen. Die Überbauten können ohne die
bei Hohlkästen notwendigen Arbeitsfugen unkompliziert
von oben bewehrt und in einem Arbeitsgang betoniert
werden (Bild 11). Dadurch ist eine zügige taktweise Her-
stellung derartiger Bauwerke möglich. Lediglich für den
Einsatz der Vorschubrüstung sind höhere Aufwendungen
notwendig. 

Bild 10. Gründung konventionelles Bauwerk und semi-integrales Bauwerk 
Fig. 10. Foundation of conventional and semi-integral bridge

(a) conventional
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Bild 10. Gründung konventionelles Bauwerk und semi-integrales Bauwerk 
Fig. 10. Foundation of conventional and semi-integral bridge

(b) semi-integral

Figure 3.51: Comparison of longitudinal sections for conventional superstructure with bearings and semi-
integral bridge, based on [264, 366]

Various studies about the behaviour of integral bridges are based on monitored structures and numerical

simulations. The load-deformation behaviour is commonly evaluated for integral abutment bridges, where

the superstructure is monolithically connected to the abutments and the superstructure to pier connections

are either hinged (continuous superstructure over several span) or fixed (frame bridge). The analysis of

soil–structure interaction behind the abutments and in the range of the foundation piles is a significant

design aspect in estimating accurate simulation results for integral abutment bridges [82, 232, 425], see

Fig. 3.52(a). Considering the influence of a backfill behind the abutments in the global simulation model

is commonly assessed to result in greater superstructure support and abutment moments and smaller su-

perstructure span and pier moments. The daily and annual expansion/contraction of the superstructure is

mainly caused by temperature changes, see Fig. 3.52(b). Therefore, the soil behind the bridge abutments

is subjected to cyclic loadings which leads to complex soil-structure interaction [86]. Such complexity may

cause considerable uncertainties in the simulation and less reliability in the design of the structure [215].

Parametric and sensitivity studies based on variations in soil and concrete properties, temperature vari-

ations, and foundation stiffness may be necessary and very reasonable in order to analyse the structural

behaviour. Assessment of a set of possible solutions instead of exclusively analysing a single parameter set

can reach to a higher confidence in the simulation results and finally to ensure a reliable design.

In the study by Bloodworth et al. [45], the influence of thermal cyclic loadings on the prediction of

earth pressure on integral bridge abutments is studied using laboratory cyclic stress-path measurements

(triaxial apparatus) and validating a numerical model. Soil samples of stiff clay and sand are tested under

stress paths, which may be typical behind integral bridge abutments. A distinct behaviour between the two

tested soils are analysed in which a stiff clay shows relatively little buildup of lateral stress with cycles. In

contrast, stresses in sand increase continuously, exceed at-rest pressure and finally approach the full passive

earth pressure. Following this, a numerical model is investigated in order to analyse the soil-structure in-

teraction by determining the horizontal stresses acting on the bridge abutment. In the assessment of these

interactions, the wall friction is assessed to induce no significant influence on the predicted earth pressures.

Between stiff and most flexible concrete piled abutment walls, a reduction of about 10 % in earth pressures
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(a) interaction with abutment-backfill, based on [42]

winter position summer position

monotnonic displacement

cyclic displacement

u

ucr + ush

u∆T

u

daily variations

creep and shrinkage
ucr (t) + ush (t) 

seasonal variations
u∆T

time t (a)
200 6040

earth pressure
against abutment 
wall due to cyclic 
bridge expansion

(b) distribution of u, based on [86]

Figure 3.52: Time-dependent horizontal bridge deck displacement u due to creep, shrinkage, and thermal
variations for integral bridges

is computed for practical ranges of wall stiffness.

Temperature changes are frequently assessed to be one of the critical aspects in determining the entire

bridge design. An extensive study by Zordan et al. on one of the longest integral abutment bridges is

performed based on parametric analysis and temperature pushover analysis [424, 425]. This structure is

the “Isola della Scala bridge” bridge located in Verona (Italy). The bridge was completed in 2007 with

a total length of about Ltot ≈ 400 m, consists of 13 continuous spans with an average span of 30 m,

and cross sections built by V-shaped prestressed concrete segments with a depth of 1, 80 m subsequently

assembled to a continuous superstructure. Nevertheless, the connections between superstructure and piers

are achieved using bearings, see Fig. 3.53(b). Temperature parametric studies are performed for uniform

temperature components between −20 to +20 K and vertical temperature gradients of +10 and −5 K

which are combined by ωM∆TM + ∆TN with ωM = 0.75. Loose, medium, and dense sets of soil prop-

erties are additionally considered in the parametric study. These indirect loading conditions (positive or

negative temperature variations) induce axial forces in the girders and abutments, which are key factors

in evaluating the bridge’s response. Variability in soil conditions significantly affects the bending moment

near the abutments and the axial force in the superstructure. This effect is even more evident for negative

temperature changes [425]. Different characteristics in the stiffness due to passive and active soil pressures

determine the lower significance for positive temperature changes. Hence, negative temperature variations

should be considered with extreme caution. However, the soil-structure interaction may also be important

for thermal expansion of the superstructure in such conditions where the abutments are deformed into the

backfill [232].

A study by Huang et al. [182], analysed similar integral abutment bridges using a parametric analysis

with uniform temperature changes. The corresponding numerical 3-D Finite Element model is shown in

Fig. 3.53(a). One major finding is that for the same total bridge length, bridges with shallow superstruc-

tures and more spans performed better than bridges with deep girders and fewer spans. Moreover, size and

orientation of the wingwalls are not considerably significant in terms of the structural load-deformation
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behaviour. Nevertheless, wingwalls which are perpendicular to the direction of traffic induce the greatest

superstructure curvatures and stresses in compression at the bottom girder flange. This is assessed by

their larger restraint of the abutment backfill soil pressure to the bridge expansion. Pile curvatures and

substructure deformations are assessed to be negligible with the studied parameter range.

between the abutment pile cap and abutment diaphragm; bridge
span and length; and wingwall size and orientation. Skew angle
was a variable investigated separately as an extension to this pa-
rameter study �Huang et al. 2004�.

This parametric study only considered loading and deforma-
tion due to environmental temperature changes, which plays a
significant role in the behavior of IA bridges. Other types of
loads, i.e., live loads and concrete creep and shrinkage, were out
of the scope of this research.

Finite-Element Model

A 3D finite-element model, shown in Fig. 1, was developed using
the program ANSYS �2002� for the test bridge located in Roch-
ester, Minnesota. The model consisted of 17,115 nodes and
16,577 elements. The concrete model was linearly elastic; the pile
steel was modeled as elastic plastic with a yield strength of
248 MPa �36 ksi�.

The test bridge was a three-span prestressed concrete bridge
with a total length of 67 m �216.6 ft�. Each span consisted of four
22 m �72 ft� long Type 45 M prestressed girders with a center-to-
center spacing of 3.4 m �11 ft� �Lawver et al. 2000�. The details
of the test bridge are shown on the plans given in a Mn/DOT
report �Huang et al. 2004�.

In the superstructure model, deck, I-shaped girders, railings,
and diaphragms were simulated with shell elements. The connec-
tions between the deck and girders and between the deck and
railings were assumed to be fully composite. Though the deck
was continuous along the bridge length, a 5 cm �2 in.� horizontal
gap existed across the width of the bridge between the end-span
and center-span girders, which were supported on bearings over
the pier caps. Because the abutment diaphragm was cast encasing
the ends of the end-span girders, it was modeled as rigidly con-
nected to the ends of the end-span girders.

In the substructure model, the abutments, pier caps, and wing-
walls were modeled with linear shell elements. The piles were
modeled with 3D beam–column elements. The soil–pile interac-
tion model was based on the subgrade reaction approach �Matlock
and Reese 1960; Reese et al. 1974�. Soil springs with nonlinear
resistance–displacement relationships represented both the soil–-

pile and soil–abutment interaction curves along the length of the
piles and the abutments, respectively. Three types of soil–pile
interaction curves were developed from the basic soil parameters.
They consisted of lateral resistance-displacement curves �p–y
curves�, load–slip curves �f–z curves�, and resistance–settlement
curves �q–z curves�. The p–y curves represented the relationship
between the lateral soil pressure against the pile and the corre-
sponding lateral pile displacement. They were assumed to have
the same response in tension and compression because the piles
have similar resistances when they move for an equal distance in
either direction. The effect of overburden pressure from the back-
fill on the p–y curves for the piles was neglected in the model
because surcharge load was only applied to one side of the piles
and a void was observed in the backfill surrounding the top of
piles due to scour. The f–z curves described the relationship be-
tween the skin friction and the relative vertical displacement be-
tween the piles and the surrounding soil. The q–z curves
described the relationship between the bearing stress at the pile
tip and the pile–tip settlement. The total pile–tip force was calcu-
lated by the product of q and the effective pile–tip area. In this
study, the p–y curves were directly computed using the program
Com624p �Wang and Reese 1991� which was based on the p–y
method. For loose sand and stiff clay, computed p–y curves var-
ied with depth from the top surface. The f–z and q–z curves were
based on the equation proposed by Greimann et al. �1986�. Simi-
lar to p–y interaction curves, F−� curves were developed to
simulate the soil–abutment interaction, where F and � repre-
sented the backfill soil pressure and corresponding abutment
movement, respectively. In this study, the interaction curves of the
nonlinear springs behind the abutments and wingwalls were cal-
culated using equations developed by Duncan and Mokwa �2001�.
The springs had zero stiffness for the case of the abutments mov-
ing away from the backfill.

Nonlinear springs surrounding the piles were placed in three
directions: longitudinal �parallel to bridge traffic, p–y curves�,
lateral �perpendicular to bridge traffic, p–y curves�, and vertical
�f–z and q–z curves�. The spring spacing was dependent on the
depth below the top soil surface. Within a depth of 6 m �20 ft�
below the top soil surface, nonlinear springs were spaced at
25 cm �10 in.�, which was small enough to provide sufficient ac-
curacy. When the depth was larger than 6 m �20 ft�, very small
moments and deformations were observed, so that a larger spac-
ing of 127 cm �50 in.� was used. Nonlinear springs were placed
just under the pile tips to simulate the soil–pile interaction char-
acterized by the resistance–settlement curves. Behind the abut-
ment, seven layers of soil springs �F−� curves� were positioned
against the abutment. In the direction transverse to bridge traffic,
the spacing of the nonlinear springs was approximately 84 cm
�33 in.�. Eighteen nonlinear springs were placed against each-
wingwall. The interaction curves used for the springs behind the
wingwalls were obtained using the same method as for the inter-
action curves of the springs behind the abutment.

Based on boring logs taken prior to bridge construction, seven
layers of soils were considered under the abutments and piers in
the model. Because the soil profiles under the north and south
abutments were similar �Huang et al. 2004�, the same soil profile
along the 24.6 m �80 ft� depth of the piles was used for the entire
bridge in the model. The soils 5.5 m �18 ft� below the ground
level were loose sand with a standard blow count varying from 2
to 9. The soils below the loose sand were medium to dense sand
with a standard blow count of 13 and above.

The finite-element model was calibrated for the effect of sea-
sonal and daily temperature changes using measured data col-

Fig. 1. Three-dimensional finite-element model for Bridge No.
55555
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(a) 3-D Finite Element bridge model [182]
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As specified in the Eurocodes,14 tem-
perature variations, including the “uni-
form temperature component” and the 
“vertical temperature difference com-
ponent”, were considered in the finite 
element analysis.

Finite Element Model

The FEM was developed using  a 
FEM software following the scheme 
of general model of IAB with slen-
der abutments as presented above. 
The same mechanical properties of 
the construction materials of Isola 
della Scala Bridge and the same 
cross  section were used in order to 
identify the maximum length of the 
structure. 

The following parameters were used: 
uniform span length L = 30 m; height 
of pier Hpr = 8 m; abutment height Hb 
= 5 m; abutment thickness d = 2 m; pile 
length Lp = 20 m; np = 6. Other parame-
ters were the same values as employed 
for the Isola della Scala Bridge.4,5,15 In 
the FEM, a beam element type based 
on Timoshenko beam theory was used 
for girders, piers, abutments and piles; 
the longitudinal and rotational spring 
elements were used to simulate the 

guidelines for both sand and clay were 
considered for the study. The lateral 
displacement versus soil resistance 
(p − y) curves for different soil layers 
are shown in Fig. 6.

Temperature Load

In conventional brid ges, expansion 
joints and bearings are used to accom-
modate thermal expansion and con-
traction of the structure. In IABs, 
these elements are eliminated and the 
expansion or contraction of the super-
structure loads the bridge abutments 
and piers. Because of the abutment dis-
placements, the pile and the approach 
fill are subjected to lateral loading and 
unloading cycles.6

The displacement at one end of one 
span (the abutment or pier’s top dis-
placement), relative to the other 
end, due to temperatrue variation is 
expressed as:

ΔL = a ·ΔT·L (1)

where a is the coefficient of thermal 
expansion for the deck material, ΔT is 
the temperature variation and L is the 
span length. 

est for the abutment walls and the 
foundation piles, is inherently non-
linear and varies with depth, amount 
and mode of wall displacement.  To 
simulate the soil–structure interaction, 
the curve s recommended by National 
Cooperative Highway Research 
Program (NCHRP)12 and American 
Petroleum Institute (API)13 were 
employed as non-linear springs. 

For soil–abutment interaction, the 
general form of the NCHRP12 lateral 
earth pressure coefficient K versus 
deflection design curves, as shown in 
Fig. 5, was implemented to calculate 
the effective soil spring resistance to be 
used for the analysis of the finite ele-
ment model (FEM) of the bridge; the 
width wb and height hb of backwall ele-
ments were multiplied by the effective 
vertical normal stress sv (for a given 
depth z) and the lateral earth pressure 
coefficient Ks, so that P = Ksgzhbwb. 
Thus, for a given displacement, the 
lateral force–deflection curve for each 
node of the abutment backwall was 
obtained.

For soil–pile interaction, the design 
models recommended by the API13 

Fig . 3:  Integral conversion at piers

Fig. 4: Modelling of IABs
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Fig . 5: Elasto-plastic diagram of non-linear springs restraining the abutment backwall
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Towards backfillAway from backfill ΔLp/H

(b) 2-D Finite Element bridge model [424]

Figure 3.53: Analysis of integral abutment bridges

In the study by Pugasep et al. [326], three integral abutment bridges are monitored since November

2002, November 2003, and September 2004. The assessment of the measured responses indicates that

bridge deformations progress over time significantly affect the entire bridge response. Hence, long-term

response analysis considering the time-dependent effects caused by concrete shrinkage, creep, prestressing,

and strand relaxation are also significant factors in the design of integral abutment bridges. A similar con-

clusion is assessed in the study of Kim et al. [214, 215]. Structural response due to measured and numerical

results indicates the significant influence of the time-dependent long-term effects of concrete components

and soil-structure interaction. Moreover, less rotational stiffness and non-linear material behaviour of the

abutment-to-backwall connections are assessed to influence the long-term structural behaviour. A para-

metric study is performed by varying thermal expansion coefficient, bridge length, backfill height, backfill

stiffness, and pile soil stiffness with three magnitudes for each parameter considering a variation of practical

bridge relevance. A direct correlation is found by increasing the total bridge length which leads directly to an

increasing abutment displacement, girder bending moment, and girder axial force. The bending moments

in the superstructure are mainly caused by thermal action and should be considered in the design. The

thermal expansion coefficient is a highly sensitive parameter, which influences the superstructure axial force

and moment, lateral force at the piles, pile moment and the displacement at the section between pile head

and abutment, significantly. Height and stiffness of the backfill are evaluated to be relatively insignificant

in terms of the bridge behaviour.

Ooi et al. [302, 304] monitored an integral abutment bridge over a period of 45 months. Additionally, the

work mentioned other studies, in which integral bridges in the United States were field-instrumented and

parametric studies were performed on integral abutment bridges. The measurements show the importance

of deep seated soil movements, concrete creep and shrinkage, and thermal variations for the cumulative
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structural displacements.

A fully integral abutment bridge was designed for the “Taxiway Bridge East 1” at the Frankfurt Airport in

Germany and was completed in the summer of 2011 [386]. In total, 5 integral taxiway bridges are designed

in order to connect the new Northwest runway with the existing airport. The “east 1” bridge is the largest

one with an overall deck area of about 20, 000 m2, see Fig. 3.54(a). This frame bridge consists of three

spans with the spans 32.8− 29.7− 26.0 m without any expansion joints or bearings. In order to reduce the

earth pressure at the abutment walls, flexible abutments are adjusted on-site using polystyrene-layers in

the backfill soil, see Fig. 3.54(b). Therefore, bridge contraction due to temperature, creep, and shrinkage

causes no movement or gaps in the backfill.

The bridge is designed for a total load of 750 t, accounting for all current models for aircraft. Nevertheless,

the modelling and limitation of restraint effects are very significant criteria for the design of this integral

bridge. The foundations should be less stiff in comparison to conventional bridges and, therefore, only one

pile row is designed to support the abutment walls. The restraint effects are initially analysed based on the

linear-elastic stiffness, which results in enormous restraint forces and much higher tensile stresses in the

concrete, exceeding its tensile strength. Therefore, stiffness degradation considering the tension-stiffening

effect is considered in a non-linear structural analysis which approximately results in an cracked stiffness of

about 0.8EI I in the abutment walls and 0.6EI I in the superstructure. The restraint condition for uniform

temperature contraction of ∆TN = −27 K mainly induces these high restraint forces and stiffness degra-

dation, see Fig. 3.54(c). Based on the non-linear simulation, the amount of reinforcement in initial design

of highly-reinforced sections based, on the linear-elastic stiffness could, therefore, be decreased in order to

obtain a reliable and economical bridge project.

In conclusion, decoupling of the structural components is not an appropriate assumption in the numeri-

cal simulation of integral bridges. Numerous phenomena of the components (superstructure, piers, piles,

abutment, backfill, soil) and their interactions lead to a load-deformation behaviour of the bridge, while

performing as a single structural unit. The interplay among the stiffness of these structural components

strongly influences the structural response and finally the entire design. Therefore, a global structural model

should consider a direct coupling between these components for a simulation of the entire integral bridge.

Iterative and non-linear analyses are commonly required in order to obtain results with high accuracy in

comparison to measurements. Nevertheless, appropriate results may be analysed assuming linear abutment

backfill and foundation soil behaviour in the structural model for short to medium span integral bridges [82].

In every one of the above mentioned integral bridges, the restraint effects are some of the most significant

phenomena in the simulation and design of the bridges. Even the measuring data collected in long-term

monitoring programs illustrate the crucial importance of restraint effects. The analysis of restraint effects

should be performed using adequate models in order to achieve a reliable design of the entire integral

structure. Semi-integral concrete bridges are studied in this thesis by the integrative sensitivity analysis in

order to evaluate the structural load-deformation behaviour in a quantitative manner, see Sec. 6.3.
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destbewehrung auch bei einer nicht-integralen Bauweise
einzulegen. Die hohen Bewehrungsgrade von bis zu
230 kg/m3 resultieren somit weniger aus der fugenlosen
Bauweise, sondern vielmehr aus der enormen Verkehrsbe-
lastung bei Flugzeugüberfahrt.

6.4 Scheinfugen

Kontrovers diskutiert wurde die fugenlose Ausbildung der
Pfeiler- und Widerlagerwände. Gemäß ZTV-ING sind bei
schwindbehinderten Bauteilen grundsätzlich Scheinfugen
im Abstand von maximal 8 m vorzusehen. Diese Regelung
wurde aus der „alten“ ZTV-K [11] übernommen, um mög-
lichst rissfreie Bauteile zu erhalten. Nach DIN-Fachbe-
richt 102 [12] ist für Stahlbetonbauteile jedoch eine Riss-
breite von 0,2 mm zulässig. Eine konsequente Umsetzung
der ZTV-ING-Forderung hätte bei den Rollbrücken zu ei-
ner Vielzahl von Fugen und Querschnittsschwächungen
geführt, die dem Grundgedanken der integralen Bauweise
widersprechen. Hier ist aus Sicht der Autoren noch Klä-
rungsbedarf bei der Vorschriftenlage erforderlich, um für
zukünftige Projekte mit integraler Bauweise mehr Pla-
nungssicherheit zu haben.

6.5 Rissbildung

Abschließend bleibt festzustellen, dass sich die Rissbildung
in den Stahlbetonbauteilen bisher so einstellt, wie es die
Ergebnisse der statischen Berechnung prognostiziert ha-
ben. Die ersten Risse in den Wänden traten durch das Ab-
fließen der Hydratationswärme bereits wenige Tage nach
dem Betonieren auf. Dabei hatte die Herstellung im Pilger-
schrittverfahren keinen nennenswerten Einfluss auf die
Rissbildung. Die über 200 m langen Widerlagerwände der
benachbarten Rollbrücke Ost 2 wurden ohne Pilgerschritt
betoniert und zeigten ein nahezu identisches Rissbild. Die
gemessenen Rissbreiten lagen bei der Rollbrücke Ost 1
größtenteils zwischen 0,1 und 0,2 mm. Bei einer weiteren
Messung im Zuge der Bauwerksprüfung nach ca.  einem
Jahr konnten weder eine signifikante Rissaufweitung noch
eine deutliche Verringerung des Rissabstands festgestellt
werden. Die Temperatur- und Schwindverkürzung in
 Brückenquerrichtung wird vielmehr durch eine horizon -
tale Verformung der Bohrpfähle ermöglicht. Dies konnte
visuell an den Raumfugen der Rollbrücke Ost 1 zu den
 benachbarten Stützwänden verfolgt werden, wo sich der
Fugenspalt während der Bauzeit um ca. 2 cm vergrößerte.

7 Schlussbemerkung

Mit dem Bau der Rollbrücke Ost 1 am Frankfurter Flug -
hafen wurden eindrucksvoll die Möglichkeiten der inte-
gralen Bauweise im Großbrückenbau unter Beweis ge-
stellt. Es ist gelungen, eine schlanke und gestalterisch an-
sprechende Konstruktion mit den hohen Tragfähigkeits-
anforderungen von Flugbetriebsflächen in Einklang zu
bringen. 

Nach zweijähriger Bauzeit wurden die Rollbrücken
im Sommer 2011 fertiggestellt (Bild 13) und am 21. Okto-
ber 2011 zusammen mit der neuen Landebahn Nordwest
für den Flugbetrieb freigegeben.

Besonders hervorzuheben ist bei diesem Projekt 
die gute Zusammenarbeit zwischen allen Beteiligten (Ta-
belle 1), ohne die der schnelle und erfolgreiche Baufort-
schritt nicht möglich gewesen wäre.
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Tabelle 1. Projektbeteiligte Rollbrücke Ost 1
Table 1. Involved in building and construction 

Bauherr Fraport AG, Frankfurt am Main

Entwurfs- und Ausführungsplanung, Bauoberleitung, Bauüberwachung Ingenieurbüro Dr. Binnewies, Hamburg

Ausführungsplanung für Fertigteilträger Planungsgemeinschaft:
Büchting + Streit AG, München
Igl, Putz + Partner, Landshut

Prüfingenieur Dipl.-Ing. Heinz Steiger, Darmstadt

Bauausführung Brückenbauwerk Max Bögl GmbH & Co. KG, Neumarkt

Bauausführung Widerlagerhinterfüllung Bilfinger Berger AG, Mannheim

Bild 13. Rollbrücke Ost 1
Fig. 13. Taxiway Bridge East 1

(a) completed bridge

die erforderlichen Schraubmuffenverbindungen ∅28 zwi-
schen Überbau und Versatzfläche überhaupt montierbar
waren.

Nach Fertigstellung des Brückenbauwerks konnte
mit der Hinterfüllung der Widerlagerwände begonnen
werden (Bild 12). Der Einbau der Geogitter und der EPS-
Platten gestaltete sich anfangs schwieriger als erwartet, da
diese Bauweise hier erstmalig bei einer Großbrücke zum
Einsatz kam und alle Projektbeteiligten erst für die Beson-
derheiten dieser neuen Bauweise sensibilisiert werden
mussten. Für die Bauausführung wurden daher ein Quali-
tätssicherungsplan und eine Arbeitsanweisung erstellt so-
wie eine geotechnische Fachbauüberwachung durchge-
führt. Mit diesen Maßnahmen war die Einhaltung der
 hohen Anforderungen hinsichtlich der Verformungsbe-
grenzung der EPS-Pufferschicht sichergestellt. Weitere An-
gaben zum Bau der flexiblen Widerlager können [8] ent-
nommen werden.

Für die gelenkige und horizontal verschiebliche Auf-
lagerung der Schleppplatten auf den Widerlagerwänden
wurde ein Sondervorschlag der ausführenden Baufirma
beauftragt. Dieser sah vor, die ausgeschriebenen PTFE-
Gleitlager durch eine Gleitschicht, bestehend aus HD-PE-
Folie und alkalibeständigem Vlies, zu ersetzen. Diese
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Gleitschicht wurde ursprünglich für die Feste Fahrbahn
der Firma Bögl entwickelt und von der TU München wis-
senschaftlich begleitet [9]. Die Versuchsergebnisse zeigen,
dass selbst nach langer Nutzungsdauer und Beschädigung
der Folie der Reibbeiwert unter 0,6 liegt.

Die Versiegelung des Überbaus erfolgte mit Flüssig-
kunststoff. Anschließend wurden die Kappen und Brü-
ckenbeläge hergestellt. Der 25 cm dicke Rollbahnbelag
wurde bewehrt, damit sich bei einer möglichen Reflexi-
onsrissbildung keine übermäßigen Rissbreiten einstellen.

6 Beurteilung der fugenlosen Bauweise
6.1 Allgemeines

Die integrale Bauweise kommt in Deutschland bisher
überwiegend bei kleineren Brückenbauwerken bis ca.
50 m Länge zum Einsatz. Großbrücken hingegen werden
in der Regel konventionell gelagert oder semi-integral mit
eingespannten Stützen ausgeführt. Bei der 92 m langen
Rollbrücke Ost 1 wurden neben den Pfeilern auch die Wi-
derlager monolithisch mit dem Überbau verbunden, so-
dass die weit gespannten Randfelder mit vergleichsweise
großen Schlankheiten konzipiert werden konnten.

Die Ausbildung als Rahmenbauwerk hat auch gestal-
terische Vorteile, weil die Voutung des Überbaus in allen
Feldern beidseitig vorhanden ist und die sonst üblichen
Lagerfugen entfallen. Der Wegfall der Lager führt außer-
dem zu einer enormen Einsparung bei den Bau- und In-
standhaltungskosten der Rollbrücken.

6.2 Flexible Widerlager

Der erstmalige Einsatz von flexiblen Widerlagern im
Großbrückenbau zeigt, welches Potenzial diese neue Bau-
weise für die Herstellung integraler Brücken bietet. Bei zu-
künftigen Projekten ist es aus Sicht der Verfasser empfeh-
lenswert, die Dimensionierung der EPS-Schicht mit
Grenzbetrachtungen hinsichtlich Stauchung und Steifig-
keit durchzuführen. Im Vergleich zum mobilisierten Erd-
druck bei einer konventionellen Hinterfüllung ergeben
sich bei flexiblen Widerlagern nur geringe Druckspannun-
gen, sodass die Bemessung mit einem konservativ ange-
setzten oberen Grenzwert in wirtschaftlicher Hinsicht in
der Regel vertretbar ist. Durch diese Vorgehensweise sind
noch Änderungen oder Optimierungen im Zuge der Bau-
ausführung möglich, ohne dass eine Neubemessung des
Gesamtsystems erforderlich wird.

6.3 Bewehrungsgrad

Wegen des großen Anteils an Zwangschnittgrößen erge-
ben sich bei integralen Bauwerken meist relativ hohe Be-
wehrungsgrade, insbesondere im Vergleich zu konventio-
nellen Brücken, die noch nach DIN 4227 [10] bemessen
wurden. Mit Einführung der neuen Normengeneration
wurde der Dauerhaftigkeit des Stahlbetons mehr Beach-
tung geschenkt und eine Mindestbewehrung zur Rissbrei-
tenbegrenzung infolge rechnerisch nicht berücksichtigten
Zwangs gefordert. Bei den Rollbrücken war diese Min-
destbewehrung für die Querrichtung in der Regel ausrei-
chend. Aufgrund der herstellungsbedingten Vielzahl von
Arbeitsfugen und anbetonierten Bauteilen wäre die Min-

Bild 11. Betonieren des Überbaus
Fig. 11. Concreting of the superstructure

Bild 12. Herstellung der flexiblen Widerlager
Fig. 12. Construction of the flexible abutments

(b) flexible abutment (c) significant design restraint loading ∆TN = −27 K

Figure 3.54: Integral bridge “Taxiway Bridge East 1” at Frankfurt Airport [386]

3.6 Pile foundation

3.6.1 Vertically loaded piles

Vertical loading of pile groups can be analysed using analytical solutions and numerical techniques. The

integral equation method (also known as Boundary Element Method, BEM) adopted by Poulos [316],

Poulos and Davis [319], Butterfield and Banerjee [56, 57], and Butterfield and Davies

[18] is a commonly used numerical method based on the analytical solution of Mindlin [280]. The study

by Ottaviani [305] is a fundamental approach of pile group settlement behaviour based on the Finite

Element Method.

Furthermore, a number approximate analytical and semi-analytical solutions are investigated by Cooke

[76], Randolph and Wroth [332, 334], Baguelin and Frank [14], Scott [375], Nogami and Chen

[297], Chow [71], and Fleming et al. [112, 113]. The maximum permissible foundation settlement is often

a more stringent design criterion than the overall stability of the construction [332]. Therefore, single pile

and pile group settlements need to be estimated with a reasonable accuracy.

A rather high number of different models for each methodology exists, which differs in their considered

phenomena for the piles, their interaction in the group and the soil conditions. The research by Randolph

and Wroth about the behaviour of single piles [332] (see Fig. 3.55) and pile groups [334] is cited in almost

every publication following and can be declared as a fundamental approach to determine the vertical stiffness
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of piles and piles groups.
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Figure 3.55: Decoupling between effects due to pile shaft and pile base, based on [332]

3.6.1.1 Single pile

Randolph and Wroth 1979 [332, 334]

The analysis is based on a linear-elastic soil description characterised by the shear modulus Gs , which

may vary with depth, and Poisson’s ratio νs . The soil surrounding the pile is divided into two layers. The

horizontal plane (AB) at the pile base level divides the soil into an upper and a lower layer, see Fig. 3.55(a).

As an initial assumption, the upper soil layer is deformed exclusively by the load shed by the pile shaft

Ps . The lower layer is deformed exclusively by the pile base load Pb. Consequently, separate deformation

patterns are anticipated, see Fig. 3.55(b). The original plane (AB) is spread out to the planes (A1B1) and

(A2B2). Both deformation patterns are not compatible, which lead to some interaction between both soil

layers. These separate deformation patterns will be matched at the pile base and at large radii. The authors

already indicate that these simplified assumptions cannot determine an exact solution, but a satisfactory

solution for engineering purposes may be obtained [332]. Especially for piles with a slenderness ratio of

lP/r0 > 20, the stress changes in the soil caused by load transfer at the pile base can be uncoupled from

those caused by the load transfer down the pile shaft and the above mentioned assumption may be accurate

enough.
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Figure 3.56: Deformation mode and hypothetical pile influence variation, based on [332]

The soil deformation around the pile shaft may be idealized as shearing of concentric cylinders [332], see
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Fig. 3.56(a). In the study by Cooke [76], the comparison between the resulting deformation patterns,

based on this assumption and pile test measurements, shows a good agreement. Moreover, Baguelin

[13] and Frank [116] used Finite Element analysis to prove the validity of the assumption. The vertical

equilibrium of a soil element is defined as:

∂

∂r
(rτ) + r

∂σz

∂z
= 0 , (3.110)

in which r is the radius, τ is the shear stress increment, and σz the vertical total stress increment (com-

pressive stress is positive). The increase in shear stress is much greater in the pile shaft vicinity than the

increase in vertical stress and thus Eq. 3.110 can be approximated by:

∂

∂r
(rτ) ∼= 0 . (3.111)

The shear stress at the pile shaft for r = r0 is defined as τ0. The integration of Eq. 3.111 gives:

τ =
τ0r0

r
. (3.112)

The shear strain γ is:

γ =
τ

G
=
∂u

∂z
+
∂w

∂r
, (3.113)

in which u is the radial and w the vertical soil displacement. The primary displacement is vertical and thus

ignoring ∂u/∂z , integration leads to:

ws
∼= τ0r0

Gs

∫ ∞
r0

dr

r
(3.114)

in which ws is the pile shaft settlement. An infinite pile settlement may occur based on this expression,

which is generally not appropriate. Therefore, the basic assumption is that there is some “magical radius”

rm at which the shear stress becomes negligible [76, 116], see Fig. 3.56(b), and thus:

ws(r) = ln
( rm,s

r

) τ0r0

Gs
r0 ≤ r ≤ rm (3.115a)

ws(r) = 0 r > rm (3.115b)

and the deformation at the pile shaft is:

ws(r0) = ζ
τ0r0

Gs
(3.115c)

in which

ζ = ln

(
rm,s

r0

)
. (3.115d)

The lower soil layer is deformed by the pile base acting as a rigid punch and at some large distance from

the pile the base acts as a point load. Hence, the deformation of the plane (A2B2) decreases approximately

inversely with radius r , see Fig. 3.55(b). Because this decrease is more rapid than the logarithmic variation

defined by Eq. 3.114, the lower soil layer act as a restraint on the deformation of the upper layer. Hence,

the vertical stress increments rise and nonzero terms in ∂/∂r (rτ) appear. For the shear stress τ acting as

shown in Fig. 3.56(a), this latter inequality implies that the shear stress decreases more rapidly with r than
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determined by Eq. 3.112. With vertical distance above the plane (A1B1), see Fig. 3.55(b), the magnitude

of the term ∂/∂r (rτ) increases. Therefore, the radius at which the shear stress becomes negligible rm varies

with depth and follows the shape as illustrated in Fig. 3.56(c). For a rigid pile, the pile shaft displacement

ws must be independent of depth and, thus, the shear stress τ0 must also vary with depth in such a fashion

that (τ0r0/Gs) ln(rm,s/r0) is constant. This variation of the shear stress at the interface between the pile and

the soil is supported by the studies of Butterfield and Banerjee [56, 57], Frank [116], Ottaviani

[305], and Poulos [316].

The displacements caused by loading a half space of a given shear modulus are proportional to 1−νs [393].

Therefore, the stresses set up by the incompatibility of the displacement patterns along the planes (AB),

see Fig. 3.55(b), vary in some fashion inversely with 1− νs . As a first approximation, the “magical” radius

can be defined as proportional to 1−νs [332]. In addition, the mean value of this radius is also proportional

to the pile length lP , thus rm ∝ lP(1 − νs). In a comparative study with the results obtained by integral

equation analysis by Baguelin [13] and Frank [116], a suitable value for the average “magical” radius

rm,s is determined by Randolph and Wroth [332]:

rm,s = 2.5 · lP (1− νs) (3.116)

In general, the variation of the “magical” radius with depth is neglected and a single average value as

defined by Eq. 3.116 is used in the study by Randolph and Wroth [332]. Moreover, the overall load

deformation behaviour of the pile shaft is important and consequently it is sufficient to take rm,s. Thus,

for a rigid pile τ0 is constant with depth. Hence, the determination of ws according to Eq. 3.115 may be

written as:

ws = ζ
τ0r0

Gs
=

ζPs

2πlPGs
. (3.117)

In general, the shear stress τ0 is proportional to the shear modulus at a certain depth assuming a constant

shear strain in the soil next to the pile shaft [116]. For soils where the shear modulus varies linearly with

depth (“Gibson”-type soil [145, 146]), a factor for the degree of soil homogeneity ρdsh (see Fig. 3.61(b))

can be considered in the analysis by Randolph and Wroth [332, 334], which is defined as:

ρdsh =
Gs,lP/2

Gs,lP

, (3.118)

in which Gs,lP/2 and Gs,lP are the shear modulus at pile mid-depth and pile base, respectively. Consequently,

the “magical” radius is defined as:

rm,s = 2.5 · ρdsh · lP (1− νs) , (3.119)

and the pile shaft displacement is determined by:

ws =
ζPs

2πlP · ρdsh · Gs,lp

. (3.120)
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The pile base settlement behaviour is similar to a rigid punch and can be described by the solution of

Timoshenko and Goodier [393]:

wb =
Pb (1− νs)

4r0Gs
· η . (3.121)

The factor η is defined in order to consider the depth of pile base below the surface, i.e. the interaction

between the upper and lower soil layer. The original solution according to Eq. 3.121 (neglecting η) is

determined for a punch at the surface of an elastic half space. Therefore, the factor η is established in

order to take into account for the soil stiffening effect above the level of the loaded area. For a general

case, a closed form solution is no longer possible and correction factors must be used. For a straight pile

(i.e. not underreamed), η > 0.85 and is probably close to unity. For the overall analysis of pile behaviour,

the correction factor η can be taken as unity η = 1.0 [332].

At some distance from the pile base, the loading will act as a point load. For a point load, the settlement

decreases with the radius and is defined as:

w(r) =
P (1− νs)

2πrGs
. (3.122)

The ratio between the point load settlement (Eq. 3.122) and the pile base settlement (Eq. 3.121) for a

given load is:

w(r)

wb
=

2

π
· r0

r
. (3.123)

The settlement caused by the pile base at large radii should be equal to the settlement caused by a point

load. Hence, the settlement profile at the top of the lower layer in Fig. 3.55(b) may be approximated by:

w(r) = wb · c ·
r0

r
, (3.124)

with c = 2/π according to Eq. 3.123.

By combining ws and wb, a reasonable estimate for the deformation of a rigid pile in an homogeneous

linear-elastic continuum can be determined, which is additionally checked against numerical simulations

[332]. This determination provides a simple basis that may be modified to account for non-homogeneity of

certain soil stratification.

In the case of a rigid pile, wt = ws = wb and Pt = Ps + Pb. The overall pile behaviour can be defined

by combining Eq. 3.121 and Eq. 3.117:

Pt

Gsr0wt
=

Pb

Gsr0wb
+

Ps

Gsr0ws
, (3.125a)

Pt

Gsr0wt
=

4

η (1− νs)
+

2πρdsh

ζ

lP
r0

, (3.125b)

Kv ,lin =
Pt

wt
. (3.125c)

Applying this determination for the pile stiffness prediction of a rigid pile in an homogeneous soil shows

good agreement with the Boundary Element Method (Banerjee [17]), see Fig. 3.57. The dimensionless

load-settlement ratio Pt/ (Gsr0wt) for several pile slenderness ratios lP/r0 and two different Poisson’s ra-

tios, νs = 0.0 and νs = 0.5, is almost the same between both models.
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Figure 3.57: Load-settlement ratio for several pile slenderness ratios based on [332] in comparison with
Boundary Element Method (BEM) [17]

This solution determined by Eq. 3.125a may be extended to the case of compressible piles [332], under-

reamed piles, and end-bearing piles. Only minor modifications are necessary, for example, the “magical”

radius is reduced for the latter type of piles [333]. In this thesis, the pile compressibility and soil inhomo-

geneity in the radial pile direction are not considered in the previously introduced model.

Mylonakis and Gazetaz 1998 [291]

The aim of the study by Mylonakis and Gazetas [291] is the development of a straightforward and ef-

fective methodology for pile group settlement analysis even for multi-layered soil stratification, see Fig. 3.58.

The pile cap is assumed to be rigid and each soil layer is considered by a linear-elastic material with the

soil modulus of elasticity Ei and the Poisson’s ratio νs,i . Furthermore, no slippage is considered at the pile-

soil interface. This method is generally applicable to groups containing different pile sizes and properties.

However, the presented method is limited to identical, solid, cylindrical piles of pile length lP , diameter

dP , cross-sectional area AP , and modulus of elasticity EP . The soil below the pile tip extends either to

infinity (half-space, hb → ∞) or can be determined at the depth of bedrock, which is located at a depth

hb measured from the pile tip.

EP
AP

E1 , νs,1

Eb
νb

hb

bedrock

lP

V=Pt

1

2

…

i

n

E2 , νs,2

…

Ei , νs,i

En , νs,n

dP

… …

Figure 3.58: Sign convention for pile foundation with multi-layered soil stratification, based on [291]
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3.6. Pile foundation

The soil around a pile shaft can be represented by distributed springs (Winkler assumption) as determined

by the model of Randolph and Wroth [332], see Eq. 3.117. The stiffness per unit length of the pile can

be written as:

kz =
Ps

ws
= δ · Gs , (3.126a)

where

δ =
2π

ln

(
2rm

dP

) , (3.126b)

with the dimensionless pile shaft load transfer parameter λ

λ =

√
δGs

EPAP
. (3.126c)

In accordance with [332], the magical radius rm is determined:

rm,s ≈ χ1χ2 · lP (1− νs) , (3.127)

in which χ1 and χ2 are empirical factors to account for soil inhomogeneity [291]. In the study by Randolph

et al. [332], the recommended values are defined to be χ1 = 2.5 for piles in a half-space (hb → ∞) and

χ1 = 2.0 for soil on rigid bedrock at a depth 2.5lP . For a homogeneous half-space with the degree of

homogeneity ρdsh = 1.0 (see Fig. 3.61(b)), the empirical value of χ2 is about 1.0. In contrast, χ2 is about

0.5 for a soil with stiffness proportional to depth with ρdsh = 0.5. For a multi-layered soil, it might be

necessary to interpolate between the empirical values. However, the vertical pile stiffness is insensitive to

the exact value of the “magical” radius rm. For example, a large simulated difference in rm of 50 %, results

in a discrepancy between the interaction factors of less than 15 % [291], even for a pile group. This highest

discrepancy is found for large pile space ratios in the range of s/dP = 10. For piles more closely spaced, the

average deviation is about 5 %. Therefore, engineering judgement in accordance with the recommendations

of Randolph et al. [332] is sufficient and Mylonakis et al. [291] recommend using the following values

for analysing the settlement of single piles and pile groups:

� χ1χ2 = 2.5 for homogeneous half-space soil condition,

� χ1χ2 = 1.0 for “Gibson”-soil on bedrock condition.

The pile base behaviour is represented by a rigid circular disc on a surface of a homogeneous elastic stratum,

which is sufficient, to adopt the arguments of [332, 375]. Hence, the corresponding pile base stiffness is

defined as:

Kb =
Pb

wb
≈ dPEb

1− νs
2︸ ︷︷ ︸

Randolph et al. [332], Scott [375]

·
(

1 + 0.65
dP

hb

)
︸ ︷︷ ︸

Gazetas [125], Kausel [202]

, (3.128a)

with the dimensionless pile base stiffness Ω [291]:

Ω =
Kb

EPAPλ
. (3.128b)

In order to take into account the presence of a rigid bedrock at depth equal to hb below the pile tip, the

factor in parentheses in Eq. 3.128a is additionally considered in comparison to the fundamental approach
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3. Modelling aspects of restraint sensitive concrete structures

by Randolph et al. [332]. In the case that no bedrock is present, hb →∞ and the second term reduces

to unity.

For a multi-layered soil stratification with n different soil layers, the settlement profile W11(z) (see Fig. 3.62)

for each homogeneous layer can be determined by [291]:

W11(z) = A11e(λz) + B11e(−λz) . (3.129)

with the integration constants shown in the appendix, see Eq. A.2. Imposing the continuity of forces and

displacements at each interface between the soil layers, a transfer matrix formulation can be established:{
W11(h)

P11(h)

}
bb

= [F]

{
W11(0)

P11(0)

}
1

, (3.130)

where

[F] = [L]b

j∏
i=1

([L]i ) . (3.131)

The transfer matrix [L]i is defined as:

[L]i =

[
cosh (λi hi ) − (EPAPλi )

−1 sinh (λi hi )

EPAPλi sinh (λi hi ) cosh (λi hi )

]
(3.132)

and [L]b is defined as:

[L]b =

[
1 −K−1

b

0 1

]
. (3.133)

The stiffness of a single pile is obtained by enforcing the boundary conditions W11(h)bb = 0 and W11(0)1 =

1 from Eq. 3.130:

Kv ,lin = −F11

F12
. (3.134)

The vertical stiffness of a pile in a homogeneous soil layer can be computed by a closed-form expression

considering the sign convention according to Fig. 3.63(a). The linear-elastic single pile stiffness, due to

vertical loading, can be determined by:

Kv ,lin = EPAP · λ ·
Ω + tanh(hλ)

1 + Ω tanh(hλ)
. (3.135)

In the case of a pile embedded in a two-layer soil (sign convention see Fig. 3.63(b)), the vertical stiffness

of a single pile subjected to axial force can be determined by another closed-form expression:

Kv ,lin = EPAPλ1
λ1 tanh (h1λ1) + λ1Ω tanh (h1λ1) tanh (h2λ2) + λ2Ω + λ2 tanh (h2λ2)

λ1 + λ1Ω tanh (h2λ2) + λ2Ω tanh (h1λ1) + λ2 tanh (h1λ1) tanh (h2λ2)
, (3.136a)

with the corresponding dimensionless pile shaft load transfer parameters:

λ1 =

√
δGs,1

EPAP
⇒ h1 , (3.136b)

λ2 =

√
δGs,2

EPAP
⇒ h2 . (3.136c)
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3.6. Pile foundation

It should be noted that by setting h1 = 0, the stiffness determination according to Eq. 3.136 reduces to

the stiffness for the homogeneous (single-layer) soil condition, see Eq. 3.135.

In order to illustrate the accuracy of the stiffness prediction and to justify the choice of the empirical values

χ1, χ2, the model by Mylonakis et al. [291] is compared with the numerical solutions of Poulos and

Davis [320], and the Finite Element results of Valliappan [400]. Therefore, the stiffness predictions are

compared for an incompressible pile embedded in a two-layer soil deposit, see Fig. 3.59.
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Figure 3.59: Comparison of settlement prediction for incompressible pile in two-layer soil, χ1 = 2.5, χ2 =
1.0, Mylonakis and Gazetas [291], Poulos and Davis [320], and Valliappan et al.
[400]

For the two-layer soil condition, the empirical values χ1 = 2.5, χ2 = 1.0 are still used for the determination

of the “magical” radius. The bottom soil layer is related to the half-space condition and the corresponding

ratio between the moduli of elasticity are investigated in the range from 0.2 to 5.0. Moreover, the embed-

ment ratio h1/lP varies from 0 (h1 = 0) to 1 (h1 = lP). The comparison shows a very good agreement

between the stiffness prediction based on the previously discussed model and the numerical solutions of

Poulos et al. [320] and Valliappan [400].

3.6.1.2 Pile group

Randolph and Wroth 1979 [334]

In the case of similarly loaded neighbouring piles, the overall pile settlement can be obtained by superim-

posing the individual displacements fields [76]. The settlement of two rigid piles is defined as the sum of

the settlement caused by the piles’ own loading w1 and that due to the neighbouring piles’ displacement

field w2. Therefore, the overall settlement may be described by:

w = w1 + w2 . (3.137)

The displacement at the pile mid-depth is consequently defined as:

ws = ws,1 + ws,2 =
τ0r0

Gs,lP

[
ln

(
rm

r0

)
+ ln

(
rm

rij

)]
, (3.138)
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3. Modelling aspects of restraint sensitive concrete structures

in which rij is the pile spacing. This spacing is defined as the distance between the centre lines of the piles.

The load-settlement ratio for each pile shaft is now:

Ps

Gs,lP r0ws
=

2πρdsh

ζ + ln

(
rm

rij

) lP
r0

. (3.139)

For the pile base settlement, the overall displacement is similarly defined as:

wb = wb,1 + wb,2 =
Pb (1− νs)

4r0Gs,lP

(
1 +

cr0

rij

)
, (3.140)

and the load-settlement ratio can be determined by:

Pb

Gs,lP r0wb
=

4

1− νs

rij

r0c + rij
. (3.141)

Finally, the overall load-settlement ratio for two, three, and four similarly loaded piles is defined as:(
Pt

Gs,lP r0wt

)
2 piles

=
4

1− νs

s

r0c + s
+

2πρdsh

ζ + ln
( rm

s

) lP
r0

, (3.142)

(
Pt

Gs,lP r0wt

)
3 piles

=
4

1− νs

s

2r0c + s
+

2πρdsh

ζ + 2 ln
( rm

s

) lP
r0

, (3.143)

(
Pt

Gs,lP r0wt

)
4 piles

=
4

1− νs

s

2.707r0c + s
+

2πρdsh

ζ + ln

(
rm

3

√
2s 3

) lP
r0

. (3.144)

The determination for piles in a group of three (Eq. 3.143) is only valid for an equilateral triangle of a

side length equal to s, see Fig. 3.60. Moreover, the determination for piles in a group of four (Eq. 3.144) is

applicable for a square group of a side length equal to s.

s

s

s

2r0

1 pile 2 piles 3 piles
s

4 piles

Figure 3.60: Spacing definition of similarly loaded piles, based on [334]

Based on these results, the interaction factor αt can be defined as the inverse of the load-settlement ratio.

For example, the decreased settlement of two similarly loaded piles (Eq. 3.142) in comparison to a single

pile (Eq. 3.125) for a given load can be written as:(
Gs,lP r0wt

Pt

)
2 piles

= (1 + αt)

(
Gs,lP r0wt

Pt

)
1 pile

. (3.145)

The concept of interaction factors is originally introduced by Poulos [316]. This study showed that the

effects in pile groups can be assessed by superimposing the effects of only two piles at a time. In general,
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3.6. Pile foundation

the interaction factors are useful for considering a part of the increasing settlement of one pile, due to a

neighbouring pile, but they neglect the transfer of a higher proportion of load to the pile base that would

occur for a single pile [144, 334]. This greater interaction is caused between the shaft and base displacement

fields which finally lead to a higher load transfer to the pile base in pile groups compared to the deformation

behaviour of a single pile. Therefore, the pile-to-pile interaction in a group of piles leads to a [291]:

� decrease in group stiffness,

� non-uniformly distributed cap load,

� additional shear stresses along pile shaft, and

� increased load transmitted to pile base.

Finally, each pile in a group of piles receives a different amount of the total load Pt , with the corner piles

carrying more load than the central piles. Therefore, the analysis of similarly loaded pile groups, based on

the interaction factor concept, is enhanced to the analysis of rigid pile groups, considering a generalised

methodology for the settlement contributions. The model could be applied to any general geometry of pile

groups. The only restriction being that all piles must be embedded to the same depth. For a pile group of

nP piles, the pile shaft settlement [ws ]j of pile j is defined as:

[ws ]j =

nP∑
i=1

[ws ]ij =
1

Gs

nP∑
i=1

[τ0]i [r0]i ln

(
rm,g

rij

)
, (3.146)

where rij = r0 for i = j . The nP different settlements can be related to the corresponding shear stresses

τ0, based on Eq. 3.146, to provide the following matrix equation [334]:

ws = [Fs ]τ0 , (3.147a)

τ0 = [Fs ]−1ws , (3.147b)

Ps = 2πr0lP [τ0] . (3.147c)

The base settlements can be determined by:

[wb]j =

nP∑
i=1

[wb]ij =
c (1− νs)

4Gs,lP

nP∑
i=1

[Pb]i
rij

, (3.148)

in which rij = c · r0 for i = j . In a similar manner, the base settlements can be related to the pile base load

defining another matrix equation:

wb = [Fb]Pb , (3.149a)

Pb = [Fb]−1wb . (3.149b)

For a rigid pile cap, [ws ]i = [ws ]j , and for rigid or very stiff piles ((EA)P/(GLP
2) ≥ 10), ws

∼= wb.

Therefore, the matrix Eq. 3.147a and Eq. 3.149a may be inverted to determine values of τ0 and Pb for a
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3. Modelling aspects of restraint sensitive concrete structures

given pile cap displacement, see Eq. 3.147b and Eq. 3.149b. Thus, the overall load-settlement ratio for the

pile group can be computed by:

Kv ,lin =

nP∑
i=1

Pt,i

wt,i
(3.150)

The definition of the “magical” radius for single piles rm,s and pile groups rm,g may be different. A more

extensive influence zone for a pile group is clearly expected compared to a single pile of the same pile length

[334]. In general, the value of rm is related to the amount of interaction between the upper and lower soil

layers [332]. In the case that the pile group base is considered as a single, large, rigid punch, the deformation

of the lower soil layer decreases more gradually with increasing radius. Thus, this reduces the amount of

interaction which leads to larger values of rm,g compared to rm,s. The increase in the “magical” radius

for groups can be considered in the group influence factor rg . Therefore, the estimation of the “magical”

radius can be determined for piles embedded in an infinite layer according to:

rm,g = rm,s + rg = 2.5 · ρdsh · lP (1− νs) + rg . (3.151)

The value of rg is related to the dimension of the pile group. In the case of rectangular pile groups, the

group influence factor may be taken as the radius of the circle of equivalent area to that covered by the

pile group [334]. More generally, this radius beyond shear stresses becomes negligible and can be expressed

as [157, 158]:

rm,g = A
1− νs

1 + ρdsh
lP + Br0 + αgrg . (3.152)

The factors A and B are investigated in the study by Guo and Randolph [155, 157, 158] for several pile

geometries, pile and soil stiffnesses, and various thicknesses of the finite soil layer, see appendix Eq. A.1.

In the thesis by Lutz [251], it is proposed to adopt the determination of Randolph and Wroth [334]

and extend it in order to take into account the total depth of the compressible soil stratum (lP + hb → see

Fig. 3.63):

rm,g =
1

0.18182 + 0.43636
lP

lP + hb

· lP (1− νs) . (3.153)

These determinations are studied for the linear-elastic pile group behaviour. For the non-linear analysis of

pile groups, Rudolf et al. [353, 354] found that the elastic definition of rm overestimates the influence

of the shear stress descending branch around the source pile which led to an underestimation of the pile

group stiffness. Therefore, in the study by Rudolf the radius is defined as rm,g = lp [353]. Nevertheless,

the “magical” radius only contributes to logarithmic terms; the overall load-deformation behaviour is not

sensitive to the precise value of these terms in the response analysis [334]. A similar recommendation is

made in the study by Mylonakis and Gazetas [291], discussed in previous section.

The load-settlement ratio for each individual pile of a 3x3 pile group, based on the model by Randolph

and Wroth [334], is presented in Fig. 3.61. The pile spacing is sx = sy = 5r0 and the group influence

factor is chosen to be rg = 6r0. The comparison between the presented model and the Boundary Element

Method of Banerjee [17] shows a sufficient agreement. On one side, the soil is assumed as incompressible
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Figure 3.61: Load-settlement ratio for piles in a 3x3 rigid group, incompressible soil νs = 0.5, sx = sy =
5r0, rg = 6r0, model Randolph et al. [334]

and homogeneous, see Fig. 3.61(c). On the other side, the study of soil stiffness as a function of depth

is illustrated in Fig. 3.61(d). For a given slenderness ratio lP/r0, the results show that the range of loads

supported by the three different pile types is less in soil with stiffness proportional to depth than for pile

groups in homogeneous soil. Finally, in this thesis, compressible pile group groups are not considered in the

obtained results using the previously introduced model.

Mylonakis and Gazetaz 1998 [291]

The main difference between this model and that proposed by Randolph et al. [334] is the determination

of the pile-to-pile interaction. Individual piles in a pile group do not exactly follow the free-field displacement

generated by their neighbours [291]. Axial pile rigidity and the soil reaction at the pile tip tends to reduce

the settlement determined by the free-field displacement approach. Therefore, Mylonakis and Gazetaz

[291] propose an interaction method in order to account for these effects, which might be important,

especially for piles in multi-layered soil.

The settlement profile of a single pile W11(z) can be determined according to Eq. 3.129. Within each

distinct and homogeneous horizontal soil layer, the settlement attenuation with radial distance from the

source pile follows almost the logarithmic variation of Eq. 3.159b, see Fig. 3.62. Hence, the attenuated soil

settlement at the position of the unloaded receiver pile (if the pile is not present) is:

Us (rij , z) = W11(z)ψs (rij ) . (3.154)
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In contrast, this displacement is reduced in most cases due to the existence of the receiver pile. The receiving

pile’s mechanical behaviour is in a sense the reverse of the loaded source pile. On one side, the loaded pile

induces settlements in the soil and, on the other side, the soil induces the attenuated displacements on the

receiver pile. The vertical equilibrium of an element of a receiver pile is defined as:

EPAP
d2W21(z)

dz2
− kz [W21(z)− Us (rij , z)] = 0 , (3.155)

in which W21 is the settlement profile of the receiver pile, see Fig. 3.62. For each homogeneous soil layer,

the solution of the differential equation is:

W21(z) =
λ

2
ψs (rij ) z

[
−A11e(λz) + B11e(−λz)

]
+ A21e(λz) + B21e(−λz) , (3.156)

with the integration constants shown in the appendix in Eq. A.2. In order to take into account a multi-layer

soil stratification, Eq. 3.156 can be transferred into the following transfer matrix formulation:



{
W11(h)

P11(h)

}
{

W21(h)

P21(h)

}


i

=

[
[L] [0]

[LI] [L]

]
i



{
W11(0)

P11(0)

}
{

W21(0)

P21(0)

}
 , (3.157)

in which [L] is the 2x2 transfer matrix accounting for the single pile response, and [LI] is the 2x2 transfer

matrix accounting for the pile-to-pile interaction, which is shown in the appendix in Eq. A.3. Further detail

about the matrix formulation can be found in the study by Mylonakis [290].

loaded source pile unloaded receiver pile

Kb

kz

rij

W11(0) W21(0)

support excitation
of receiver pile

 attenuated displacement

source pile vertical
settlement W11 (z)

receiver pile
settlement W21 (z)

pile spacing

wbb

Us(rij,z)

Figure 3.62: Schematic illustration for analysis of the influence of a head-loaded source pile on an adjacent
(unloaded) receiver pile in a layered soil, based on [291]

For the pile group settlement analysis of nP identical piles supported by a rigid pile cap, a general formulation
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for n soil layers involves the following matrix algebra:

Pt =

nP∑
i=1

Pi =
[
{1}T [A]−1{1}

]
wt = Kspr,v ,lin wt , (3.158)

where [A] is the nP x nP interaction-factor matrix and {1} is a nP x 1 unit vector.

In the particular case of a pile group in a homogeneous soil (see Fig. 3.63(a)), an explicit expression

for the shaft-to-shaft interaction factor αs , based on Eq. 3.156, can be determined as a product of two

functions:

αs = ψs(rij ) · ζs (hλ, Ω) , (3.159a)

with the attenuation function ψs(rij ) (free-field displacement):

ψs(rij ) ≡
Us (rij , z)

Us (dP/2, z)
=


ln (rm)− ln (rij )

ln (2rm)− ln (dP)

dP

2
< rij < rm

0 rij ≥ rm

1 rij =
dP

2

, (3.159b)

and the rigidity interaction function ζs :

ζs =
2hλ+ sinh (2hλ) + Ω2 [sinh (2hλ)− 2hλ] + 2Ω [cosh (2hλ)− 1]

2 sinh (2hλ) + 2Ω2 sinh (2hλ) + 4Ω cosh (2hλ)
. (3.159c)
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Figure 3.63: Sign convention for pile foundation model by Mylonakis and Gazetas [291] for vertically
loaded pile groups

The attenuation function ψs(rij ) describes the free-field displacement and the interaction function ζs rep-

resents the effect of the rigidity of the pile and the interaction between the pile and surrounding soil. In the

model by Randolph and Wroth [334] it is assumed that the shaft of the receiving pile follows exactly

the induced free-field soil settlement generated at mid-depth of the source pile. Hence, Randolph et al.

[334] assumed that ζs = 1.0 [291]. Therefore, the model by Randolph and Wroth [334] does not take

into account the effect of the unloaded receiver pile on the settlement of the loaded source pile. Outside
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rm, no shaft-to-shaft interaction is considered, as also suggested by [242].

In addition to the pile shaft settlements, a displacement field below the pile bases is caused where some

interaction between the pile bases may occur. Based on the expectation that the pile base behaves as a

punch on the surface of a half-space, the attenuated settlement at a radial distance rij measured from

the pile base can be determined by the approximation of Randolph and Wroth [334]. The attenuated

settlement field ψb (rij ) Wb generated from the load Pb at the source pile base drags the base of the spring

at the receiver pile tip downwards. Hence, a corresponding base interaction factor αb, accounting for the

base-to-base interaction, can be determined. For a homogeneous single-layer soil, the base interaction factor

is explicitly defined as the product of the following functions:

αb = ψb(rij ) · ζb (hλ, Ω) , (3.160a)

with the attenuation function for the soil settlement at the pile base ψb (rij ):

ψb (rij ) ≡
Us (rij , lP)

Us (dP/2, lP)
≈ dP

πrij
, (3.160b)

and the pile base interaction factor ζb:

ζb =
2Ω

2Ω cosh (2hλ) + sinh (2hλ) (Ω2 + 1)
. (3.160c)

The overall interaction factor αt is approximately equal to the sum of the shaft-to-shaft interaction αs and

base-to-base interaction αb [291, 332]:

αt = αs + αb . (3.161)

The attenuated settlement, due to the pile base, decreases inversely proportionate to the radial distance

rij . In contrast, the vertical displacement, due to the pile shaft, decreases at a much slower rate. Hence,

the shaft settlement affects a much bigger region than the pile base. In Fig. 3.64(a), the normalised base-

to-base interaction factor ζb = αb/ψb (rij ) is illustrated for various dimensionless base stiffness Ω and pile

length hλ values. It is obvious that the base-to-base interaction decreases very quickly with pile length and

for most cases of practical interest ζb < 0.20. Therefore, the base interaction factor αb is a product of

two small numbers and is much smaller than unity (order of 10−3). Consequently, the pile base-to-base

interaction is negligible and need not be considered in the interaction factor matrix [A] [291].

The more important shaft-to-shaft interaction is shown in Fig. 3.64(b). For short piles, the interaction

increases rapidly with pile length for the dimensionless base stiffness Ω in the range between 0.05 and 0.20.

A peak for the increasing portion is found at the value of hλ ≈ 0.5. Hereafter, the shaft interaction turns

to a decreasing function for longer piles approaching asymptotically the value of 0.50. With increasing base

stiffness, this peak occurs at an increasing value of the pile length hλ. A good agreement with the study

by Poulos et al. [320] and Sharnouby et al. [377] is found in a comparative parameter study [291].

In addition to the shaft-to-shaft interaction factor for a single-layer soil, a closed-form expression for a

two-layer soil stratification, see Fig. 3.63(b), is defined as:

αs = ψs(rij ) · ζs (h1λ1, h2λ2, Ω, Ω1) , (3.162a)
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Figure 3.64: Interaction factors for piles embedded in single-layer soil for several dimensionless base stiff-
ness Ω, based on [291]

in which the function ζs (h1λ1, h2λ2, Ω, Ω1) is defined as:

ζs =
2h1λ1 + sinh (2h1λ1) + Ω2

1 [sinh (2h1λ1)− 2h1λ1] + 2Ω1 [cosh (2h1λ1)− 1]

2 sinh (2h1λ1) + 2Ω2
1 sinh (2h1λ1) + 4Ω1 cosh (2h1λ1)

...

+
2Ω1

2Ω1 cosh (2h1λ1) + sinh (2h1λ1)
(
Ω2

1 + 1
) ...

· 2h2λ2 + sinh (2h2λ2) + Ω2 [sinh (2h2λ2)− 2h2λ2] + 2Ω [cosh (2h2λ2)− 1]

2 sinh (2h2λ2) + 2Ω2 sinh (2h2λ2) + 4Ω cosh (2h2λ2)
, (3.162b)

with

Ω1 =
λ2

λ1

Ω + tanh (h2λ2)

1 + Ω tanh (h2λ2)
, (3.162c)

and

Ω =
Kb

EPAPλ2
. (3.162d)

In the case that h1 = 0, the determination of the two-layer shaft-to-shaft interaction factor αs according to

Eq. 3.162 reduces to the single-layer closed-form solution represented by Eq. 3.159. For the pile slenderness

ratios lP/dP = 20 and 40, and the soil embedment ratios h1/lP = 1/3 and 2/3, Fig. 3.65 illustrates αs

for various pile spacings rij/dP . Less interaction between the shafts of neighbouring piles can be found

with increase in the bottom layer’s soil stiffness (E2 → λ2). The effect of the embedment ratio is less

important for the parameters studied in the comparison. Furthermore, for shorter distances between the

piles rij/dP < 5 an increase in the pile length from lP/dP = 20 to 40 leads to a relatively small decrease in

the interaction factor. However, longer piles interact for greater pile spacing rij/dP > 10 higher compared

to the shorter ones. The comparison with the results based on the Boundary Element Method by Kaynia

[205] and Valliappan et al. [400] shows a satisfactory agreement between the methods, especially for the

long piles [291].
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Figure 3.65: Interaction factors αs for piles in two-layer soil according to Mylonakis et al. [291] for
various soil stiffness ratios E1/E2 and pile embedment ratios h1/lP , compared with Kaynia
[205] and Valliappan et al. [400], EP/E1 = 1000, νs = 0.40, χ1 = 2.50, χ2 = 1.00 for
E1/E2 = 1 and E1/E2 = 1/2, χ2 = 0.75 for E1/E2 = 1/4

Rudolf 2005 [353]

In order to develop a practical design approach by determining nomograms, Rudolf [353] investigates

a numerical Finite Element model for pile groups, which take into account the soil non-linearity. The soil

is modelled as a bi-linear material with the failure criteria according to Mohr-Coulomb [77, 282] in order

to minimise the necessary parameters for the soil material modelling. In contrast, the reinforced concrete

elements of the pile and pile cap are modelled as linear-elastic materials. In the bond zone between the

pile and soil, no additional interface elements or contact areas are modelled, which lead to direct shear

transfer at the pile shaft elements. This direct contact between the piles and the soil, and the influence

on the overall pile group settlement behaviour is previously investigated in studies presented in [175, 353].

Finally, the direct contact description seems to be accurate enough, however, the element thickness at

the pile shaft crucially influences the computational results [354]. Increase in the corresponding thickness

raises the stiffness of the entire pile [272, 328]. Therefore, Rudolf analysed in a comparative study the

results between the direct coupling and the interface modelling using contact areas. An element thickness
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3.6. Pile foundation

of about 0.15dP around the pile shaft enables adequate results for the considered direct coupling modelling

technique [354]. These nomograms published in [81, 353, 354] are developed based on extensive parameter

studies, see Tab. 3.18, which are performed based on the previously described Finite Element analysis.

Table 3.18: Parameter study of Rudolf [353, 354] for determining nomograms for settlement analysis
of pile groups

Parameter Symbol Bandwidth of parameter Unit

pile diameter dP 0.3, 0.4, 0.6, 0.9, 1.20, 1.5 [m]
pile length lP 9, 12, 18, 24 [m]
pile spaces s 3 · dP , 6 · dP , 9 · dP [-]

effective friction angle ϕ
′

20 → 40 [◦]

effective cohesion c
′

0 → 40 [◦]
soil modulus of elasticity E 2.2 → 52 [MN/m2]
specific gravity (earth-dry) γ 17 → 21 [kN/m3]

In addition to the Finite Element analysis, a mathematical model is developed, based on the linear-elastic

pile group interaction approach by Randolph and Wroth [332, 334]. Similar to the previously mentioned

models by Randolph et al. [334] and Mylonakis et al. [291], the pile cap behaviour is assumed to be

rigid in the study by Rudolf [353]. In addition, the pile itself is a rigid element in the mathematical model.

As the major difference, the linear-elastic pile group stiffness prediction is enhanced to a physical non-linear

pile group analysis. Due to the soil self-weight, the vertical σz and horizontal σx stresses are computed as

the initial stress state, see Fig. 3.67. Shear stresses τzx do not occur in the initial stress state. These shear

stresses increase in the incremental load-displacement analysis (see Fig. 3.66), and are thereby computed

according to Eq. 3.117 (τzx = τ0). The elements in the analysis at the pile shaft and pile base are described

by a bi-linear material model. The failure criterion is determined by the Mohr-Coulomb condition [77, 282]:

σ
′
I − σ

′
III

2
=
σ
′
I + σ

′
III

2
sinϕ

′
+ c

′
cosϕ

′
, (3.163a)

F (σ) =
σ
′
I

2

(
1− sinϕ

′
)
− σ

′
III

2

(
1 + sinϕ

′
)
− c

′
cosϕ

′
. (3.163b)

In the case that the failure condition F (σ) ≥ 0, the cohesive strength τf determined by the Mohr-Coulomb

shear criterion exceeds the maximum shear stress τmax caused by σz , σx , and τzx . In the non-linear analyses,

the vertical and horizontal stresses at the pile shaft are assumed to be constant as computed in the

initial stress state condition. Therefore, the average between the principal stresses (σ
′
I + σ

′
III/2) remains

constant, see Fig. 3.66. Comparison with the results obtained in the Finite Element analysis confirms this

determination [353].

In the case that the pile shaft is considered a unique element, the load-deformation behaviour of the

pile shaft resistance is linear up to a load level which causes failure criterion to be met. A more adequate

consideration of the pile shaft resistance can be investigated by dividing the entire pile shaft into ns

elements. In addition, this segment analysis enables the consideration of vertical soil stratification. Hence,

the failure criterion according to Eq. 3.163b is checked at each local element and a non-linear relationship
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Figure 3.66: Increase in principal stresses σ
′
I , σ

′
III , due to incremental vertical loading up to Mohr-Coulomb

failure criterion, based on [353]

can be considered in the pile shaft load-settlement behaviour. The shaft interaction factor fs,i ,j ,ns of the j

pile on the i pile shaft settlement can be determined based on Randolph et al. [332], see Eq. 3.117:

fs,i ,j ,ns =
ws

Ps
=


(1 + νs)

E · lP · π
ln

(
rm,g

rij

)
rij ≤ rm,g

0 rij > rm,g

, (3.164)

in which rij = r0 for i = j . The overall pile shaft stiffness can be computed by the sum of each pile shaft

element, in which the Mohr-Coulomb failure criterion is directly checked at the pile shaft according to

Eq. 3.163b. In the case that the failure criterion is exceeded, the interaction factor for the corresponding

element at the pile shaft is set to zero (fs,i ,j ,ns = 0). An additional increase in the pile shaft load cannot

be admitted in the corresponding pile shaft element for further load increments.

In accordance with Timoshenko and Goodier (Eq. 3.121), the pile base settlement can be described

by the solution for a rigid punch. The corresponding settlement profile relative to the distance from the

pile base is similarly determined in the model by Randolph and Wroth [334] (Eq. 3.124, Eq. 3.148) by

the pile base interaction factor fb,i ,j :

fb,i ,j =
wb

Pb
=


(
1− ν2

s

)
E · π · rij

i 6= j(
1− ν2

s

)
E · dP

i = j

, (3.165)

Comparison to FEM simulation shows that this elastic determination overestimates the pile base stiffness

even in the serviceability limit state. Therefore, Rudolf [353] proposed a method which considers the

non-linear behaviour of the pile base stiffness. An imaginary plane under the pile base end is subdivided

into several elements in order to meet the Mohr-Coulomb failure criterion, see Fig. 3.67.

Each element represents a subarea (A1 to A5) of the pile base. In the case that the failure criterion is

exceeded, the corresponding subarea is not capable of resisting another load increment and, thus, the total

area in the plane under the pile base is reduced. The elastic pile base stiffness according to Eq. 3.165 is

enhanced to [353]:
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Figure 3.67: Imaginary plane below the pile base with corresponding subareas, based on [353]

fb,i ,j =
wb

Pb
=


(
1− ν2

s

)
E · π · rij

· nel

nel − nf
i 6= j(

1− ν2
s

)
E · dP

· nel

nel − nf
i = j

. (3.166)

nel ... number of elements in imaginary plane

nf ... number of failed elements in imaginary plane

The vertical and horizontal soil stresses are initially computed under the soil dead load condition in the

plane stress state. In the incremental load-settlement analysis of the pile base, the increase in the stresses

σz , σx , and τzx are analysed based on the solution by Mindlin [280] for a vertical load at a certain

depth inside an elastic half-space, as presented in [315], see in the appendix Fig. A.1 and Eq. A.4. The pile

base loads are separately computed for each pile in the pile group analysis and therefore the interaction

between the pile bases is already considered. Hence, no adjustment in the vertical force must be made at

the imaginary plane. In order to check the Mohr-Coulomb failure condition, the pile bases are separately

checked in each corresponding subarea. For the case that all subareas fail (nf = nel), no additional load

can be carried by this pile base and therefore fb,i ,j = 0.

The load-settlement analysis of the pile group can be computed by the matrix notation [A]{b} = {c}. Pile

shaft-to-shaft (fs,i ,j ,ns ) and base-to-base interaction factors (fb,i ,j ) are stored in the matrix [A], the vector

{b} contains the load, resistance and the vertical settlement, and the vector {c} consists of the unit load.



[fs,i ,j ,1] ... [0] [0] {−1}
...

. . . ... ... ...

[0] ... [fs,i ,j ,ns ] [0] {−1}
[0] ... [0] [fb,i ,j ] {−1}
{1} ... {1} {1} 0


·



{
R1

s,i ,1

}
...{

R1
s,i ,ns

}{
R1

b,i

}
w 1

t


=



{0}
...

{0}
{0}

1


(3.167)
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Solving for the vector {b} = [A]−1{c}, the vertical settlement w 1
t can be computed as well as each specific

resistance for the pile shaft R1
s,i and pile base R1

b,i . The response of the pile group for a certain vertical

load Pt is consequently determined:

wt = w 1
t · Pt , (3.168a)

Rs,i = R1
s,i · Pt , (3.168b)

Rb,i = R1
b,i · Pt . (3.168c)

This mathematical model for vertically loaded piles is initially checked for the load-settlement relationship

of single piles in various soil conditions, see appendix Fig. A.2, with the corresponding soil properties listed

in the appendix in Tab. A.3. On average, an adequate agreement between the mathematical and numerical

models is found for various soil conditions [353]. The pile shaft resistance is slightly underestimated for all

geometric and material variations. This systematic difference might occur due to the stress state assump-

tions mentioned previously. In the numerical analysis, a minor increase in the vertical and horizontal stresses

close to the shear failure is observed. This phenomenon is not considered in the mathematical model, which

leads to a difference as compared to the pile shaft resistance obtained from the Finite Element simulation.

The pile base resistance is checked at the imaginary plane. This surface is under the pile shaft at a distance

of r0 with a diameter of 4r0, which considers a load distribution angle of 45◦. The surface is subdivided into

5 subareas and the corresponding pile base resistance is checked according to the Mohr-Coulomb failure

criterion. Comparison to the numerical model for all studied parameters illustrates a very good accuracy of

the mathematical model when considering the imaginary plane [353].

sx

corner pile

edge pile

interior pile

central pile

s y
s y

s y
s y

sx sx sx

rm

Figure 3.68: Pile layout for 5x5 group with corresponding effective influence areas determined by “magical”
radius rm for corner, edge, central, and interior pile

In order to prove the general applicability of the mathematical model, a quadratic pile group of 25 piles

(5x5) under different conditions, such as soil properties and pile geometry, is studied based on Finite Ele-

ment simulations and the mathematical model. The general pile layout is illustrated in Fig. 3.68. Because

of the different interactions between each individual pile, the piles in the group are not similarly loaded and

differences in the load-deformation behaviour and resistance-settlement relationship exist. Therefore, the

piles in the entire group can be differentiated into several categories of corner pile, edge pile, central pile,

and interior pile [218, 353].

The resistance-settlement behaviour of a 5x5 quadratic pile group with the pile spacing sx = sy = 6dP ,

pile length lP = 9.0 m, and pile diameter dP = 0.9 m embedded in a cohesive, normally-consolidated soil is
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Figure 3.69: Comparison between mathematical model and numerical simulation based on Rudolf [353]
for 5x5 pile group, rm,g = lp, cohesive soil, normally-consolidated, E = 6.5 MN/m2, lP =
9.0 m, dP = 0.9 m, sx = sy = 6dP , Kv ,lin = 594 MN/m

shown in Fig. 3.69. The corresponding soil properties are listed in the appendix in Tab. A.3 and the partic-

ular pile spacings rij are shown in the appendix in Tab. A.4. The comparison between the Finite Element

simulations and the mathematical model assesses a satisfactory consistency for the overall load-deformation

behaviour. The pile shaft stiffness prediction is very similar for both solution techniques. In contrast, the pile

base behaviour is less stiff in the mathematical model compared to the numerical simulation. In addition,

the resistance-settlement behaviour of a 5x5 quadratic pile group with the pile spacing sx = sy = 6dP , pile

length lP = 18.0 m, and pile diameter dP = 0.9 m embedded in a cohesive, over-consolidated soil is shown

in the appendix in Fig. A.3.

Comparison between model characteristics for axially loaded single piles and pile groups

Several model characteristics and corresponding input parameters for the considered vertical pile models

are listed in Tab. 3.19. If the pile behaviour is assumed to be rigid, there is no need to define a modulus

of elasticity for the pile. Therefore, this parameter is not considered in the model by Randolph and

Wroth [334] and by Rudolf [353]. The soil parameters of friction angle and cohesion are needed for the

description of the Mohr-Coulomb material model. They are exclusively included in the non-linear soil model
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by Rudolf [353] and are not necessary for the other models, which assume a linear-elastic soil behaviour.

Moreover, Rudolf considers an initial stress state, due to the soil dead load, in order to accurately assess

the failure criterion based on Mohr-Coulomb. A multi-layered soil condition can only be considered in

the model by Mylonakis et al. and Rudolf. In contrast, the model by Randolph is restricted to

homogeneous soil, as discussed in the previous sections.

The comparison of the model predictions is presented in the following paragraph according to full-scale tests

of a 3x3 pile group investigated by Koizumi et al. [217]. Moreover, these models for vertically loaded pile

groups are evaluated based on the uncertainty analysis considering model, parameter, and total uncertainty.

Therefore, a study of two different pile groups is presented in Sec. 5.2.

Table 3.19: Pile model characteristics for vertical loading condition

criteria/ Randolph et al. Mylonakis et al. Rudolf
material property [334] [291] [353]

pile behaviour rigid compressible rigid
soil behaviour linear-elastic linear-elastic bi-linear

Mohr-Coulomb
failure criteria

soil stratification homogeneous multi-layered multi-layered

pile modulus of elasticity EP � X �
soil modulus of elasticity E X X X
soil shear modulus Gs X X X
soil Poisson’s ratio νs X X X
friction angle ϕ � � X
cohesion c � � X
earth pressure at rest coefficient K0 � � X

Full-Scale load tests

A 3x3 steel pile group with the pile spacing of sx = sy = 0.9 m (three pile diameters) founded on a highly

sensitive clay stratum resting on a sequence of sand and gravel layers at a depth of 14 m is tested by

Koizumi et al. [217]. This full-scale load test is modelled by Cairo et al. [58] and Zhang et al. [416],

among others, in a two-layer soil stratification with the upper layer extending to a depth of 1.70 m (sandy

silt followed by silty clay). The external diameter of the steel piles is 300 mm and the thickness is 3.2 mm.

The modulus of elasticity of the pile is measured to be Ep = 200, 000 MN/m2) and the pile length is

lP = 5.5 m. The pile cap is in contact with the soil. From laboratory and in situ tests, the shear strength

τf is found to increase from approximately 25 at the pile head to 40 kN/m2 at 3.50 m depth and decrease

from 40− 25 kN/m2 at the pile tip. From inverse analysis of the single pile loading tests, Cairo et al. [58]

concluded that νs ≈ 0.5 and the values of the soil modulus of elasticity of the upper and lower soil layers

are approximately 12.8 and 15.6 MN/m2, respectively.

In the experimental study by O´Neill [300], a group of nine piles is investigated. The steel piles are

founded on soft to medium-stiff clay. The diameter is not constant over the pile length of lP = 18.45 m.

The external diameter of these tapered steel piles is 419 mm and 203 mm at the head and tip of the pile,

respectively. The steel thickness is 4.6 mm and the pile spacing is designed to be sx = sy = 1.22 m. The

pile cap is 1.22 m off the ground and therefore not in contact with the soil. The soil (saturated clay) can

be described by a two-layer soil system with the average values of the undrained shear strength cu for the
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3.6. Pile foundation

upper (soil layer depth h1 = 12.2 m) and lower layers 21.5 and 37.4 kN/m2, respectively.

Moreover, for a multi-layered soil condition (cohesive soils: stiff clay, stiff sandy clay, silt and sand layers)

O´Neill et al. [301] tested closed-ended steel piles (external diameter of 273 mm, thickness of 9.3 mm)

in a group of nine piles with the pile spacing sx = sy = 3dP and the pile length lP = 13.1 m. The piles are

capped with a rigid concrete cap suspended 0.9 m off the ground.

The interaction between two identical piles is investigated by Caputo et al. [60]. The load-deformation

behaviour of the loaded pile is measured to be highly non-linear, whereas the adjacent load-free pile is

linearly elastic. This behaviour is similarly investigated by Chow [70], which also assessed that non-linear

response only develops near the loaded pile side, and the pile-to-pile interaction remains essentially elastic.

A group of five tubular steel piles is tested by Briaud et al. [52] with the pile length lP = 9.15 m. These

piles are connected by a rigid free-standing cap suspended 0.6 m off the ground. The bedrock is at a depth

of 14.5 m

The behaviour of bored pile groups in medium dense and weakly cemented sands is studied by Ismael

[189]. Axial load tests on single bored piles in tension and compression and compression tests on two pile

groups each consisting of five piles with different pile spacing (two- and three-pile diameters) are performed.
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Figure 3.70: Comparison between prediction models and full-scale test of a 3x3 pile group investigated by
Koizumi et al. [217], models: Randolph et al. [334], Mylonakis et al. [291], Rudolf
[353]

The prediction of the pile models for axially loaded pile groups are compared to experimental full-scale test

by Koizumi et al. [217], see Fig. 3.70. Based on the inverse analysis [58], the elastic moduli of the soil were

are well investigated and, hence, the elastic response of the pile group is well-predicted by all models. Due

to some lack of knowledge about the shear soil parameters on site, different friction angles and cohesion

properties are chosen for the non-linear model by Rudolf [353]. Depending on these soil properties, the

measured non-linear response of the experiment can be analysed with adequate accuracy. This comparison

shows that all models used in the response analysis (either linear or non-linear) of vertically loaded pile

groups are generally applicable.
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3.6.2 Lateral loading

3.6.2.1 Deformation and failure mechanism

Pile foundations in bridge engineering are typically subjected to high vertical loads. Horizontal loads and dis-

placements, due to braking forces, temperature contraction/extension, concrete shrinkage, and prestressed

concrete, induce additional lateral loads on the pile foundations under the bridge piers. These external

forces/displacements are applied to the pile with the soil resisting the load.

H

gap

failure of 
wedge of 

soil

(a) single pile

H

gap

failure of 
wedge of 

soil

(b) pile row failure in pile group

Figure 3.71: Pile failure mechanism of single piles and pile groups under lateral load, based on [113]

Normal stresses increase in front of the pile and decrease behind the pile as a pile is loaded laterally. The

soil displacements tend to radiate away from the pile in front of the pile and towards the pile behind the

pile. A gap near the ground surface between the back of the pile and the soil might be opened at some

loading level. Moreover, the soil in front of the pile may fail in a wedge type mechanism, see Fig. 3.71(a).

The soil further down the pile shaft may fail by flowing around the pile with no gap present [113]. These

different soil failure mechanisms must be taken into account in the analysis of the distribution of limiting

pressure which may be mobilised by the pile. In general, pile collapse may occur in one of two modes. In

one scenario, the pile can rotate essentially as a rigid body. This failure mode is mainly observable for short

piles or piles with a large plastic moment. In another scenario, for longer piles, a plastic hinge can develop

at some depth down the pile and only the upper part of the pile may undergo extensive displacements.

In a group of piles where the applied lateral load is parallel to the individual blocks, the relevant failure

mechanism is the failure of the pile rows, see Fig. 3.71(b). This occurs in the case that the shearing resis-

tance of the soil between the piles is less than the limiting resistance of an isolated pile. Moreover, rotation

in the pile group, in addition to the lateral translation, can occur, see Fig. 3.72. Piles behind the axis of

rotation may fail by uplift, whereas those in front may fail in compression [113].

The deformation behaviour of a pile under lateral loading is generally concentrated in the upper part of

the pile. Below the ground surface at the depth of about ten-pile diameter, the deformation process is less

significant [113, 331]. Hence, the pile length is rarely a relevant parameter when developing solutions for

laterally loaded piles. The idealisation of piles subjected to lateral loads by an equivalent cantilever is a

common (but imprecise) approach. The pile is modelled as a cantilever, fixed at some depth determined

by empirical solutions, ignoring the soil support above that depth. The consideration of the soil influence

on the deformation behaviour above that depth can increase the complexity and accuracy of the model
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M
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Figure 3.72: Pile failure mechanism of pile groups due to lateral translation and rotation, based on [113]

description. On one side, the soil can be represented by discrete springs down the length of the pile. On

the other side, a more accurate consideration by a continuum soil model can be adopted.

The lateral load-deformation behaviour of pile groups is not only associated with the lateral deformation

characteristics of the individual piles, but also the axial characteristics. Due to pile group rotation, piles at

the group edges are loaded in tension and compression, providing considerable rotational stiffness to the

group [113].

3.6.2.2 Models for pile groups under lateral loading

The response of piles subjected to lateral loads is initially analysed with the subgrade reaction approach

in which the soil is modelled as a series of springs down the length of the pile (Winkler soil idealisation).

Analytical solutions for a constant stiffness down the pile length are presented in [265]. For soil with

stiffness that is proportional to depth, solutions can be found in [339]. A transfer matrix method for

non-linear analysis of pile group responses is investigated by Nogami and Paulson [298], which allows

for pile-soil-pile interaction in the horizontal direction only. According to Fleming et al. [113], the main

limitation of these approaches lies in assessing an appropriate value of the subgrade reaction coefficient k

for the soil. The correct choice depends not only on the soil properties, but also on the pile stiffness, and

the form of loading. Moreover, there is no reasonable way in which interaction effects can be quantified

when a group of piles is loaded laterally. Solutions based on the Finite Element and Boundary Element

methods for pile and soil modelling, such as Poulos [317, 318] and Randolph [330, 331], are studied

to overcome these limitations. In the following paragraphs, a mathematical model investigated by Finite

Element studies and a model based on a characteristic load method are presented, which are generally

reasonable for linear and non-linear response analysis of laterally loaded pile groups. The pre-selection of

these models was assisted in an cooperative study with Stutz et al. and is presented in [197].

Randolph 1981

This model is investigated by Finite Element studies of an elastic soil continuum, which is originally described

in the thesis of Randolph [330]. A parametric study of piles in homogeneous soil described by a shear
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3. Modelling aspects of restraint sensitive concrete structures

modulus, Poisson ratio, and in soil with stiffness proportional to depth, are performed. The rate of increase

in shear modulus with depth can be described with the parameter m by [331]:

G = mz = mr0z/r0 . (3.169)

In the model by Randolph [331], the interaction factors and the solution are presented based on normal-

isation of pile EP and soil stiffness Gc determined by the corresponding stiffness ratio EP/Gc . Therefore,

any interaction factor is solely a function of the stiffness ratio and is independent of the pile length. The

deformation analysis is generally insensitive to pile length. This is valid for all piles which are longer than the

critical length lc beyond which the pile length no longer affects the response under lateral loading (termed

flexible piles). For piles with a length shorter than their critical length, the head deformation is larger than

defined in the model by Randolph. [331]. The increase in deflection is small until the pile length falls

below about 0.8lc [113]. Solutions for such short piles are presented in [62, 320].
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Figure 3.73: Definition of degree of homogeneity ρdsh, modified shear modulus G *, and departure angle
ψ, based on [331]

The effect of variations in Poisson’s ratio on the lateral deformation can be adequately represented by a

modified shear modulus G *. The modified shear modulus, the characteristic modulus Gc over the active

length of pile, and the degree of homogeneity in the soil stiffness ρdsh, see Fig. 3.73(a), are defined as:

G * = G (1 + 3νs/4) (3.170a)

m* = m (1 + 3νs/4) (3.170b)

Gc = G *
lc/2 (3.170c)

ρdsh = G *
lc/4/Gc (3.170d)

For piles without a solid circular cross-section, it is valuable to compute the pile behaviour based on an

equivalent solid pile of diameter dP . The effective modulus of elasticity of the pile can be computed by

[331]:

EP =
(EI )P

πd 4
P /64

, (3.171)
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in which (EI )P is the bending stiffness of the actual pile cross-section. Therefore, general variations of soil

stiffness with depth can be considered in the determination of the critical pile length lc by:

lc = dP

(
EP

Gc

)2/7

. (3.172)

Some iterations are necessary for general variations of shear modulus with depth (first guess for critical

length may be 10dP). Based on the concept of the characteristic modulus Gc according to Randolph

[331], the computation of the horizontal displacement u and the rotation ϕ at the ground level due to the

lateral loading (H, M) for a single pile can be computed by:

u =
(EP/Gc)1/7

ρdshGc

[
0.27

H

lc/2
+ 0.30

M

(lc/2)2

]
and (3.173a)

ϕ =
(EP/Gc)1/7

ρdshGc

[
0.30

H

(lc/2)2
+ 0.80

√
ρdsh

M

(lc/2)3

]
. (3.173b)

These solutions are derived in the parametric study based on the Finite Element simulations with the soil

modelled by as an elastic continuum. Moreover, the maximum moment of a pile under a lateral load H can

be estimated by [331]:

Mmax = (0.1/ρdsh) Hlc . (3.174)

The pile cap in a group of piles may prevent rotation of the head of the pile. For such fixed-headed piles,

Eq. 3.173b can be used to find a moment Mf , with fixed the rotation ϕ = 0. This moment Mf is given by

[331]:

Mf = −
[
0.1875/ (ρdsh)1/2

]
Hlc , (3.175)

leading to a deflection u which is approximately half that for a free-headed pile under the same lateral

force.

In order to analyse pile groups with closely spaced piles under a lateral loading condition, the solution of

a single pile can be extended to the pile group by applying the interaction factor concept. Basically, the

interaction factor is defined as the fractional increase in deformation of a certain pile due to the presence

of a similarly loaded neighbouring pile. The deformation of ith pile in a group of nP piles can be computed

by:

δi =
1

Kh,lin

nP∑
j=1

αij Pj , (3.176)

in which δi is the deformation of the ith pile, Kh,lin is the lateral stiffness, αij is the interaction factor

between the ith and jth pile, and Pj is the load on the jth pile. For a pile group subjected to an external

lateral load, different interaction factors, depend on the loading at the pile head and the deformation type,

are proposed in the study by Poulos [318] as follows:
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� αuH ... deflection interaction of free-headed piles under lateral load,

� αuM ... deflection interaction of free-headed piles under moment loading or for rotation of

free-headed piles under lateral load,

� αϕH ... rotation interaction of free-headed piles under lateral load, and

� αϕM ... rotation interaction of free-headed piles under moment loading, and

� αuf ... deflection interaction of fixed-headed piles (restrained against rotation).

Of most relevance in structural engineering is αuf , since the rotational stiffness of pile groups is usually

high, since the majority of pile groups are capped with a pile cap of sufficient stiffness to prevent significant

rotation of the pile heads [113, 331]. Therefore, a single fixed-headed pile deflects only about one-fourth as

much as a free-headed pile subjected to the same load. Hence, the rotational restraint due to the pile cap is

a significant factor in the pile group behaviour analysis [303]. Nevertheless, the zero-rotation condition for

fixed-headed piles is rarely achievable in the field even in a group that is constrained by a stiff concrete pile

cap. A practical approach for determining the moment restraint that is provided by the pile cap as a support

condition for investigating laterally loaded pile groups which are proposed by Guo [156], Houston et al.

[181], and Mokwa et al. [284].

Finite Element analysis of pile groups for fixed-headed piles [330] showed that the lateral movement pat-

terns at the soil surface, around a laterally loaded pile, can be related directly to the interaction factor

αuf proposed in [318]. Based on the normalisation, the interaction factor for fixed-headed piles can be

determined by:

αuf = 0.6ρdsh

(
Ep

Gc

)1/7 r0

s

(
1 + cos2 ψ

)
, (3.177)

where s is the pile spacing and ψ is the angle of departure that the piles make with the direction of loading,

see Fig. 3.73(b). The interaction for piles in the normal direction to the load direction (ψ = 90◦) for a given

spacing is half of that for piles along the line of loading (ψ = 0◦). Moreover, the interaction for piles in a

soil with stiffness proportional to depth (ρdsh = 0.5) is half that for piles in homogeneous soil (ρdsh = 1).

Furthermore, the interaction factors are inversely proportional to the pile spacing [331]. For very closely

spaced piles, the interaction factor based on Eq. 3.177 tends to overestimate the amount of interaction.

Therefore, it is more adequate to replace this determination in the case that αuf > 0.5 with:

αuf = 1− (4αuf )−1 . (3.178)

This modification of the interaction factor for very closely spaced piles additionally ensures that as the

pile spacing tends to approach zero the computed interaction factor tends to approach unity. As proposed

by Poulos [318], the interaction for fixed-headed piles is generally greater than for free-headed piles.

Accurate results for αuH can be obtained by replacing the multiplier 0.6 in Eq. 3.177 by 0.5 to get:

αuH = 0.5ρdsh

(
Ep

Gc

)1/7 r0

s

(
1 + cos2 ψ

)
, (3.179)
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and again, where this value of αuH exceeds 0.5, a corrected determination by:

αuH = 1− (4αuH)−1 , (3.180)

is reasonable to use [331]. The other interaction factors are smaller than αuH at practical pile spacings.

Accurate results can be obtained by the following determinations:

αuM = αϕH ≈ α2
uH , (3.181)

αϕM ≈ α3
uH . (3.182)

Duncan et al. 1996 [51, 87, 303]

This model is based on the characteristic load method (CLM), which is capable of providing a simple and

accurate model to perform non-linear lateral pile analysis. The load-deformation analysis by Duncan et

al. [87] is investigated by performing non-linear p-y (investigated by [271]) analyses for a wide range of

free-headed and fixed-headed piles and drilled shafts in clay and sand. This method relates the reaction of

the soil against the pile to the deflection of the pile by means of non-linear p-y curves which are established

on the basis of numerical analyses.

The CLM is generally more simple than the p-y analyses, but it closely approximates p-y analyses results.

Non-linear responses of piles subjected to lateral loads are caused by the non-linear soil behaviour around

the pile. As the load transferred from the pile to the soil increases by a fraction of its value, the deflection

increases by a greater fraction even if the pile itself remains linear [87]. In the case that the soil’s strength

becomes mobilised, additional loads must be transferred to greater depths, where the soil strength is not

yet mobilised to the same degree. Therefore, the moment increases more rapidly down the pile than the

load at the top of the pile.

Subsequently, the results are represented in the form of relationships among dimensionless variables to

represent a wide range of practical conditions by means of a single relationship. In order to develop these

dimensionless relationships, the actual loads H, M are divided by a characteristic load Hc and characteristic

moment Mc , respectively. These parameters represent the properties of both piles (diameter, flexural stiff-

ness) and soil (strength, stress-strain behaviour). Therefore, the characteristic load and moment determine

the behaviour of the pile and the soil in response to lateral loads. A greater capacity of the pile and a

smaller deflection under a given load is found for larger values of Hc (equivalent for a given moment and

Mc). The characteristic load and moment are defined as [87]:

for clay:

Hc = 7.34d2
P · Ep ·

(
Su

EP

)0.68

, (3.183)

Mc = 3.86d3
P · Ep ·

(
Su

EP

)0.46

, (3.184)

for sand:

Hc = 1.57d2
P · Ep ·

(
γ
′
dPϕ

′
Kp

EP

)0.57

, (3.185)

Mc = 1.33d3
P · Ep ·

(
γ
′
dPϕ

′
Kp

EP

)0.460

, (3.186)
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where Ep is the effective modulus of elasticity of the pile according to Eq. 3.171, Su is the undrainded

shear strength of clay, γ
′

is the effective unit weight of sand, ϕ
′

is the effective friction angle for sand (in

degrees), and Kp is the Rankine coefficient of passive earth pressure (Kp = tan2(45◦ + ϕ
′
/2)). The most

importance regarding the response of the pile to lateral load is the soil near the top of the pile. Hc and Mc

should be averaged over a depth equal to 8dP below the ground surface [87].

In order to determine an efficient and practical solution, equations that accurately represent the non-linear

relationships between the variables are determined by Brettmann and Duncan [51]. An exponential

equation in the form of y = axb and in the inverted form x = (y/a)1/b is used for the non-dimensional

relationships. An iterative, non-linear, least squares curve-fitting technique is used for determining the

constants and exponents. The parameters are listed in Tab. 3.20 and the non-dimensional relationships are

determined as:

(yt/dP) = a (H/Hc)b , (3.187)

(yt/dP) = a (M/Mc )b , (3.188)

in which yt is the ground surface deflection, dP is the pile diameter, H is the lateral load at top of pile, Hc

is the characteristic load, M is the moment at top of pile, and Mc is the characteristic moment.

Table 3.20: Parameters for load-deflection and moment-deflection equations [51]

Parameter Clay Sand
free-headed fixed-headed free-headed fixed-headed

load-deflection
a 50.0 14.0 119.0 28.8
b 1.822 1.846 1.523 1.500

moment-deflection
a 21.0 36.0
b 1.412 1.308

In a combined loading condition, both load and moment induce deflection, and, thus, both components

must be considered. It is not sufficient to simply add the deflections caused by load and moment. The

non-linear dependence can be taken into account by using a non-linear superposition procedure which is

described in [87, 51].

This model for single piles can be extended to the deformation analysis of laterally loaded pile groups. The

p-y for the characteristic load method may be applied according to Mokwa et al. [283] or Brettmann et

al. [51]. Lateral pile models are not further discussed or evaluated in this thesis. The deterministic prediction

of these models are used for the analysis of the semi-integral bridges presented in Sec. 6.3. An evaluation

of these lateral pile models is presented in a cooperative study by the author and Stutz et al. in [197].

Load tests

Lateral load tests on model pile groups with aluminium piles (EP = 37, 500 MN/m2, external radius of

3.97 mm, wall thickness of 0.71 mm) embedded to a depth of 200 mm in dense, medium-grained to coarse-

grained sand is studied by Williams [408]. These piles are loaded at a height of 125 mm above the sand

surface.

Pile groups with fixed-headed piles are investigated by Kim and Brungraber [213] by measuring three

series of lateral load tests on pile groups with contained piles are performed with spacing of either 1.22 m
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or 0.91 m. The top 0.305 m of the piles are embedded in a reinforced concrete cap in contact with the

ground during testing. Each group contains six piles in a 3x2 arrangement with steel H-Piles (EP =

200, 000 MN/m2, external radius of 0.246 m, IP = 9.33e−5 m4). The soil profile is as following: 2.13 m

thick layer of silty clay, 1.83 m of sandy clay loam, 3.35 m of clay loam, and about 4.88 m of limestone

gravel.

Experimental studies on both single piles and circular groups of five and ten steel tubular piles (EP =

37, 500 MN/m2, external radius of 0.14 m, wall thickness of 8 mm) are performed in the study by Nogami

et al. [298]. The soil is multi-layered with stiff clay, soft and very soft organic clay, very soft organic peat

and humus, and very soft clay.

Full-scale cyclic load tests of pile groups in stiff clay are performed by Rollins et al. [350] in order to

determine the interaction effects dependent on pile spacing. The piles are spaced in 3.3, 4.4, and 5.65 pile

diameters in direction of loading with as many as five rows of piles. The first row of piles in the group

receive the greatest load, while the second and third rows carry progressively smaller loads. In the case that

fourth and fifth rows are present, such pile rows carry about the same load as the third row piles.
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4 Simulation methods

4.1 Energy Method with Integral Description of the Material Behaviour

Generally, numerical analyses, such as the Finite Element Method, see Sec. 4.2, solve a system of equations

based on equilibrium conditions. Another method for the computation of numerical solutions is solving

an optimisation problem based on extremum principles. An example of such a method is the Energy

Method with Integral Description of the Material Behaviour (EIM) developed by Raue [337, 338]. Further

information and development of the method can be found in the thesis of Schröter [372].

According to the Bernoulli hypothesis, cross-sections normal to the axis of the element remain plane

during the deformation process. Hence, the strain εx (y , z) at an arbitrary point in the cross-section with

the coordinates y and z is defined by the linear function:

εx (y , z) = ε0 + κy y + κz z . (4.1)

The extremum formulation is based on the Lagrange‘s principle of the minimum of total potential energy

[338]. Using non-linear optimisation, the values ε0, κy , and κz are found to minimise the following function:

ΠC
total = ΠC

i (ε0,κy ,κz ) + ΠC
e (ε0,κy ,κz )⇒ MIN (4.2)

The material models are described by an integral formulation of the stress-strain relationship depending on

the strain ε(y , z). Therefore, the functions W (ε), F (ε) and Φ(ε) are introduced, describing a unique and

complete representation of the material behaviour (see Fig. 4.1), as in the stress-strain relationship σ(ε).

They are defined as the following integrals:

ε
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ε
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Figure 4.1: Integral formulation of stress-strain material models for Energy Method with Integral Descrip-
tion of the Material Behaviour (EIM), concrete material description as an example
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W (ε) =

∫ ε

0
σ(ε) dε (4.3a)

F (ε) =

∫ ε

0
W (ε) dε (4.3b)

Φ(ε) =

∫ ε

0
F (ε) dε (4.3c)

With these integrals, the strain energy ΠC
i of a cross-section with the region B is obtained by integration

of the specific strain energy W .

ΠC
i =

∫∫
B

W (y , z) dydz =

∫∫
B

W [ε(y , z)] dydz (4.4)

The double integral is transformed into an integral along the contour by the Gauss theorem according to

Eq. 4.5∫∫
B

W (y , z) dydz =

∮
L

(
−κz

κ2
F dy +

κy

κ2
F dz

)
, (4.5)

where the magnitude κ of the gradient is determined by:

κ =
√
κ2

y + κ2
z . (4.6)

The potential energy of the external forces of a cross-section loaded by a normal force N and the two

bending moments My and Mz , is defined by the following equation:

ΠC
e = − (N · ε0 + My · κz + Mz · κy ) . (4.7)

For the calculation on the structural level, the compatibility conditions are used between outside deforma-

tions and inner strains. The deformation parameters at the cross section depend on the displacements at

the corresponding node of the element are determined by:

ε0 = u
′
(x) , (4.8a)

κy = −v
′′

(x) , (4.8b)

κz = −w
′′

(x) . (4.8c)

The strain energy of the element can be determined by integration of the strain energy of each cross-section

ΠC
i along the element length l :

ΠE
i =

∫ l

0
ΠC

i dx . (4.9)

The external energy can be obtained by the integral of the product of external loads and respective

displacements over the length of the element:

ΠE
e = −

∫ l

0
[px (x)u(x) + py v(x) + pz (x)w(x)] dx . (4.10)
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The energy method (EIM) allows the consideration of the material non-linearities including cracking and

tension stiffening. Therefore, the method is used for the simulation of the load-bearing behaviour of various

cross-sections, see Sec. 5.1, and restraint effects studied in Sec. 3.5.

4.2 Finite Element Method

The Finite Element method model applied in this thesis was originally developed by Keitel [206] and

implemented in the software Matlab. In this section, the basic characteristics of this simulation are de-

scribed. The author recommends referring to the thesis by Keitel [206] for further information. Geometric

and physical non-linear simulations can be analysed for reinforced and prestressed concrete structures with

consideration of the time-dependent concrete material behaviour.

Cracks in the concrete are modelled by a “smeared” stress-strain relationship as discussed in Sec. 3.1.

Bernoulli ‘s beam theory is applied to the beam elements. Therefore, the strains along the cross section

depth and width remain plane during the deformation process and shear deformations are excluded. More-

over, rigid bond, warping and torsional free cross sections, and the negligence of inertia forces are the basic

assumptions in the simulation technique.

A beam with seven degrees of freedom according to [43] is presented. At the left and right sides of the

beam element, a transverse and longitudinal displacement and a rotation, and additionally a horizontal

displacement in the middle of the beam are the degrees of freedom. The displacement in the transverse

direction is determined by the shape functions of Hermite. The longitudinal displacement is computed

by quadratic shape functions.

The axial and bending stiffnesses of the beam elements are computed by the integration over the area of

the cross section, wherein the mathematical integrations are substituted by summations. Therefore, the

cross section is discretised into layers (uniaxial bending) and fibers (biaxial bending) while the integral over

the cross section width and depth is replaced by the sum over all layers or fibers. A constant stiffness and

a linear distribution of stresses are assumed in each layer and fiber.

For the non-linear simulations caused by geometrical or physical non-linear response, the tangential stiff-

ness matrix is updated in the Newton-Raphson Iteration after each iteration step and the new increment

of deformation is determined for the residual forces.
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5 Partial model quality evaluation

5.1 Material modelling of reinforced concrete

Material modelling is a partial model with a potentially strong influence on the computational results and

reliable prognosis models [79, 395, 412]. For instance, the analysis of internal forces for restraint sensitive

structures, such as pavements, bridge decks, walls, industrial floors, constrained slabs, or integral and semi-

integral bridges, is crucially dependent on the stiffness of the structural components and corresponding

cross sections [195, 198], see Sec. 3.5. In numerical simulations, this stiffness is primarily determined by the

description of the material model. For flexural members, the prognosis of bending stiffness EI is the most

significant model output in order to describe the load-deformation behaviour. Moreover, the bending stiff-

ness is one of the key parameters for components subjected to combined loading of restraint and external

loads. The cross sectional and structural analysis discussed in Sec. 3.5 illustrates the interaction between

stiffness and loading conditions, restraint forces respectively. Therefore, the material models are assessed

according to the predicted bending stiffness. The corresponding results are presented in this section.

The uncertainty assessment on a structural level (continuous beams, frames, bridges) is not exclusively

influenced by the material model’s prognosis of a certain structural element or cross section. Due to the

redistribution of internal forces, which is influenced by various conditions (e.g. absolute and relative stiffness

ratio, layout of reinforcement bars), the uncertainty in the output from the structural simulation always

includes a particular structural effect. This component is caused by force redistribution capacity, geometric

conditions, loading distribution, or reinforcement and prestressing layout. These effects are evaluated by the

global model evaluation discussed in theory in Sec. 2.5 and can be enhanced to the integrative sensitivity

analysis explained in Chap. 6.

In order to independently evaluate the uncertainty in the material model prediction, the corresponding

assessment is generally feasible for the load-deformation analysis of any type of cross section, for instance

rectangular, circular, T-beams or box girders. This allows for the exclusive evaluation of the concrete mate-

rial modelling phenomenon and partial model, respectively. In the following section, a common rectangular

reinforced flexural cross section for a building is investigated. In general, this evaluation method is appli-

cable to other concrete strength classes, different reinforcing grades, cross sectional types, and geometric

conditions. The conditions in this section are specifically chosen in order to actualize the concept and

results of the uncertainty analysis for a commonly designed cross section.

The aim of this assessment is to investigate the quantitative difference between the bending stiffness pre-

diction of material models for reinforced concrete flexural members. Non-linear constitutive models for

concrete in compression are frequently defined in design guidelines. Engineers would generally use either

linear or non-linear compressive models specified in guidelines, such as those models were mentioned in

Sec. 3.1.2. In the non-linear modelling of reinforced concrete in tension, various approaches are investigated

and may be generally applicable for describing concrete’s contribution between the cracks. The selection

of a suitable model is usually based upon the engineer’s judgement based on theoretical knowledge and
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experience (qualitative model selection).

For each application, it is not immediately apparent which model is the most appropriate to describe the

phenomena with suitable accuracy. Therefore, model evaluation with the aid of uncertainty analysis is a

useful methodology in order to compare various model predictions in a quantitative manner. More informa-

tion about the theory of uncertainty analysis is previously discussed in Sec. 2.1. This probabilistic method

is capable of assessing the prediction quality of several concrete material models in order to provide a

quantitative model selection. In the design process of engineering structures, a lack of experimental data is

often present, particularly in the preliminary design phase. Hence, the focus of this study is the assessment

of material models without any specific measurement data in order to assist model selection in this project’s

phase. For that reason, the chosen uncertainty analysis does not use any specific data measurements for

the quantification of the model and the parameter uncertainty.

The determination of the behaviour of cracked reinforced concrete is based on the characterisation of the

tension stiffening, which describes average cracking along the transmission length, see Sec. 3.1.4. In the

interest of the practical applicability of the material models, even for large structures, no discrete crack

simulations are considered based on fracture mechanics. Either purely linear models, non-linear compressive

models, or non-linear models with the tension stiffening effect are considered in the evaluation. In order to

quantify the difference between several model predictions, uncertainty analysis is applied taken into account

deterministic and probabilistic simulations. This assessment method investigates the model and parameter

uncertainty of the model prediction. Finally, the total uncertainty is converted into a prognostic partial

model quality.

5.1.1 Cross section and material models

The general application of uncertainty analysis investigates a commonly designed rectangular cross section

with the dimensions h/b/d/ = 60/25/54 cm, see Fig. 5.1. The amount of reinforcement is chosen to an

area of 4∅20 with the following reinforcement ratio ωs1:

ωs1 =
As1

bd

fy

fc
=

4 · 3.14

25 · 54

550

21.68
= 0.236 . (5.1)

The distance from the bottom sectional edge to the centre of reinforcement is d1 = 6.0 cm. The height

of the reinforced subsection (RCT) is defined to hc,eff = 2.5 · d1 based on [141, 227], see Sec. 3.1.4.5.

This value of the effective concrete area in tension is appropriate for cross sections subjected to bending

loading condition for ratios h/(h − d) ≤ 10. The load-deformation behaviour is analysed according to the

prediction of bending stiffness EIy = My/κz where κz is the curvature of the strain distribution along the

cross section’s depth in z-direction. Curvature is a parameter representing the load-deformation behaviour

comparable to the bending stiffness EIy .

However, in the model uncertainty assessment, it is more adequate and accurate to use response quantities

which are increasing or decreasing due to load increments even for linear-elastic models. Discussion of this

statement is presented in Sec. 5.2.1.2. Therefore, the uncertainty in the prediction of curvature based on

the considered models is assessed in order to quantify a partial model quality. The cross section is subjected
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5.1. Material modelling of reinforced concrete

due to an increasing bending moment My with a load increment of ∆My = 1 kNm until the cross section

fails. Consequently, the dimensionless load increment ∆µ is defined to:

∆µ =
∆M

fc bd2
=

100

21.68 · 0.25 · 0.542
= 6.33e−4 . (5.2)

h c
,e

ff
= 

2.
5 

d 1
 =

 1
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cm
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 c

m
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Figure 5.1: Rectangular cross section

This load-deformation simulation allows a quality assessment of material models for uncracked stage, crack

formation stage, stabilised cracking stage and steel yielding stage. The material models are associated with

the specific subsections of the cross section. For the plain concrete subsection, the concrete is modelled

differently with respect to tensile or compressive strains. For the concrete under compression (concrete

compression CC), the behaviour is simulated by the non-linear broken rational function of EC 2 [101] and

Model Code 2010 [187], respectively.

For plain concrete in tension (concrete tension CT), the linear-elastic material description is applied until

the tensile strength fctm. Different tension stiffening models are applied according to the modelling of the

reinforced concrete subsection in tension (reinforced concrete tension RCT). The responses of the material

models are quantitatively evaluated and the results are discussed in the following sections. The material

models considered in this evaluation are listed in Tab. 5.1. These models consist of a purely linear-elastic

model (“lin-el”), a non-linear compressive model (“br-func”), and several non-linear models that consider

the tension stiffening effect (“e-func”, “multi-lin”, “mod-steel”).

In the case of the fully linear-elastic material modelling, all special subsections are modelled assuming linear-

elastic material behaviour. This material model does not allow any cracking of concrete due to tension and

compression. Therefore, the bending stiffness degradation is excluded for all loading levels, which results

in it being the simplest material model. This model is denoted as the partial model with the abbreviation

“lin-el”.

The material model with the abbreviation “br-func” takes the concrete crushing and resulting stiffness

degradation in compression into account. The non-linear broken rational function of Eurocode 2 [101] and

the Model Code 2010 [187], is applied in order to describe the non-linear material behaviour of concrete

in the compressive zone. As a result, any type of cracking in tension is excluded in this material model.

Whereas, the non-linear material models (“e-func”, “multi-in”, “mod-steel”) consider the stiffness degra-
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5. Partial model quality evaluation

Table 5.1: Material models considered for evaluation of prognosis model quality, abbreviations of the
models are defined in first column

Partial Concrete Reinforcement
Model CC CT RCT

¬ lin-el linear-elastic linear-elastic linear-elastic linear-elastic
­ br-func broken rational

function [101]
linear-elastic linear-elastic linear-elastic

® e-func broken rational
function [101]

linear up to fctm exponential-
function [313]

bi-linear

¯ multi-lin broken rational
function [101]

linear up to fctm multi-linear stress-
strain diagram
[74, 187]

bi-linear

° mod-steel broken rational
function [101]

- - modified
steel strains
[74, 126, 187]

dation due to tensile cracking as well as the tension stiffening effect in addition to the stiffness deg ration

due to compression, see Tab. 5.1. These models based on the modification of concrete in tension in the

subsection RCT consist of the same material descriptions in the plain concrete subsections (CC and CT).

In contrast, no contribution of concrete in tension in the subsection CT is considered for the model “mod-

steel”, because the tensile forces are exclusively carried by the reinforcing steel. Furthermore, differences

are visible in the consideration of the tension stiffening effect for these non-linear material models.

The comparison of the model characteristics, as discussed in the subsections of Sec. 3.1.4, leads to the

statement, that the model with the modified steel strains (“mod-steel”) and the model with the multi-

linear definition of concrete in tension (“multi-lin”) are the most complex models of the considered material

models. A clear distinction between the cracking stages and the consideration of all geometry and mate-

rial parameters allows more considerable physical phenomena in comparison to the other models (“lin-el”,

“br-func”, “e-func”). In general, no difference in the considered phenomena between both models (“mod-

steel”,“multi-lin”) exists for the consideration of the characteristic cracking stages.

It should be noted that a unique numerical solution can be simulated applying the “mod-steel” model

due to the continuously increasing potential for all loading levels. In contrast, in the “multi-lin” material

model, the uniqueness of the solution which is close to the concrete tensile strength cannot be guaranteed

in principle. Consequently, the “mod-steel” model with the adequate accuracy and numerical robustness

is fixed as reference model for the other considered material models in the model uncertainty assessment.

In order to clarify the choice of the benchmark model, the analysis by Quast [327] emphasises the model

with the modified steel strains to be an adequate model in comparison with other tension stiffening models

assessed in a validation study of experimental results. In particular, the “mod-steel” model is evaluated

to be the most accurate for the flexural loading condition which is similarly considered in the following

uncertainty assessment.

5.1.2 Deterministic load-deformation behaviour

The simulation with deterministic input parameters is computed by mean material properties specified

afterwards. The results obtained by the different partial models are shown in Fig. 5.2 according to the

moment-curvature and the bending stiffness-moment relationship. Dimensionless moment µ and curvature
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d · κ are mentioned previously. The load-level dependent bending stiffness EI for each model is predicted

by the numerical solution of the Energy Method (EIM). The optimized solution of EI is related to the

analytical solution of the elastic bending stiffness EI I :

EI I = Ii · Ec = 4.90197e−3 m4 · 29, 307 MN/m2 = 143.66 MNm2 . (5.3)

In the case of the stiffness ratio EI/EI I = 1.0, the predicted numerical stiffness and the analytical linear-

elastic stiffness are equal. This ratio is visible in the range of small loading levels in which the numerical

solution achieves the analytical initial bending stiffness. Linear-elastic, compressive and non-linear models

considering tension-stiffening effect by modification of concrete stress-strain relationship are all capable

to exactly predict the analytical linear-elastic bending stiffness. A discrepancy occurs for the model with

modification of strain values of the bare reinforcing steel. All tensile forces in the cross section are exclusively

represented by a concrete bar with depth hc,eff. This assumption neglects a certain amount of concrete

contribution to the stiffness of the cross section. This is discussed in Sec. 3.1.4 and additionally mentioned

by Maurer et al. [267]. In summation, the initial stiffness for the “mod-steel” model is less than the

analytical stiffness.
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Figure 5.2: Deterministic load-deformation behaviour of rectangular cross section

Increase in the external load causes concrete cracking and crushing and in response, the ratio EI/EI I

decreases. The mathematical computation of the crack moment Mcr is based on the linear-elastic bending

stiffness for My causing the concrete stress fctm. This analysis results in Mcr = 49 kNm with a dimensionless

crack moment of µcr = 0.031. Concrete crushing considered by the broken-rational function causes a

stiffness degradation for loading levels smaller than this mathematical approximation. Nevertheless, this

difference is negligible and the models “e-func” and “multi-lin” are able to still adequately predict the

crack moment. The “mod-steel” model is not able to predict the initial load-deformation behaviour due

to the fact it considers less initial bending stiffness. The main stiffness degradation occurs in the crack

formations stage until the beginning of stabilised cracking stage. This degradation is in the range of 0.4EI I

for all non-linear models considering the tension stiffening effect.

The crack formation stage is similarly analysed by the exponential function and multi-linear determination,
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but in the stabilised cracking stage a higher concrete contribution between the cracks is determined in the

model description for “multi-lin” in comparison to “e-func”. Therefore, plastic strains in the reinforcing

steel occur at smaller loading levels in the model with exponential function that describes the tension

stiffening effect. Stabilised cracking stiffness (≈ 0.4EI I ), stiffness at yield moment (≈ 0.3EI I ) and stiffness

at ultimate capacity (< 0.2EI I ) are closely analysed for “multi-lin” and “mod-steel”. Due to the similarities

in their model description the same simulation output is approximately analysed for both.

Comparison of the linear and compressive model illustrates that the non-linear models enable a much more

accurate consideration of the stiffness degradation due to concrete cracking. When considering the concrete

crushing in the compressive zone, this allows only a slight stiffness degradation of about 0.8EI I even for

higher loading levels than the ultimate capacity of the actual cross section. The fully linear-elastic model

always predicts 1.0EI I as a standard model property.

The different model predictions show that all model characteristics are considered in the optimised solutions

based on the EIM. Therefore, the solutions are reliable and high level of accuracy is achieved. Differences

between the models are previously discussed and the results of the model evaluation are subsequently

presented.

5.1.3 Probabilistic load-deformation behaviour

5.1.3.1 Input parameters

The scatter in the model input parameters, such as a material strength, influences the uncertainty in the

model prediction, which is quantified in the parameter uncertainty. For the study of the load-deformation

behaviour of a reinforced concrete section, this uncertainty is considered on the resistance (material) side.

The effect of action side is set to be deterministic without any variance.

The probabilistic input parameters for the assessment of parameter uncertainty are concrete compressive

strength fcm, concrete tensile strength fctm, concrete secant modulus of elasticity Ecm, reinforcing steel

yielding strength fy , reinforcing steel tensile strength ft , and reinforcing steel modulus of elasticity Es . The

concrete grade C 30/37 is chosen as it is a commonly applied class for buildings. High ductility reinforcing

steel B 500B is selected for the steel bars. The mean values of the material parameters for the

� concrete class C 30/37 according to EC 2 [101] are:

◦ fcm = 38.0 MN/m2 ,

◦ fctm = 2.90 MN/m2 ,

◦ Ecm = 32, 837 MN/m2 , and for the

� reinforcing steel B 500B the characteristic parameters are determined according to DIN 488 [135] :

◦ fyk = 500 MN/m2 ,

◦ ftk = 540 MN/m2 ,

◦ Es = 200, 000 MN/m2 .

The safety concept of EC 2 according to the German National Annex [141] defines the “calculation” ma-

terial properties (expressed by index “R”) for the physical non-linear simulations, see Sec. 2.6.4. Therefore,

the mean material properties considering the safety concept for non-linear simulations are:
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� concrete class C 30/37:

◦ fcR = 21.68 MN/m2 ,

◦ Ec0mR = 29, 307 MN/m2 , and for the

� reinforcing steel B 500B:

◦ fyR = 550 MN/m2 ,

◦ ftR = 594 MN/m2 .

The “calculation” material properties are used for the physical non-linear simulation of the load-deformation

behaviour of the rectangular cross section. The sampling of the input parameters for the material models

is performed using the Latin Hypercube Sampling Method [184, 254], see Sec. 2.1. Correlation between

the input parameters significantly influences the results of the uncertainty analysis [208]. Consideration of

parameter correlation in the sampling is more accurate in order to describe statistical characteristics of

multi-dimensional sample sets. Therefore, correlation is taking into account in the sampling of the con-

sidered input parameters. Distribution type, mean value, standard deviation, coefficient of variation, and

correlation of the material properties are listed in Tab. 5.2.

Table 5.2: Material input parameters for deterministic and probabilistic analysis, LN. . . log normal
distribution, N. . . normal distribution

Mat. fX (x) µ σ CV Correlation ρX1X2 [-]
Prop.

[
MN/m2

] [
MN/m2

]
[-] fcR fctm Ec0mR fyR ftR Es

[149, 387, 388] [105]

fcR LN 21.68 4.12 0.19 [397] 1 0.82 0.80 0 0 0
fctm LN 2.90 0.84 0.29 [105] 0.82 1 0.65 0 0 0
Ec0mR LN 29,307 7,034 0.24 [401] 0.80 0.65 1 0 0 0

fyR N 550 27.50 0.05 [3, 370, 387] 0 0 0 1 0.85 0
ftR N 594 17.82 0.03 [3] 0 0 0 0.85 1 0
Es N 200,000 2,000 0.01 [63, 105, 387] 0 0 0 0 0 1

The results of Latin Hypercube sampling are illustrated for the correlated parameters in Fig. 5.3 and un-

correlated parameters in Fig. 5.4. The correlation is visible due to the linear dependency between concrete

compressive strength and tensile strength, concrete compressive strength and modulus of elasticity, concrete

tensile strength and modulus of elasticity, and steel yielding and tensile strength. The concrete properties

are sampled according to the log normal distribution and the steel quantities based on the normal dis-

tribution. The long tail of the log normal distribution is obvious causing very high strength and stiffness

parameters. Nevertheless, their influence is negligible for the uncertainty assessment but should be seriously

proven for reliability analysis.

In contrast, no correlation is obvious for the relationship between steel yielding strength and modulus of

elasticity, and steel tensile strength and modulus of elasticity. There is no linear dependence between these

parameters predefined in the sampling process (ρX1X2 = 0). The assessment of the stimulated samples

illustrates this relation with a high level of accuracy. The low variance in Es and the higher variance in fyR

in comparison to ftR is also noticeable in the determined samples according to Fig. 5.4.

Comparison of the predefined statistical characteristics (distribution type, mean value, coefficient of varia-
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Figure 5.3: Joint probability distribution for correlated parameters of concrete and reinforcing steel for
1000 samples

tion, and correlation) and the computed properties of the samples exhibits a very good agreement. Hence,

the computed samples are reliable enough to be considered in the desired statistical information.

5.1.3.2 Stress-strain relationship

The material behaviour of plain concrete under compression is modelled by the broken rational function

recommended in EC 2 [101, 141]. Based on the probabilistic input parameters, several stress-strain relation-

ships for 1000 samples are shown in Fig. 5.5(a). The mean compressive strength is fcR = −21.68 MN/m2

with the corresponding compressive strain of εc1 = −2.16� according to Eq. 3.16. The standard deviation

of the strain is σεc1 = −0.12� and the coefficient of variation is consequently CVεc1 = 0.06. Uncertain

input parameters induce a standard deviation in the factor k (mean value µk = 2.92) of the broken rational

function of σk = 0.40 resulting in CVk = 0.14. The ultimate strain is fixed to the recommended value of

εcu1 = −3.50� according to EC 2. For plain concrete in tension, the probabilistic stress-strain relationships

are shown in Fig. 5.5(b). For a loading level which causes a concrete stress equal to the tensile strength,

no tensile force can be transmitted to the plain concrete past this loading level. The maximum admissible

strain εct = fctm/Ec0mR is on average 9.90 e−5. The corresponding standard deviation is σεct = 2.12 e−5
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Figure 5.4: Joint probability distribution for uncorrelated parameters of reinforcing steel for 1000 samples

and the coefficient of variation is CVεct = 0.21.
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Figure 5.5: Probabilistic σ-ε relationship for plain concrete under compression and tension

The probabilistic σ-ε relationships for the tension stiffening model with the exponential function is depicted

in Fig. 5.6(a). This model describes the concrete contribution between the cracks for strains greater than

εct = fctm/Ec0mR by the exponential function in the crack formation and stabilised cracking stage. In

the steel yielding stage, a liner relationship is considered determining the decreasing part of the concrete

contribution between the cracks, which finally tends to zero. This concrete material model is additionally

illustrated until the crack formation stage neglecting steel yielding stage in the appendix in Fig. B.3. The

parameter α describing the tension stiffening effect in the crack formation and stabilised cracking stage

is on average α = 3, 027. Probabilistic simulation lead to a coefficient of variation of CVα = 0.29. The

coefficient of variation of the strain value εc3 determining the intersection between stabilised cracking and

steel yielding stage is CVεc3 = 0.06. Uncertainty in the ultimate strain εc4 is reduced to CVεc4 = 0.04.

For the tension stiffening model with multi-linear material description, the probabilistic σ-ε relationships are

shown in Fig. 5.6(b). In addition to the strain values describing the interaction between the cracking stages
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as in the “e-func” model, this model considers the intersection between crack formation and stabilised

cracking stage as a strain value εc2. The uncertainty in this strain value is CVεc2 = 0.25. The variances in

the strain values εc3 and εc4 are identical to the model “e-func”. The “multi-lin” concrete material model

is additionally illustrated until the crack formation stage neglecting steel yielding stage in the appendix in

Fig. B.3.
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Figure 5.6: Probabilistic σ-ε relationship for reinforced concrete in tension, concrete models

The probabilistic σ-ε relationship for the tension stiffening model based on modified reinforcing steel strains

is shown in Fig. 5.7. The variance of all strain values for the determination of the “mod-steel” model is

reasonably as same as the concrete material models. Variance in the reinforcing steel stress determining

the intersection between uncracked and crack formations stage σs1 is computed to CVσs1 = 0.26 which is

the same uncertainty as σs2. Uncertainty in σs3 and σs4 are justified as the predefined variance in fyR and

ftR . The probabilistic stress-strain relationships for the bare reinforcing steel (bi-linear) are shown in the

appendix in Fig. B.4 which are applied for the “e-func” and “multi-lin” models.
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Figure 5.7: Probabilistic σ-ε relationship for reinforced concrete in tension, modified steel strain model
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5.1. Material modelling of reinforced concrete

5.1.3.3 Load-deformation behaviour

The probabilistic load-deformation behaviour of the rectangular cross section analysed with the linear-elastic

material model (“lin-el”) is shown in Fig. 5.8. Any crack formation, hence any stiffness degradation, is not

considerable in this material model and are generally neglected for all loading increments. This means that

the stiffness prediction is independent of the loading level. All the samples reach equilibrium for all of the

external bending moments. Due to the log normal distribution of the concrete parameters, some samples

lead to a high linear-elastic stiffness in the range > 1.6EI I . The maximum uncracked bending stiffness is

1.97EI I and the minimum one is 0.50EI I . This range of linear-elastic stiffness is the same for all of the

material models because identical samples are used in the simulation of each material model.
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Figure 5.8: Probabilistic load-deformation behaviour of rectangular cross section simulated by linear-elastic
model “lin-el”, 1000 samples

The first step in increasing the complexity in the model description is to consider the stiffness degradation

of a reinforced concrete section by allowance of concrete compressive crushing. The model with broken

rational function (“br-func”) considers this phenomenon and the corresponding results are illustrated in

Fig. 5.9. Stiffness degradation is even visible for small loading levels at the beginning of loading. Therefore,

concrete crushing considered by the broken rational function results in a continuously decreasing bending

stiffness over the entire loading level. Certain combinations of samples induce the failure condition in the

cross section and therefore not all of the samples reach equilibrium condition for high bending moments of

µ > 0.15. Failure occur (in total 39 samples of 1000 samples) due to exceeding the maximum admissible

compressive concrete strain εc1u = 3.5� at the loading level µ = 0.253 (equal to My = 400 kNm).

Furthermore, the relationship between bending moment and simulated curvature considering the tension

stiffening effect by the exponential function (“e-func”) is illustrated in Fig. 5.10. The uncertainty of the

material properties results in a large distribution of the loading levels in which the stabilised cracking stage

is initiated. This range of the bending moment is between 0.018 < µ < 0.114 (28 < My [kNm] < 180)

which is approximately 38 % of the entire loading range. In some samples, no plastic deformation occurs

in the reinforcing steel which is associated with an high initial linear-elastic stiffness. Concrete modulus

of elasticity and compressive strength mainly affect this stiffness. Low initial stiffness is caused by low

quantities of these parameters and therefore the failure of the cross section is caused by exceeding the limit

concrete compressive strain εc1u. A much more ductile behaviour is seen in samples for which this yielding
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Figure 5.9: Probabilistic load-deformation behaviour of rectangular cross section simulated by broken ra-
tional function model “br-func”, 1000 samples

appears in the reinforcement. The range of the steel yielding stage is apparent for loading levels between

0.160 < µ < 0.248 (253 < My [kNm] < 392), which is approximately 35 % of the entire loading range.
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Figure 5.10: Probabilistic load-deformation behaviour of rectangular cross section simulated by exponential
function model “e-func”, 1000 samples

Another model for determining the tension stiffening effect in the concrete material description is the multi-

linear material model (“multi-lin”). The probabilistic load-deformation behaviour of the rectangular cross

section computed by the multi-linear model description is shown in Fig. 5.11. The loading range for which

the stabilized cracking stage is predicted is between 0.018 < µ < 0.115 (28 < My [kNm] < 182). This

is similar to 39 % of the entire loading range. Moreover, the loading spread for the steel yielding stage is

0.170 < µ < 0.250 (269 < My [kNm] < 395) which is 32 % of the entire loading range. Both ranges are

very similar to the “e-func” model. Only a slight difference is visible. The greater concrete contribution

between the cracks in the stabilised cracking stage leads to an initiation of steel yielding for higher load

levels compared to the model with the exponential function. In consequence, the ultimate capacity is also

slightly increased. Crack initiation, crack formation stage until the beginning of stabilised cracking stage
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5.1. Material modelling of reinforced concrete

are comparable between the models “multi-lin” and “e-func”.
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Figure 5.11: Probabilistic load-deformation behaviour of rectangular cross section simulated by multi-linear
model “multi-lin”, 1000 samples

Moreover, the tension stiffening effect is further considerable in the stress-strain relationship for reinforcing

steel. The relationship between the bending stiffness and corresponding curvature for the material model

with the modified steel strains (“mod-steel”) is shown in Fig. 5.12. The initial linear-elastic bending stiffness

is underestimated by this model as discussed before. Therefore, the range of elastic stiffness at loading

initiation is different in comparison to the models mentioned above. The maximum uncracked bending

stiffness is 1.90EI I and the minimum is 0.50EI I . The range in loading for initiation of stabilised crack stage

is 0.015 < µ < 0.098 (23 < My [kNm] < 155), which is 33 % of the entire loading range. Therefore,

the stabilised cracking stage appears for smaller loading levels than in the models “e-func” and “multi-lin”

models, due to the smaller inital bending stiffness preditiction. Furthermore, the loading spread for the steel

yielding stage is 0.168 < µ < 0.247 (265 < My [kNm] < 395) which is 33 % of the entire loading range.
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Figure 5.12: Probabilistic load-deformation behaviour of rectangular cross section simulated by modified
steel strain model “mod-steel”, 1000 samples
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5. Partial model quality evaluation

5.1.4 Uncertainty analysis

5.1.4.1 Parameter uncertainty

The quantification of parameter uncertainty is simulated with 1000 samples of the probabilistic material

properties for concrete and reinforcing steel according to Tab. 5.2. The analysis of the model output for 10,

100, 200, 500 and 1000 samples emphasises accurate results in the case of 1000 input samples, because

the difference in the uncertainty for 500 and 1000 samples is negligible, see Fig. 5.13(b).
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Figure 5.13: Load level dependency of parameter uncertainty of material models

The influence that the probabilistic material properties have on the prediction of bending stiffness differs

with respect to the loading level, see probabilistic simulations shown in Sec. 5.1.3. The effect of the uncertain

model input parameters on the linear-elastic stage is significantly higher in comparison to the stabilised

cracking stage. Therefore, the variance of the model response is higher in the uncracked stage, which is

caused by the influence of all the uncertain input parameters in this stage, especially by variance in concrete

modulus of elasticity and concrete compressive strength, refer to the following paragraph “Sensitivity

analysis”. However, for higher load levels some uncertain parameters are less influential on the bending

stiffness prediction. Therefore, the variance of the model response decreases.

The relationship between variance in model prediction and probabilistic input parameters is quantified for
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5.1. Material modelling of reinforced concrete

all material models by parameter uncertainty evaluation, see Fig. 5.13. For high loading levels (µ > 0.150,

My > 237 kNm, see Sec. 5.1.3), it is obvious that not all of the 1000 samples reach equilibrium condition,

because the failure of the cross section is predicted by the maximum material strains. The quantification

of the model quality is limited to the loading level, where 90 % of all of the samples of all models reach a

prediction without a bending failure due to exceedance of the material ultimate limit strains, see Fig. B.2

in the appendix. Hence, the results in the uncertainty graphs are limited to a loading level of µ ≤ 0.190

(My ≤ 300 kNm), which is depicted by the “cut-off” in the graphs.

The linear-elastic material model (“lin-el”) does not take any kind of stiffness degradation into account.

Consequently the influence caused by the scatter of the input parameters is not dependent on the loading

level. The parameter uncertainty for the linear-elastic material model remains constant with the magnitude

of CVMlin-el
par = 0.21. Whereas, the stiffness degradation due to the concrete being in compression in the

material model “br-func” causes a slight increase in the parameter uncertainty for loading levels µ > 0.05

(My > 79 kNm). The variance in the bending stiffness prediction of the samples increases for these loading

ranges, which are caused by non-linear stress-strain relationship of the broken rational function in the range

of σc > 0.4 · fcm. Therefore, a discrepancy occurs between the “lin-el” and “br-func” models.

In the case of the non linear material models that consider the tension stiffening effect, the parameter

uncertainty is strongly affected by the loading level. For identical loading levels in the range of crack

initiation moment, some samples remain in the uncracked stage while cracks already occur in other samples

under tension. The bending stiffness for both stages varies significantly and hence the uncertainty increases

in the prediction. A difference between the “mod-steel”, “e-func” and “multi-lin” models is apparent in this

stage, which results from the higher variance of the concrete material properties and the stronger influence

of these properties on the bending stiffness as considered in the material “e-func” and “multi- lin” models.

In the stabilised cracking stage, the parameter uncertainties of the tension stiffening models are similar and

lower compared to the linear-elastic material modelling and the “br-func”. The influence of the concrete

tensile strength decreases in this stage and the stiffness is mainly defined by reinforcing steel modulus of

elasticity. In the linear-elastic model “lin-el”, all concrete material properties influence the prognosis of

stiffness independence of the loading level. When close to the yielding bending moment, an analogous

relationship to the crack initiation moment occurs. For an identical bending moment in this loading level,

some samples remain in the stabilised crack stage while in others plastic stains appear in the reinforcing

steel bars. The prediction of bending stiffness for both stages differs significantly, as a result the parameter

uncertainty increases.

Sensitivity analysis

In order to quantify the influence of each random input parameter, the sensitivity analysis of Xu and

Gertner [413] is appropriate to study models with correlated parameters. For this sensitivity study, a

linear regression is used in order to quantify uncorrelated and correlated sensitivity of the input parameters.

Therefore, the coefficient of determination R2 identifies the capability of the regression curve to represent

the simulation results. For the load-deformation analysis, the response of material models is extremely non-

linear in the incremental load study. Therefore, various sample set sizes are analysed and the coefficient of

determination for 1000, 10000, and 100000 is shown in Fig. 5.14(b).

The results of the “mod-steel” model show that sample size affects the accuracy of the regression for load-

ing ranges in which the first samples have already failed due to exceeding material limit strains. Increase in

sample size enables a more accurate computation of the regression analysis due to the fact that more data

175



5. Partial model quality evaluation

points are available for loading ranges although some samples are already failed. Comparison between the

sensitivity indices for 1000, see Fig. 5.14(a), and 100000 samples, see Fig. 5.14(c) also shows this effect.

The coefficient of determination in the elastic stage is 0.92 caused by the correlation between the random

input parameters and their strong interaction in the prediction of bending stiffness.

For further load increments, the linear regression is comparatively inaccurate to represent the high non-

linear behaviour between the intersection of elastic and crack formation stage. Therefore, R2 decreases to

0.60 for µ = 0.023. In the case that more or less samples are in the crack formation stage or even in the

stabilised cracking stage, the regression is more accurate with R2 similar to the elastic stage. A similar

behaviour also occurs at the intersection between stabilised and steel yielding stage. In these loading stages,

the difference in the response is extremely high and very non-linear. As a result, this behaviour cannot be

accurately approximated by the linear regression. Therefore, the coefficient of determination decreases in

the final loading levels.
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Figure 5.14: Load level dependency of random input parameter sensitivity on response of “mod-steel”
material model

The comparison between the correlation coefficient ρXi Xi+1
and the estimated sensitivity indices Si ,Xi

shows

a comparable relationship between the influences of the random parameters on the model prognosis. There-

176



5.1. Material modelling of reinforced concrete

fore, the sensitivity values are still capable of giving general information about the influence of each pa-

rameter even for loading levels in which the linear regression is not adequate enough to represent the

non-linearity of the simulation results. Nevertheless, the sensitivity values analysed in these loading ranges

should not be seen as exact sensitivity indices for the non-linear model responses. Only the relationship

between the parameters can be discussed as the comparison to the correlation coefficient shows.

The elastic bending stiffness is influenced by the concrete material properties. In decreasing order, the

concrete modulus of elasticity, the compressive strength, and the tensile strength are the most influential

sensitive parameters. However, in the loading range at which crack initiation occurs, the sensitivity of the

concrete tensile strength increases and is in the end even more sensitive than the modulus of elasticity.

The bending crack moment is influenced by the concrete tensile strength which essentially determines the

loading condition in which stiffness degradation due to concrete cracking appears. Hence, the sensitivity of

this material property is extremely high in comparison to the other random variables.

Further load increments lead to the stabilised cracking stage in which the bending stiffness is more in-

fluenced by concrete compressive strength and modulus of elasticity than sensitive to the value of tensile

strength. The constant concrete contribution in the tension stiffening effect and the full cracked concrete

parts of plain concrete in tension reduce the sensitivity of tensile strength. The bending stiffness is influ-

enced more by the concrete compressive crushing. Hence, the sensitivity of compressive strength increases

and is in the end the most influential material property in the stabilised cracking stage.

In the intersection between the stabilised cracking and the steel yielding stages, the sensitivity of the con-

crete properties significantly reduce and the sensitivity for the reinforcement properties increase. Many more

samples samples fail for these loading conditions due to the smaller initial bending stiffness which is caused

by the low values of concrete material properties. Therefore, the samples with failure condition that are

more sensitive to the concrete properties are already excluded in the loading range of steel yielding stage.

Finally, the remaining samples are more sensitive to variations in the steel yielding strength which reduces

the influence of concrete properties and additionally increases the sensitivity of steel modulus of elasticity.

5.1.4.2 Model uncertainty

The load-deformation analysis predicts that the cross section resistance is being generally influenced by

the selection of a certain models and the corresponding material characteristics. Material properties such

as concrete compressive strength are defined in the design guidelines as in strength below 5 % of all test

specimens may be expected to fail. In a similar way, the one-sided 95 % quantile (5 % quantile respectively)

is used for the quantification of the model uncertainty and therefore b = 0.608 in order to represent the

corresponding quantiles, see Sec. 2.1.3. Nevertheless, a comparative study between the assumptions of 90 %

and 97.5 % quantile values evaluates a difference in model uncertainty smaller than ∆CVMi
mod < 0.10 for

the comparison between 90 % and 97.5 % quantile values, see in the appendix in Fig. B.1.

The discussion of the model characteristics (see Sec. 5.1.1) leads to the conclusion that the model with

modified steel strains is the most complex model that is considered. Therefore, this model is fixed as a

reference model (benchmark) for all the others. The results of the model uncertainty are shown in Fig. 5.15.

In the uncracked stage, the prediction of the bending stiffness is similar between the linear-elastic model and

the non-linear models in comparison to the reference model. Hence, the model uncertainty is very low and

considered negligible. This relationship in the model uncertainty changes in the cracked stages. The linear-

elastic model (“lin-el”) cannot consider any type of concrete cracking and crushing. Therefore, model

uncertainty increases for further load increments, because stiffness degradation occurs in the non-linear
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Figure 5.15: Load level dependency of model uncertainty of material models

models in the crack formation stage and stabilised cracking stage. In consequence, the model uncertainty

of the “lin-el” model is increasing for the entire loading range starting at crack initiation. In the case

of the “br-func” model, the bending stiffness degradation is exclusively caused by the loss of stiffness

in the concrete compressive zone. Non-linear models with tension stiffening effect determine a more or

less constant stiffness in the stabilised cracking stages in the load level range between 0.05 < µ < 0.20.

The stiffness degradation in these loading levels is caused by concrete crushing that is described by the

broken rational function, which is similarly taken into account in the “br-func” model. Therefore, the model

uncertainty is constant for this model. In contrast, the uncertainty in the “lin-el” model increases due to

the fact that concrete crushing is neglected.

The deterministic prediction of the bending stiffness of all tension stiffening models is comparable in the

stabilised cracking stage (see Fig. 5.2). Differences appear for loading levels close to the crack initiation

moment and the yielding moment. For those loading conditions, the tension stiffening “e-func” and “multi-

lin” models predict a higher stiffness than compared to the reference model. Therefore, considerable model

uncertainty is considered with respect to the “mod-steel” model prognosis.

5.1.4.3 Total uncertainty and model quality evaluation

The total uncertainty of the material models is shown in Fig. 5.16(a) for rectangular cross section subjected

to bending moment incremental analysis. A direct determination of total uncertainty and model quality

can be assessed according to Eq. 2.14 and the corresponding results are shown in Fig. 5.16(c). Based on

this determination, the partial model quality is an identical expression of total uncertainty. In the case that

the uncertainty of a model output is low, this means that there is a high reliability in the model prediction

resulting in a high prognosis quality. When the model error (model uncertainty) and model output vari-

ance (parameter uncertainty) cause lower uncertainty in the model prediction, this model is more adequate

compared to another model with high total uncertainty.

Furthermore, the partial model quality can be also determined based on the relative definition of Keitel

[206], see Eq. 2.15 and the assigned results are shown in Fig. 5.16(b). Based on the relative definition

between total uncertainty and partial model quality, it is easy apparent that this definition does not demon-

strate a distinct expression of total uncertainty. In addition, the stiffness degradation induce extensive
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Figure 5.16: Load level dependency of total uncertainty and model quality of material models

non-linear model responses and the model differences between the reference model and the more simplified

models vary in the entire load-deformation analysis. Hence, the model with lowest uncertainty and corre-

sponding highest partial model quality changes several times depending on the loading level. Therefore, this

determination is too sensitive to variations in the lowest total uncertainty and is consequently not adequate

for the assessment of such models. The following results are based on the direct determination of model

quality.

Between the uncracked stage and the crack formation stage as well as between the stabilised cracking stage

and the steel yielding stage, a strongly varying scale in the model quality occurs. Some sample remain in

the uncracked stage, while others have already reached tensile strains above the strains corresponding to

the tensile strength, at identical loading levels. This behaviour results in a significant difference in the

simulation output and therefore in a recognisable uncertainty. Furthermore, model uncertainties occur even

for the non-linear “e-func” and “multi-lin” models, due to differences in the crack formation stage. A sim-

ilar relationship between model characteristics and uncertainties occurs for loading levels in the stabilised

cracking and the steel yielding stage.

The model quality tends to drop in the range of the cracking moment and the yielding moment. The con-

sequence of selecting the simplified linear-elastic material model is a significant reduction in the prediction
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quality initiated by the first bending stiffness degradation causing a significant model uncertainty. The lower

model uncertainty of the “br-func” model in the stabilised cracking stage compared to the “lin-el” model

is overlapped with the higher parameter uncertainty. Therefore, the partial model quality of both models

are similar MQMlin-el
PM ≈ MQMbr-func

PM throughout the entire load-deformation analysis.

The highest qualities of the tension stiffening “e-func”, “multi-lin” and “mod-steel” models are found in

the stabilised cracking stage. The low parameter uncertainty and the comparableness in the prediction of

the bending stiffness (model uncertainty) lead to a similar prediction quality. The quality of the complex

model with the modified steel strains (“mod-steel”) shows overall the best model prediction quality over

the entire loading range due to less parameter and model uncertainty.

The uncertainty analysis of models for the load-deformation simulation of a reinforced cross section enables

a clear and quantitative comparison between the different model predictions. Moreover, the entire analysis

for all loading levels staring from the linear-elastic up to the steel yielding stage allow a clear insight in the

model characteristics and corresponding model qualities. The results of this assessment emphasise that the

quality of more complex or simplified material models can be quantitatively similar or diverse. In general,

the model quality of the linear-elastic material model and the model considering the compressive stiffness

degradation is opposite to the non-linear material models considering tension stiffening in loading levels in

which stiffness degradation appears. The application of such simplified models for the simulation of the

load-deformation behaviour of structures cause unreliable prognoses. For example, these models should not

be used for the simulation of restraint sensitive structures due to high significance of stiffness degradation

on the load-deformation behaviour [195, 198], see Sec. 3.5.

In addition, a more simplified non-linear tension stiffening material model is similarly adequate to a prog-

nostic quality compared to a more complex one. A clear assignment between the complexity and quality of

models does not exist in general, because of the crucial influence of the loading level on the load-deformation

behaviour of a reinforced concrete cross section. Finally, material models with high quantitative model qual-

ity give reliable predictions and should be used in global structural models especially for structures which are

sensitive to cracking and crushing. The question whether or not the material modelling itself is sensitive to

the load-deformation behaviour of a entire structure can be quantified by the integrative sensitivity analysis

which is discussed in Sec. 6.

5.1.4.4 Influence of reinforcement ratio

The amount of reinforcement influences the load-deformation behaviour of cross sections and structures,

see Sec. 3.5.2 and Sec. 3.5.3 respectively. Therefore, the analysis of the cross section bending stiffness in all

cracking stages is additionally simulated and assessed with varying reinforcement ratios in comparison to

the previously presented results with the tensile reinforcement of 4∅20 (ωs1 = 0.236, high reinforcement

ratio). The influence of medium (3∅20, ωs1 = 0.177) and low (2∅20, ωs1 = 0.118) reinforcement ratio

on the load-deformation behaviour is evaluated by the previously used material models and uncertainty

analysis, see Fig. 5.17.

The reinforcement ratio is one of the many aspects that crucially affects the ultimate cross sectional capac-

ity. Therefore, the maximum admissible bending moment (resisting moment) decreases as the reinforcement

ratio decreases. The material models are assessed according to this load level at which 90 % of all samples

do not fail, due to exceeding certain limit material strains. In the appendix in Fig. B.2, the number of sam-

ples in stable equlibrium for each load level is shown with repect to their dependence from all considered

reinforcement ratios. Hence, the maxium load level for the assessesment of material models is decreasing

180



5.1. Material modelling of reinforced concrete

0.00 0.05 0.10 0.15 0.20 0.25 
0.0

0.2

0.4

0.6

0.8

1.0

 [-]

M
Q

PMM
i
 [

-]

 

 

cu
t-

of
f

lin-el
br-func
e-func
multi-lin
mod-steel

(a) medium reinforcement ratio, 3∅20

0.00 0.05 0.10 0.15 0.20 0.25 
0.0

0.2

0.4

0.6

0.8

1.0

 [-]

M
Q

PMM
i
 [

-]

 

 

cu
t-

of
f

lin-el
br-func
e-func
multi-lin
mod-steel
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Figure 5.17: Reinforcement ratio dependency of model quality for medium and low reinforcement ratio

similarly to the lower ultimate capacity from µ = 0.190 (300 kNm) for the high reinforcement ratio to

µ = 0.111 (175 kNm) for the low reinforcement ratio, see Tab. 5.3.

For the medium reinforcement ratio (3∅20, ωs1 = 0.177), the deterministic load-deformation behaviour of

the rectangular cross section simulated with the material models is shown in the appendix in Fig. B.5. The

resisting moment is decreased from µ ≈ 0.21 for the high reinforcement ratio to µ ≈ 0.16 and therefore

the maximum bending moment that is reasonable for the uncertainty analysis is similarly decreased. Corre-

spondingly model and parameter uncertainty are depicted in the appendix in Fig. B.6 and total uncertainty

in Fig. B.7. The prediction quality for the medium reinforcement ratio is shown in Fig. 5.17(a).

In the case of the low reinforcement ratio (2∅20, ωs1 = 0.118), the deterministic load-deformation be-

haviour is depicted in the appendix in Fig. B.8. Model and parameter uncertainties are shown in Fig. B.9,

and total uncertainty in Fig. B.10. The resisting moment is decreased from µ ≈ 0.16 for the medium

reinforcement ratio to µ ≈ 0.11 for the low reinforcement ratio and the prediction quality is shown in

Fig. 5.17(b).

For the entire load incremental analysis, the minimum and maximum uncertainty values for each model

are listed in Tab. 5.3. The lowest model uncertainty is not influenced by the reinforcement ratio. For all

models, the minimum model uncertainty ranges between 0.00 < CVMi
mod < 0.02 and is independent of the

reinforcement ratio throughout the entire load incremental analysis. With a smaller reinforcement ratio,

there is a slight increase in maximum model uncertainty for all models in all flexural stages. For the medium

reinforcement ratio, the increase in model uncertainty is about 110 % and is about 130 % for a lesser amount

of steel bars than compared to the uncertainty of the high reinforcement ratio. This increase with lower

amount of steel is caused in the crack formation stage in which a higher difference appears amongst the

simplified model predictions in relation to the most complex “mod-steel” model. The high model uncer-

tainty of the “e-func” with a value of CVMe-func
mod = 0.91 exclusively occurs in one load increment in the

intersection between the stabilised and the steel yielding stages. The less concrete contribution between

the cracks in the “e-func” model causes plastic steel strains in lower loading level than compared to the

“multi-lin” and “mod-steel” models. This divergence is more extensive with decreasing reinforcement ratio,

which may cause such high model uncertainty. For loading levels in which yielding in the bars occurs for

all non-linear models with tension stiffening, this high model uncertainty is reduced and is therefore not
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5. Partial model quality evaluation

Table 5.3: Influence of reinforcement ratio on concrete material models’s evaluation, load level My (µ)
for 90 % of samples without material failure, minimum and maximum coefficients of variation
shown for entire load-deformation simulation analysis

Unit / high medium low
Model 4∅20 3∅20 2∅20

ωs1 = 0.236 ωs1 = 0.177 ωs1 = 0.118

EI I
[
MNm2

]
143.66 140.82 137.91

My (90 % samples) [kNm] 300 240 175
µ (90 % samples) [-] 0.190 0.152 0.111
α (e-func) [-] 3027 2270 1517

CVMi
mod

lin-el 0.01− 0.43 0.02− 0.46 0.02− 0.54
br-func 0.01− 0.40 0.02− 0.44 0.02− 0.54
e-func 0.00− 0.35 0.00− 0.39 0.00− 0.45 (0.91)

multi-lin 0.01− 0.35 0.01− 0.39 0.01− 0.45
mod-steel - - -

CVMi
par

lin-el 0.21 0.22 0.22
br-func 0.21− 0.27 0.22− 0.26 0.22− 0.25
e-func 0.08− 0.54 0.07− 0.65 0.09− 0.83

multi-lin 0.10− 0.50 0.09− 0.61 0.09− 0.78
mod-steel 0.09− 0.46 0.09− 0.54 0.08− 0.67

CVMi
tot

lin-el 0.21− 0.48 0.22− 0.51 0.22− 0.59
br-func 0.21− 0.48 0.22− 0.51 0.22− 0.59
e-func 0.09− 0.64 0.08− 0.75 0.11− 0.92 (0.98)

multi-lin 0.10− 0.61 0.09− 0.72 0.09− 0.88
mod-steel 0.09− 0.46 0.09− 0.54 0.08− 0.67

significant in the entire load-deformation behaviour.

The parameter uncertainty in the “lin-el” model is almost constant for all reinforcement ratios because

of the small influence of the reinforcement ratio on the initial uncracked bending stiffness. In addition,

the parameter uncertainty of the “br-func” model is similarly independent of the reinforcement ratio. The

minimum parameter uncertainty for all loading levels is not considerably influenced by the reinforcement

ratio, because this uncertainty occurs in the stabilised cracking stage in which the stiffness is constant for

concrete in tension and no redistribution between steel and concrete occurs. In the case that these condi-

tions appear in the majority of the samples, then the minimum uncertainty is similar for all reinforcement

ratios. Nevertheless, the range of loading significantly decreases with respect to decreasing reinforcement

ratio at which these conditions appear.

In contrast, a very high influence of the reinforcement ratio is visible to the maximum parameter uncertainty

for the non-linear models considering tension stiffening in all loading stages. This maximum parameter un-

certainty occurs in the intersection between the uncracked and the crack formation stages. An even higher

parameter uncertainty occurs for the low reinforcement ratio in comparison to the high reinforcement ra-

tio. For the medium reinforcement ratio the increase in parameter uncertainty is about 120 % and when

considering a lesser amount of steel bars, it is about 152 % in comparison to the uncertainty of the high

reinforcement ratio. For the “mod-steel” model, the increase in parameter uncertainty is slightly less com-

pared to the “e-func” and “multi-lin” models. Due to a lesser amount of reinforcement, the change in

reinforcement stress caused by concrete cracking is much higher for the low in comparison to the high

reinforcement ratio. Therefore, a higher discrepancy in the simulation of the curvature occurs between the
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5.1. Material modelling of reinforced concrete

uncracked and the crack formation stages for a lower reinforcement ratio causing a significant incrase in

parameter uncertainty.

In conclusion, the lowest total uncertainty (highest prediction quality) for all models throughout the entire

load-deformation analysis is not influenced by the reinforcement ratio. For the “lin-el” and “br-func” models,

this lowest value of uncertainty occurs in the initial uncracked stage, whereas in the “e-func”, “multi-lin”

and “mod-steel” models, this uncertainty appears in the stabilised cracking stage. In contrast, the maxi-

mum total uncertainty (lowest prediction quality) is significantly influenced by the reinforcement ratio and

increases with a decreasing amount of reinforcing steel. The increase in the “lin-el” and “br-func” models

is similar to 106 % for the medium and 123 % for the low reinforcement in comparison to the uncertainty of

the high reinforcement ratio. For the “e-func”, “multi-lin”, and “mod-steel” models, the increase is about

to 117 % for the medium and 144 % for the low reinforcement ratio. In conclusion, the “mod-steel” model

is quantified to be the most adequate model for the analysis of load-deformation behaviour of reinforced

concrete cross sections with various reinforcement ratios subjected to flexural loading condition.

5.1.5 Assessment of uncertainty hypothesis

In this section, the uncertainty hypothesis is investigated for the material models of reinforced concrete.

This hypothesis claims that models with higher complexity reduce model uncertainty. In contrast, parameter

uncertainty increases with higher complexity. Finally, the model with lowest total uncertainty is the most

adequate model with best accuracy in order to describe the physical phenomenon.

The uncertainty of the models is quantified in the previous sections. The model complexity assessment

is based on the study conducted by Snowling and Kramer [380], see Eq. 2.55. For concrete material

model, the individual model complexity indices considering the state variables and processes in the model

descriptions are listed in Tab. 5.4.

The processes nj in the assessment of material models for reinforced concrete flexural members are the

characteristic cracking stages, uncracked stage, crack formation stage, stabilised cracking stage, and steel

yielding stage. Each model is evaluated separately in all bending stages, which are processes in the model

complexity assessment. Corresponding state variables are analysed in the cross sectional subsections with

Xi number of parameters and ri number of mathematical operations determining the flexural stiffness in

each subsection Ni .

In the case of the linear-elastic material “lin-el” model, the stiffness in the uncracked stage is determined

exclusively and all other cracking stages are neglected. Therefore, the model complexity in theses stages is

zero. In the uncracked stage, the modulus of elasticity is the parameter determining the material stresses

and stiffness. The relationship between the parameters and the resulting stresses is computed by one math-

ematical operation, the multiplication of the modulus of elasticity and the material strains. Therefore,

Xi = 1 and ri = 1 for the subsections CC, CT, SC and ST. In the reinforced concrete subsection RCT,

no additional description is considered in the material “lin-el” model. Finally, the model complexity of this

linear-elastic material model is Ic,lin-el = 4.

Increase in model complexity should generally be possible by taking into account the stiffness degradation

in the concrete compressive zone. The “br-func” model considers concrete crushing by a non-linear broken

rational function. Therefore, the model complexity in this cross sectional subsection should increase in

comparison to the linear-elastic material model. Four parameters and seven mathematical operations are

necessary to describe the relationship between the concrete compressive strains and stresses. Hence, the

model complexity is increased in the subsection CC from 1 (“lin-el”) to 28 (“br-func”) which confirms
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5. Partial model quality evaluation

Table 5.4: Complexity of material models for reinforced concrete, CC...concrete in compression,
CT...concrete in tension, RCT...reinforced concrete in tension SC...steel in compression,
ST...steel in tension

Process nj , State variable Ni
∑N

i=1 Xi · ri

Model CC CT RCT SC ST
Xi ri Xi ri Xi ri Xi ri Xi ri

lin-el Ic,lin-el = 4
uncracked stage 1 1 1 1 0 0 1 1 1 1 4
crack formation stage 0 0 0 0 0 0 0 0 0 0 0
stabilised cracking stage 0 0 0 0 0 0 0 0 0 0 0
steel yielding stage 0 0 0 0 0 0 0 0 0 0 0

br-func Ic,br-func = 31
uncracked stage 4 7 1 1 0 0 1 1 1 1 31
crack formation stage 0 0 0 0 0 0 0 0 0 0 0
stabilised cracking stage 0 0 0 0 0 0 0 0 0 0 0
steel yielding stage 0 0 0 0 0 0 0 0 0 0 0

e-func Ic,e-func = 96
uncracked stage 4 7 1 1 1 1 1 1 1 1 32
crack formation stage 0 0 0 0 4 4 0 0 0 0 16
stabilised cracking stage 0 0 0 0 0 0 0 0 0 0 0
steel yielding stage 0 0 0 0 4 4 4 4 4 4 48

multi-lin Ic,multi-lin = 112
uncracked stage 4 7 1 1 1 1 1 1 1 1 32
crack formation stage 0 0 0 0 4 4 0 0 0 0 16
stabilised cracking stage 0 0 0 0 4 4 0 0 0 0 16
steel yielding stage 0 0 0 0 4 4 4 4 4 4 48

mod-steel Ic,mod-steel = 114
uncracked stage 4 7 0 0 0 0 1 1 1 1 30
crack formation stage 0 0 0 0 0 0 0 0 4 4 16
stabilised cracking stage 0 0 0 0 0 0 0 0 6 4 24
steel yielding stage 0 0 0 0 0 0 4 4 7 4 44

the expected increase in model complexity. In the other subsections, no change in the model description is

applied in the “br-func” model. Finally, the model complexity is Ic,br-func = 31.

The consideration of both stiffness degradation due to concrete cracking and steel yielding stage in the

non-linear material “e-func” model should increase the model complexity compared to the “br-func” mate-

rial model. Higher model complexity of the non-linear model is visible in the crack formation and steel yield

stages. In contrast, no increase in model complexity appears in the stabilised cracking stage due to the fact

that the exponential function is defined in the entire range between crack formation and stabilised cracking

stages. No distinction is apparent between both cracking stages. Four parameters and four mathematical

operations are necessary to describe the exponential function of the reinforced concrete subsection RCT. It

is similar to the model complexity in the steel yield stage. Moreover, the bi-linear relationship of the rein-

forcing steel in compression and tension is described by four parameters and four mathematical operations.

Therefore, the model complexity is increased throughout the entire model description, which confirms the

expected increase compared to the “br-func” model. Finally, the model complexity is Ic,e-func = 96.

Another increase in model complexity in comparison to the model with exponential function should be

appear in the case that the stabilised cracking stage is additionally considered in the model description.
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The “multi-lin” model defines the intersection between crack formation and stabilised cracking stage at the

strain value εc2. The concrete tensile behaviour in the stabilised cracking stage is also determined by four

parameters and four mathematical operations. Therefore, the model complexity in the stabilised cracking

stage increases in the subsection RCT from 0 (“e-func”) to 16 (“multi-lin”), which confirms the expected

increase. The model description in the steel yielding stage is the same as in the “e-func” model. Finally,

the model complexity is Ic,multi-lin = 112.

The non-linear model that considers the tension stiffening effect by modifying the steel strain values does

not determine concrete strain and stress values in the concrete tensile subsections. Hence, the model com-

plexity in these areas is Ic = 0. In contrast, more parameters and mathematical operations are necessary

to describe the behaviour of the reinforcing steel in the stabilised and the steel yielding stages. The model

complexity increases consequently in the stabilised cracking stage to Ic = 24 compared to the tension

stiffening “multi-lin” model. In the steel yielding stage, a decrease in model complexity is visible due to

the fact that the material behaviour is determined in less subsections compared to the “multi-lin” model.

Finally, the model complexity is Ic,mod-steel = 114 close to the complexity of the “multi-lin” material model,

which reflects the similar model characteristics.

This quantification of model complexity in combination with the above analysed model uncertainties is used

for the assessment of the uncertainty hypothesis, see Sec. 2.1. Therefore, the model complexity Ic is shown

in the horizontal axis in Fig. 5.18. Model, parameter and total uncertainty are determined by the coefficient

of variation CV and are represented in the vertical axis. The results are presented in the uncracked, crack

formation, stabilised cracking, and steel yielding stages, see Fig. 5.18(a) to Fig. 5.18(d).

In the uncracked stage, a negligible model uncertainty appears for all of the material models, see Fig. 5.18(a).

Therefore, the model’s total uncertainty is approximately equal to the model’s parameter uncertainty. There

is no influence of model complexity on model uncertainties is visible to the prediction of linear-elastic bend-

ing stiffness.

In the intersection between crack formation and stabilised cracking stages, a strong effect of model com-

plexity on the model uncertainties is visible, see Fig. 5.18(b). The bending stiffness is already degraded in

the reference “mod-steel” model for this loading condition. In the other non-linear and linear models, the

stiffness is close to the linear-elastic stiffness. Hence, the model uncertainty is constant and independent

of model complexity except in the most complex reference model. In contrast, parameter uncertainty in-

creases with increasing model complexity between the linear and non-linear models. The material “lin-el”

and “br-func” models are even more adequate in the crack formation stage than the much more complex

“e-func” and “multi-lin” models. Model and parameter uncertainty of the reference model “mod-steel” is

smaller compared to other non-liner material models which significantly reduces the total uncertainty.

Another increase in external bending moment initiates to the stabilised cracking stage, see Fig. 5.18(c). In

this stage, the stiffness is only about 30 % of the linear-elastic stiffness. The bending stiffness prediction

is relatively the same between the non-linear models considering the tension stiffening effect. Therefore,

model uncertainty decreases with increasing model complexity. In a similar manner, the parameter uncer-

tainty decreases with increasing model complexity. This is in contradiction to the expected uncertainty

hypothesis, which assumes that parameter uncertainty should be raised with increasing model complexity.

All input parameters, especially the concrete material properties with high variance, affect the prediction

in the simplified models. In contrast, the stiffness in the more complex models is less influenced by these

parameters. Furthermore, the simulation of each sample set computes the same cracking stage in the cross

section, which again reduces the parameter uncertainty of the more complex non-linear models.
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(b) crack formation stage, µ = 0.04, My = 63 kNm
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(c) stabilised cracking stage, µ = 0.10, My = 158 kNm
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(d) steel yielding stage, µ = 0.19, My = 300 kNm

Figure 5.18: Assessment of uncertainty hypothesis for material models of reinforced concrete, hor. axis:
complexity with Ic,lin-el = 4, Ic,br-func = 31, Ic,e-func = 96, Ic,multi-lin = 112, Ic,mod-steel = 114,
ver. axis: uncertainty

In higher loading levels, some sample sets remain in the stabilised cracking stage while some samples lead

to the steel yielding stage. Thus, the parameter uncertainty increases with increasing complexity between

the simplified models and the non-linear “e-func” model, see Fig. 5.18(d). The greater amount of concrete

contribution between the cracks in the “multi-lin” and “mod-steel” models induces smaller variance in

the model output, because less samples are in between both cracking stages for these loading conditions.

The relationship between model complexity and model uncertainty is also similar to the stabilised cracking

stages.

The assessment of the relationship between model complexity and model, parameter, and total uncertainty

is evaluated for all cracking stages in the prediction of bending stiffness. The statement that increasing

the complexity reduces the model uncertainty is analysed to be an appropriate assumption in the assess-

ment of the concrete material models. In contrast, the theorem that parameter uncertainty increases with

increasing complexity cannot be generalised and does not represent the quantified results. Therefore, the

relationship between total uncertainty and complexity is strongly dependent on the model characteristics

and the loading condition.
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5.2. Pile foundation models

The individual model characteristics and the influence of external loading condition on the model response

significantly impacts the relationship between complexity and uncertainty. Therefore, a general determi-

nation of the dependence between complexity and uncertainty is not appropriate and should be carefully

investigated in each application. The result of this assessment does not say that this hypothesis is inaccurate

or wrong, it says that the hypothesis cannot be generalised as is shows in the presented results. Never-

theless, the quantification of uncertainty and complexity allows a clear and objective comparison between

various models. Therefore, the choice of an adequate model for each application is assisted by quantitative

information based on the uncertainty and not solely based on qualitative engineering judgement.

5.2 Pile foundation models

In Sec. 3.6, the behaviour of vertically and laterally loaded single piles and pile groups are discussed and

corresponding prediction models are introduced. In this section, assessment of pile models is performed for

the vertical stiffness prediction due to incremental load analysis of the vertical force N. In a cooperative

study published in [197], an evaluation is similarly presented for laterally loaded pile groups with similar

foundation and soil conditions as indicated in the following.

The models assessed in this study are presented in Sec. 3.6.1. These prediction models are generally ap-

plicable for computing the pile foundation stiffness for the purpose of structural analysis. Based on the

uncertainty analysis that is similarly used in the assessment of concrete material models, the underlying

uncertainty in the prediction of these models is evaluated in order to obtain a quantitative comparison. The

evaluation is analysed for the prediction of pile group stiffness because this output quantity is the main

input used for structural engineering problems such as load-deformation simulation of bridges.

Two different pile foundation arrangements are exemplary analysed in the evaluation of pile foundation

models, see Fig. 5.19. On one hand, a pile group with one pile row in transverse direction to the bridge

superstructure (I) and on the other side a square pile group (II) is investigated in the assessment. Both

pile foundation constructions are used in the design for different types of bridge construction. Type (II)

generates more lateral and rotational stiffness in comparison to the type (I). Therefore type (II) is applied

for girder bridges (superstructure decoupled from substructure using bearings). In contrast, the type (I) is

commonly used for semi-integral and integral bridges in order to reduce the lateral and rotational stiffness

of the foundation. This increasing flexibility can reduce restraining forces in the entire structure, which are

often a critical design criteria for integral bridges as previously discussed in Sec 3.5.4.2.
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Figure 5.19: Geometry and soil conditions for pile group arrangements
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Both pile foundations are embedded in a homogeneous non-cohesive soil (SW...well-graded sand, fine to

coarse sand) as it is classified in the unified soil classification system [7, 140]. The interaction between piles

is significantly influenced by the pile space ratio s/dP . For a smaller ratio, the displacement fields of each

pile in the group overlap much more than compared to groups with a greater pile space ratio. The question

arises, if this ratio is also affecting the uncertainty in the prediction of vertical pile foundation stiffness?

The uncertainty in model predictions has not yet been studied for vertical loaded pile groups. Therefore,

the models are analysed in order to evaluate the underlying uncertainty in the prediction by considering

several pile space ratios. These ratios are considered in the range of 2 ≤ s/dP ≤ 10 and the corresponding

pile spaces measured between the centre of each pile are shown in the appendix in Tab. B.1 for type (I)

and in Tab. B.2 for type (II) pile group arrangement.

The load-deformation behaviour of the pile groups can be generally analysed by the load dependent stiff-

ness. In structural engineering problems such as bridge engineering, this stiffness is commonly considered in

the simulation of the structure in order to account for foundation and soil flexibility, stiffness respectively.

Therefore, the prediction of vertical pile group stiffness is the response value in the following uncertainty

analysis and the models considered in this assessment are evaluated according to their prognosis of vertical

stiffness.

5.2.1 Uncertainty analysis of pile foundation models

5.2.1.1 Stochastic input parameters

Information on parameter randomness is seldomly available for a soil characterised by soil classification

systems. An extensive study for characterising soil variability is performed by Phoon et al. [310, 311, 312].

In general, the parameter uncertainty for sand is higher than for clay. The assessment of uncertainty in the

friction angle ϕ for sand and clay is evaluated to be in the range of 5 to 20 % determined by the coefficient

of variation. For the earth pressure at rest coefficient K0, the range of 20 to 80 % for clay and 25 to 55 %

for sand are evaluated. The highest uncertainty in soil properties is assessed in terms of the soil modulus of

elasticity E . The range of the coefficient of variation is found to be 20 to 70 %. This assessment, among

others [68, 183], show a very high variance in the soil properties. In most cases, a normal distribution or log

normal distribution is assessed to be a reasonably applicable for describing randomness in soil properties.

For this assessment, the different input parameters and their distribution, mean, coefficient of variation and

the correlation matrix are shown in Tab. 5.5. The stochastic input parameters are chosen as synthetic data

according to several researches such as the study by Phoon. Therefore, the prediction of pile foundation

stiffness is quantified for frequently-encountered soil conditions. Due to the high variation in soil properties,

a log normal distribution is chosen in order to exclude meaningless negative strength and stiffness values.

Table 5.5: Stochastic input parameters of pile and soil properties, variation information based on
[68, 183, 311, 312, 310]

Material Property Distribution Mean Value CV Correlation Matrix ρXi Xi+1

Type Range [-] EP E νs ϕ

pile modulus of elasticity EP log normal 30000 MN/m2 0.15 1.0 0 0 0
soil modulus of elasticity E log normal 80 MN/m2 0.20 0 1.0 0 0.4
soil Poisson’s ratio νs uniform 0.28. . . 0.32 - 0 0 1.0 0
friction angle ϕ log normal 37.5◦ 0.20 0 0.4 0 1.0
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5.2. Pile foundation models

A comparison between defined stochastic properties and samples shows a very good agreement, see

Fig. 5.20. Therefore, the samples are reliable and can be used in the uncertainty analysis. The earth pressure

at rest coefficient is computed by:

K0 ≈ 1− sinϕ , (5.4)

which assumes a full dependency (correlation) between friction angle ϕ and earth pressure coefficient K0.
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Figure 5.20: Correlated samples between friction angle ϕ and soil modulus of elasticity E , and uncorrelated
samples between soil Poisson’s ratio νs and soil modulus of elasticity E for pile foundation
assessment, 10000 samples

The radius at which the shear stress becomes negligible rm,g is determined by:

rm,g = 2.5 · lP · (1− νs) = 2.5 · 20 · (1− 0.3) = 35 m , (5.5)

and is applied in each considered model in order to identically take into account the shear stress around the

pile shaft. Furthermore, the discussion by the authors of these models according to this parameter similarly

recommends the general applicability of the above expression. This parameter is fixed as a deterministic

parameter in the model assessment.

5.2.1.2 Model uncertainty by deterministic simulation

The deterministic model predictions of the vertical pile group stiffness are listed in Tab. 5.6 for the linear-

elastic response analysis of both pile group arrangements. Also, these initial elastic stiffness are shown in

Fig. 5.21(a) for all considered models, pile space ratios, and both arrangements.

The models by Randolph and Rudolf uses the same stiffness determination for single piles and pile

groups in the case of linear-elastic response in the pile group. Therefore, the deterministic stiffness between

both models is identical for all of the investigated conditions. In the model by Mylonakis, the condition is

chosen that no bedrock is present and therefore the height under the pile tip is hb →∞ with the soil equal

to the above considered homogeneous non-cohesive soil (SW). In consequence, the pile base stiffness is

identically computed in all models. Due to the consideration of the pile modulus of elasticity EP = Ec , the

stiffness of a single pile is reduced to 77 % in the Mylonakis model in comparison to the other considered
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models.

Table 5.6: Deterministic elastic prediction of vertical pile foundation stiffness for pile groups 4x1, 2x2
with pile diameter dP = 1.0 m, pile length lP = 20 m, and various pile space/pile diameter
ratios s/dp in comparison to single pile stiffness

Pile Space Linear-elastic Vertical Pile Stiffness
Ratio Randolph et al. [334] Mylonakis et al. [291] Rudolf [353]

Kv ,g Kv ,g/Kv ,s Kv ,g Kv ,g/Kv ,s Kv ,g Kv ,g/Kv ,s

[MN/m] [%] [MN/m] [%] [MN/m] [%]

single pile stiffness
Kv ,s 998 MN/m 773 MN/m 998 MN/m

4x1 pile group (I)
s/dP = 2 1619 162 1566 203 1619 162
s/dP = 3 1800 180 1746 226 1800 180
s/dP = 5 2083 209 2046 265 2083 209
s/dP = 10 2648 265 2676 346 2648 265

2x2 pile group (II)
s/dP = 2 1484 149 1429 185 1484 149
s/dP = 3 1645 165 1583 205 1645 165
s/dP = 5 1888 189 1832 237 1888 189
s/dP = 10 2343 235 2329 302 2343 235

For both pile foundation arrangements (I) and (II), the interaction between the piles is different inside the

groups due to the varying spaces between each pile. Therefore, the resulting vertical stiffness is not equal

in both group arrangements. The interaction in the quadratic arrangement (II) is higher than if all of the

piles are arranged in one row (I). In consequence, the stiffness of pile group (I) is higher than group (II).
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Figure 5.21: Pile foundation stiffness prediction for linear and non-linear loading condition, Randolph
[334], Mylonakis [291], Rudolf [353]

A non-linear loading condition induces significant differences in the model predictions between the con-

sidered models in comparison to a loading condition which cause a linear-elastic group response, see

Fig. 5.21(b). The models by Randolph and Worth [334], and Mylonakis and Gazetas [291] assume

a linear-elastic soil behaviour. Therefore, the vertical stiffness prognosis is independent from the loading
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condition causing a recognisable difference compared to the non-linear by Rudolf [353]. The results ac-

cording to the deterministic vertical stiffness for the non-linear loading depicted in Fig. 5.21(b) are the same

compared to linear-elastic response analysis shown in Fig. 5.21(a).

The model by Rudolf [353] considers a bi-linear soil behaviour with the Mohr-Coulomb shear strength

criteria. Therefore, the stiffness can be degraded in a large amount for loading conditions with a non-linear

response in the pile group, soil respectively. In the results shown in Fig. 5.21(b), the axial loading for the pile

foundation is causing either linear-elastic, or medium non-linear N = 15 MN/m, or even highly non-linear

response N = 25 MN/m in the pile foundation. Due to the bi-linear yielding surface of the Mohr-Coulomb

shear strength criterion, the stiffness is not decreasing for further load-increments in the case that all pile

elements are already in the yielding zone. For the highly non-linear loading condition, these elements along

the pile depth are mainly in these conditions, which significantly reduce the effect of interaction between

the piles on the pile group stiffness.

The interaction between piles remains substantially linear-elastic despite the non-linear deformation be-

haviour as it is investigated by several researchers and experiments [60, 70, 416], see Sec. 3.6.1. Therefore,

the difference in stiffness between the pile group arrangements 4x1 and 2x2 decreases with increasing load-

ing level caused by a more significant stiffness degradation in the soil itself along the pile shaft elements

and at the pile base. Furthermore, the influence of the pile space ratio on the stiffness is similarly less for

non-linear response compared to linear-elastic analysis. Therefore, the influence of soil behaviour deter-

mines the vertical stiffness more decisively in the non-linear response analysis than compared to the elastic

pile-to-pile and base-to-base interaction.
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Figure 5.22: Load-bearing behaviour of pile group for different pile arrangement (2x2, 4x1) and pile spacing
(s/d = 2, 2/d = 10), non-linear model Rudolf [353]

The discussion of the model characteristics is mentioned previously in Sec. 3.6.1.2. Based on the model

attributes, the non-linear model by Rudolf [353] is chosen as the reference model, because it has the

highest model complexity in comparison to the other pile models that are considered. The non-linear load-

deformation analyses for a load increment of ∆N = 0.4 MN is shown in Fig. 5.22 for both pile group

arrangements in combination with two different pile space ratios in each case. Smallest ratio of s/dP = 2

and greatest ratio of s/dP = 10 are exemplary chosen to illustrate the influence of pile spaces on the

interaction in the pile group and corresponding uncertainty.
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In general, the elastic stiffness is higher in the 4x1 than the 2x2 pile group arrangement. Furthermore, the

increase caused by the greater pile space ratio is even more rapid for the 4x1 than the 2x2 pile group. For

the 4x1 pile group, the increase in vertical stiffness is 164 % between s/dP = 2 and s/dP = 10 and 158 %

for the 2x2 group which is similarly analysed in all considered models, see Tab. 5.6. The axial force can

also be seen as the resistance of the pile group mobilised by a certain amount of vertical displacement that

represents the commonly known resistance-settlement relationship. Based on the recommendation of the

German Geotechnical Society [81], the settlement limit for the ultimate limit state is sv ,lim = 0.10dP for

vertically loaded piles determining the maximum admissible settlement in this assessment. Therefore, the

non-linear model by Rudolf is similarly simulated until this limit settlement. Hence, the results presented

in the following assessment are limited up to the maximum axial force Nmax = 26 MN which approximately

corresponds to sv ,lim. A comparison to the probabilistic analysis, discussed in the next section, shows that

more than 90 % of all samples reach this loading condition. Finally, this axial force as the maximum loading

level is reasonable for the uncertainty analysis with respect to the design recommendations and the accuracy

of the probabilistic simulations.
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192



5.2. Pile foundation models

The vertical stiffness should be used as the model output as it is the most influential quantity for purpose

of structural analysis. The application of the stiffness as the response quantity in the uncertainty analysis

is shown in Fig. 5.23. Moreover, the vertical settlement as another possible response quantity which is sim-

ilarly capable to represent the pile foundation load-deformation behaviour and stiffness respectively. Due

to the fact that the stiffness is constant for the elastic models (simplified models), the computation of

model uncertainty, see Eq. 2.10b and Fig. 5.23(c), quantifies the difference in model predictions between

a load-independent constant value and a load-dependent varying quantity in the reference model. In the

case of selecting the stiffness response for the model output in the assessment, the reference value always

decreases in the load-deformation analysis because no stiffening is possible in the considered models for an

increase in external load. Therefore, standard deviation (difference between model predictions) increases

and average value (model prediction of reference model) decreases between two neighbouring load steps.

When the relationship becomes more and more disproportional due to the high stiffness degradation in the

non-linear reference model and the constant elastic stiffness in the simplified models, the model uncertainty

is significantly overestimated and is not capable of representing the average load-deformation behaviour of

the models that are discussed in the following paragraphs. This deterministic simulation is shown previously

in Fig. 5.22 and it is easily apparent that a high non-linear stiffness degradation occurs in the loading range

6 < N [MN] < 20. Hence, the settlement increases disproportionally to the external load increment. Further

load increments reduce the disproportional stiffness degradation resulting in an almost constant stiffness in

the ultimate state. Therefore, the settlement increases proportionally to the external load increment. For

the simplified elastic models, the increase in settlement is always proportional to the external load increment

due to the same initial elastic pile foundation stiffness. Furthermore, the characteristic of the coefficient

of variation CV is that a proportional change between standard deviation (numerator) and average value

(denominator) lead to a constant CV between two neighbouring load steps.

All these aspects should be quantified and considered in the model uncertainty assessment. A comparison

between the stiffness and settlement response applications for the uncertainty analysis shows that the set-

tlement value is more adequate and accurate in the model uncertainty quantification, see Fig. 5.23. The

uncertainty in the non-linear loading range is overestimated by the settlement criteria and the decrease in

disproportional stiffness degradation for further load increments is not visible in the case that the stiffness

response is applied in the model uncertainty assessment. In contrast, the settlement response determination

is more reasonable and capable of representing the entire load-deformation behaviour of the pile foundation.

Therefore, the settlement prediction is chosen as the model output in the uncertainty assessment being

capable to investigate the entire load-deformation analysis. Similarities for the prediction of curvature and

stiffness are visible in the evaluation of the material models for concrete as it is quantified in Sec. 5.1.

The results of the model uncertainty assessment are shown in Fig. 5.24 with respect to both pile group

arrangements and pile space ratios s/dP = 2 and s/dP = 10. For the ratios s/dP = 3 and s/dP = 5,

the results of the model uncertainty are presented in appendix in Fig. B.11. The difference in the model

predictions between the models by Randolph and Mylonakis is small and therefore model uncertainty

is consequently comparable between both models. With increasing pile space ratio, the interaction is less

between each pile in the groups and therefore the predictions are even more similar and finally the same

in the case of great pile space ratios. In the loading range N < 8 MN, the model uncertainty in the elas-

tic models are generally smaller than CVMi
model < 0.08 for the great pile space ratio and < 0.07 for the

small pile space ratio. Therefore, all of the models considered predict a comparable stiffness in this loading

range and hence the simplified elastic models are accurate for the prognosis of elastic stiffness. Hence, the
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Figure 5.24: Model uncertainty CVMi
mod for pile foundation assembly 4x1 (I) and 2x2 (II),

Randolph et al. [334], Mylonakis et al. [291], reference model Rudolf [353]

complexity in the model by Randolph and Worth [334], and the model by Mylonakis and Gazetas

[291] is adequate in order to determine the linear-elastic stiffness. In comparison to the complex model by

Rudolf, the highest model uncertainty is found at the final loading level in which the difference between

linear-elastic and non-linear prognosis is the greatest. For the pile group 2x2 with s/dP = 2, this uncertainty

is 0.49 and 0.51 for s/dP = 10. In a similar manner, the highest model uncertainty in the prediction of

vertical pile group stiffness in pile group 4x1 with s/dP = 2 is 0.49 and for s/dP = 10 is 0.52.

Finally, a difference in model uncertainty is not quantified according to the different pile group arrange-

ments. The scope of the load dependent uncertainty for the 4x1 and 2x2 groups is very similar and even the

quantitative values are comparable as mentioned above. Furthermore, the influence of the pile space ratio

is not distinctly obvious in the main part of loading. A slight increase in model uncertainty is visible for

the great pile space ratio in the loading range between 18 < N < 24 MN in comparison to the smaller pile

space ratio. This effect is caused by a more extensive stiffness degradation for s/dP = 10 in comparison

to s/dP = 2. For the 4x1 group and the small pile space ratio, the uncertainty for N=20 MN is 0.35 and

0.41 for the greater ratio. Similarly, for the group 2x2 and the small pile space ratio the model uncertainty

is 0.33 and 0.38 for the greater pile space ratio .
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5.2.1.3 Parameter uncertainty by probabilistic simulation

For the assessment of parameter uncertainty, probabilistic simulations are necessary in order to take into

account the randomness in the model input parameters. The quantification of parameter uncertainty allows

for the evaluation of the variance in each model depending on the load conditions. The results of the

probabilistic simulation are shown in Fig. 5.25. On one side, the results according to the elastic model

by Mylonakis et al. [291] and on the other side according to the non-linear pile foundation model by

Rudolf [353] are illustrated for the pile group arrangement 4x1 (I) with the pile space ratio of s/dP = 2.

The prediction of the vertical stiffness Kv of each model is related to the deterministic (average) elastic

model prognosis K I
v which is 1, 566 MN/m for the model by Mylonakis and 1, 619 MN/m for the model

by Rudolf.
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Figure 5.25: Probabilistic simulation of vertical pile foundation stiffness for either elastic or non-linear
models, group 4x1 (I) with s/dP = 2, 10000 samples

Based on these probabilistic simulations, a difference between the elastic and non-linear models is easily

apparent for the entire loading range. No stiffness degradation is achievable in the elastic models and

therefore the influence of the non-deterministic input parameters on the load-deformation behaviour is

independent of the loading level. In contrast, the variance in the non-linear model is highly sensitive to the

loading condition and the resulting soil response. The quantitative assessment of parameter uncertainty

allows for the evaluation of the influence of the randomly varying input parameters on the model output

and the results are discussed in the following paragraphs.

The parameter uncertainty for both pile group arrangements with corresponding pile space ratios s/dP = 2

and s/dP = 10 are shown in Fig. 5.26. For the pile space ratios s/dP = 3 and s/dP = 5, the results of

parameter uncertainty are shown in the appendix in Fig. B.12. For the model by Mylonakis, the parameter

uncertainty is CVMMYL
par = 0.19 and is analysed to be independent of loading level, pile group arrangement,

and pile space ratio. In a similar manner, a coefficient of variation is assessed to CVMRAN
par = 0.20 for the

Randolph pile foundation model also being independent of the previously mentioned conditions.

A load dependent parameter uncertainty is easily apparent in the non-linear model by Rudolf. For a

sample set of model input parameter with corresponding higher initial stiffness in comparison to another

sample set, the stiffness degradation occurs at higher loading levels. Therefore, for a sample set with lower

initial stiffness subjected to a loading condition such as N = 16 MN, some pile shaft or pile base elements
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Figure 5.26: Parameter uncertainty CVMi
par for pile foundation arrangement 4x1 (I) and 2x2 (II),

Randolph et al. [334], Mylonakis et al. [291], Rudolf [353]

are in the plastic zone according to the Mohr-Coulomb shear strength criterion. In contrast, these elements

may be in the elastic stage for the same loading level for another sample set with corresponding higher

initial stiffness. Settlement prediction is significantly different between both material stages and hence

the parameter uncertainty increases in comparison to the elastic prediction models. In the initial elastic

stage, the parameter uncertainty in the model by Rudolf is comparable to the model by Randolph,

which is caused by the same description of pile-to-pile interaction. This parameter uncertainty is similarly

independent of pile group arrangement and pile space ratio and is quantified to be 0.20.

Increase in the coefficient of variation is initiated at a loading level of about N ≈ 14 MN for both pile

foundation arrangements. For the greater pile space ratio, the increase is slightly more rapid and results

for 2x2 group with s/dP = 10 and N = 18 MN in a the parameter uncertainty of 0.28. In contrast, the

coefficient of variation is 0.25 for s/dP = 2. For the pile group 4x1, the corresponding uncertainties are

0.26 for the smaller pile space ratio and 0.30 for the greater. The maximum uncertainty of all loading

conditions is 0.29 for both pile group arrangements and all pile space ratios, that occur in the loading

range between 18 < N [MN] < 20. For further load increments, this uncertainty is reduced because more

and more samples are in the same plastic material condition and therefore the coefficient of variation in
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the stiffness prediction decreases in the load level range between 20 < N [MN] < 24. Another stiffness

degradation appears for further load-increments and hence an increase in parameter uncertainty occurs at

the final ultimate loading stage.

The analysis of the influence of pile space ratio found that these geometric conditions does not affect

the maximum and minimum parameter uncertainty values for the entire load-deformation analysis. These

conditions in the pile group arrangement is slightly influential in the shape of the coefficient of variation

along all loading levels. Nevertheless, the parameter uncertainty is in some cases independent of the pile

group arrangement and pile space ratio.

5.2.1.4 Total uncertainty

Taking into account the model and parameter uncertainty leads to the total uncertainty for the consid-

ered vertical pile models in the entire load-deformation analysis. This uncertainty can be transferred to the

model’s prediction quality which allows a quantitative assessment of several models. Finally, for the analysis

of engineering problems, the model with best prediction quality should be used in order to obtain reliable

simulation results and to ensure a safe design of the structure.

The total uncertainty CVMi
tot in the prediction of vertical pile foundation stiffness is illustrated in Fig. 5.27 for

both pile group arrangements and corresponding pile space ratios s/dP = 2 and s/dP = 10. Moreover, the

quantification of total uncertainty is shown in the appendix in Fig. B.12 for the pile space ratios s/dP = 3

and s/dP = 5. The shape of the total uncertainty quantified by the coefficient of variation in the model

prediction of vertical stiffness is not significantly influenced either by pile group arrangement or pile space

ratio. The total uncertainty at the initial elastic loading stage is equal to the parameter uncertainty because

the models predict on average a comparable vertical pile group stiffness that results in an negligible model

uncertainty. Increase in external force N causes certain non-linear soil response and hence a discrepancy

between the elastic and non-linear models. The model uncertainty of the elastic models by Randolph et

al. [334] and Mylonakis et al. [291] increases for further load increments. However, the parameter uncer-

tainty for the elastic models is constant over the entire loading range. Therefore, the basic contribution in

the total uncertainty of these models is the parameter uncertainty of about 0.20. The additional magnitude

is caused by the continuously increasing model uncertainty caused by the simplification in the underlying

model descriptions.

Maximum total uncertainty appears for the elastic models at the final loading stage for N = 26 MN

caused by the highest model uncertainty. This highest total uncertainty is assessed to be on average

CVMRAN
tot = 0.55 and CVMMYL

tot = 0.54 for both pile group arrangements and pile space ratios. The

non-linear model by Rudolf is chosen as the reference model and thus is not affected by model uncer-

tainties. Therefore, the total uncertainty in this model is equal to the underlying parameter uncertainty

as discussed in the previous section. The maximum total uncertainty for this non-linear model is equal to

CVMRAN
tot = 0.30 for both arrangements and pile space ratios. This uncertainty occurs at the intersection in

the more rapid stiffness degradation at the loading range of 12 < N MN < 20. For the initial loading range

between 1 < N MN < 12, the uncertainty in the complex non-linear models is identically to the uncertainty

in the initial linear-elastic stage.

The total uncertainty can be transferred into the partial model quality MQMi
PM,Y of each pile foundation

model. Either the total uncertainty of a certain model is related to the minimum uncertainty of all models as

proposed by Keitel [206], see Eq. 2.15 and Fig. 5.28(a), or a direct representation of the total uncertainty

according to Eq. 2.14 and Fig. 5.28(b). Both definitions are exemplary illustrated in Fig. 5.28 for the pile
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Figure 5.27: Total uncertainty CVMi
tot for pile foundation arrangement 4x1 (I) and 2x2 (II),

Randolph et al. [334], Mylonakis et al. [291], Rudolf [353]

foundation arrangement 4x1 (I) with pile space ratio s/dP = 2. The partial model quality for the other pile

group conditions are not illustrated due to the fact that the shape and almost maximum and minimum

values of total uncertainty are approximately independent of pile group arrangement and pile space ratio.

Hence, corresponding partial model quality is very close to that shown in Fig. 5.28 for the other considered

geometric conditions in the pile group arrangement.

The relative determination of partial model quality always associates from the model with lowest total

uncertainty to the model with the best overall prediction quality resulting in MQMi
PM,Y = 1.0. In the initial

elastic pile group response up to N = 8 MN, the model by Mylonakis et al. [291] is the model with best

overall prediction quality and the other models are assessed to MQMi
PM,Y < 0.95. Nevertheless, the total

uncertainty is 0.19 for Mylonakis model and 0.20 for the other models. Therefore, the almost negligible

difference in total uncertainty is transferred into a considerable difference in partial model quality which

is generally too sensitive and finally overestimates the diversity in partial model quality for models with

almost same total uncertainty.

For further load increments, the total uncertainty in the non-linear model is constant up to the load-

ing level of N = 14 MN. The increase in total uncertainty in the elastic models is more rapid than the
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Figure 5.28: Model quality MQMi
PM for pile foundation arrangement 4x1 (I) with pile space ratio s/dP = 2,

Randolph et al. [334], Mylonakis et al. [291], Rudolf [353]

non-linear model. Therefore, the minimum total uncertainty appears in the model by Rudolf for all

considered models. Hence, this non-linear model is the model with best partial model quality for loading

conditions N > 7 MN. Increase in total uncertainty in this model occurs at the loading range between

16 < N MN < 20. The difference to the elastic models decreases for these loading conditions. Therefore,

the partial model quality of the elastic models increases to a considerable amount. This is caused by the

change in total uncertainty of another model and is not affected by the uncertainty in the prediction of the

elastic models itself. Hence, this is similar to another adjustment of models with smaller accuracy and a

model with greater complexity. This modification can be seen as modification representing one more model

uncertainty assessment which is not adequate. The uncertainty and model quality should be as much as

possible independent from other models in order to finally represent the model’s characteristics and be-

haviour in the evaluation. In the model uncertainty, some relation to a reference (most complex model or

experimental data) is necessary and unavoidable. Nevertheless, this relation does not cause this increase in

partial model quality and is exclusively caused by an increase in total uncertainty in another model which

finally does not anymore represent the model characteristics of each model itself.

The partial model quality should be quantified as a clear representation of the individual model characteris-

tics. Therefore, a direct relation of prediction quality to total uncertainty is more appropriate than a relative

determination that causes changes in the model characteristics of each model. Therefore, the determina-

tion of MQMi
PM,Y = 1− CVMi

tot,Y identically represents the total uncertainty in the model prediction of each

individual model. Constant total uncertainty over a certain loading range results in constant partial model

quality of each individual model. Moreover, variations in model quality are exclusively caused by changes

in total uncertainty of each individual model. Therefore, the characteristics of each model according to the

load-deformation analysis are exactly and adequately represent by this determination. The consideration

of further models then the considered ones and their assessment can be directly performed and added

to models which are already assessed assuming that the reference in the model uncertainty evaluation

is not influenced. This selection of the reference should be discussed and carefully checked in the case

that additional models are considered in the uncertainty assessment. In conclusion, the direct relation of
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5. Partial model quality evaluation

model quality and total uncertainty is more adequate compared to the relative determination and should be

generally applied as the corresponding partial model quality in the assessment of global structural models.
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6 Integrative assessment method

6.1 Integrative sensitivity analysis

This chapter presents an method for the assessment of partial models influence on the entire structural

load-deformation behaviour. Hence, the assessment at local positions in the structure is enhanced to an

overall evaluation method, which is applied to a simplified academic example and complex integral bridges.

Integrative assessment method that includes integrative sensitivity analysis and integrative global model

quality evaluation. The theory behind these assessment methods is discussed in this chapter and both

methods are subsequently applied to simplified and complex engineering structures. The global model qual-

ity assessment at certain locations in the structure, see Sec. 2.5, is particularly valuable for the design of

engineering structures with a linear-elastic computation of the section forces and the subsequent dimen-

sioning of critical cross sections. Whereas, simulations of structures based on material non-linearities do

not explicitly include the design of certain critical cross sections. Instead of the local safety check on cross

sections, a global safety check for non-linear simulations should be performed on a structural level rather

than on the local sections [5, 65, 66]. The design of the entire structure is always checked implicitly by the

constitutive models at all positions with the corresponding conditions, such as the amount of reinforcement

or the level of prestressing. Following the safety level concept for non-linear simulations, the model quality

assessment cannot be exclusively referred to the partial model’s sensitivity at local positions in the structure,

particularly in the case of non-linear material simulations. Therefore, it is necessary to establish a sensitivity

analysis, which is capable of evaluating the entire structure while taking into account all positions in the

structure in an overall assessment method.

Furthermore, due to complicated and interactive conditions in the structure, it might be difficult to clearly

identify the positions to assess the structural load-bearing evaluation. The false position identification will

result in a model evaluation at positions in the structure with low significance for the design of the entire

structure. For example, it may be difficult to identify the important positions for the assessment method in

the case of the structural analysis of a high rise building (Which column, slab, or frame corner should be

assessed?), or great shell structures (Which node should be assessed?), or dynamic analysis of structures

(need to consider the entire structural system), or complex bridges (integral bridges, curved bridges).

Moreover, the sensitivity is strongly dependent on the position in the structure [196, 211]. Therefore, the

quality of the prediction for the same partial model combination varies from position to position, due to

either different sensitivity indices or partial model qualities. The quality assessment for each partial model

combination should take into account the entire structure, especially for practical engineering problems.

Thus, for each partial model combination, one global model quality should be assessed to quantify the

overall load-deformation behaviour of the entire structure instead of evaluating each local position. Based

on the proposed integrative assessment method, a global structural model with an adequate prediction

quality can be selected in order to obtain reliable prognoses and a safe design of the entire structure.

The requirement of assessing the partial model’s sensitivity on a structural level for non-linear simulations
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for overall assessment and the possible false position identification in the structure justifies the necessity

to advance the existing sensitivity analysis and global model evaluation. The integrative sensitivity analysis

extends the sensitivity analysis at local positions in the structure to an integrative assessment method

of the entire structure. This enhancement considers the assessment of the partial model’s importance in

relation to the overall structural load-bearing behaviour. Furthermore, the integrative global model quality

evaluation can consider a changing partial model quality along the positions in the structure. Therefore,

the integrative assessment method is proposed in this section in order to assess the global model quality

with respect to the entire structure. Hence, the decision making in selecting an adequate partial model

combination for the entire structure can rely on the integrative assessment method.

The method considers the local response significance, the sensitivity information, and the partial model

quality. If the local response significance is neglected, then the sensitivity analysis would assume an equal im-

portance of each position in the structure based on the overall structural load-bearing behaviour. However,

this is a very simplified assumption for engineering structures. Hence, the magnitude of a desired response

quantity at each position is taken into account in the computation of the local response significance factors

in order to strengthen the simplified assumption. Permissible material stresses defined in design codes can

be applied as reference values, which render the local response significance similar to a utilization ratio.

An alternative for the reference values is to use the absolute response maximum at all positions in the

numerical structural model defining a relative determination of the local response significance factors.

The application of the integrative assessment method to the numerical simulations of semi-integral con-

crete bridges clarifies its general applicability for complex engineering structures, see Sec. 6.3. Therefore,

the categorisation of the phenomena’s importance in the numerical simulations of entire structural models

can be assessed. The results illustrate where the accurate or simplified models can be used to represent

various physical phenomena in the structural model. This quantitative model selection assists structural

engineers in obtaining more reliable numerical simulation results and finally to ensure a safer design.

In principle, the integrative assessment method enables the categorisation of engineering structures ac-

cording to the importance of various phenomena, which should be taken into account in the numerical

simulation. Design recommendations in guidelines and codes can then be made in a quantitative manner

by applying the integrative sensitivity analysis for various structures and corresponding conditions.

The total-effects sensitivity indices corresponding to model class SM
Ti and model choice SMC

Ti can be assessed

at each nodal coordinate or in each element in the numerical model of the entire structure. The importance

of the model class and the influence of the model choice on the focusing phenomenon are strongly depen-

dent on the position and conditions within the structure [196]. These variance-based sensitivity values are

independent of the structural response magnitude at each position. Hence, the significance of each position

in the global numerical model of the structure is not considered in the variance-based sensitivity analysis.

In this context, the integrative sensitivity analysis enhances the existing sensitivity methods. This quan-

titative method describes the influence that model class or model choice has on the overall structural

load-bearing behaviour. Consequently, the assessment of coupled numerical partial models does not any-

more refer to a local response quantity at a particular position in the structure. The integrative sensitivity

analysis assesses the model’s importance in relation to the entire load-bearing behaviour of the structure.

The sensitivity indices at local positions in the structure are related to various response quantities Y , for ex-

ample displacements, stresses, and section forces. The numerical integration of the sensitivity indices (SM
Ti ,

SMC
Ti ) at each position over a chosen region lj , e.g. the length of structural components (e.g. lsuperstructure,

lsubstructure, lstructure) leads to an unweighted overall assessment of the sensitivity indices. The importance
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6.1. Integrative sensitivity analysis

of the response values at each node is assumed to be equally essential for the evaluation of the structure

represented by the coupled numerical partial models.

As an example, the prediction of the vertical displacement of a simply supported beam is much less im-

portant near the supports than near the centre of the span, see Fig. 6.1. The importance of each position

can be considered by the local response response significance factor S, which is zero at the supports and

unity in the span for this academic example. Zero mean that this position is not influential according to

the entire structural behaviour and unity expresses the most influential position in the entire structure.

In contrast, the unweighted numerical integration assumes an equal importance of each position in the

prediction of both displacements, which is not adequate for a quantitative assessment method in order to

obtain a reliable global model quality. This academic example is further discussed in combination with the

integrative global model quality evaluation in Sec. 6.2.
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Figure 6.1: Sensitivity of partial models for simply supported beam in cracked stage with constant partial
model quality and local response significance

In order to consider the significance of the position in the structure, the unweighted numerical integration of

the sensitivity indices over a certain length is advanced with the help of the integrative sensitivity analysis.

The integrative total-effects sensitivity index S
M/MC
Ti can be assessed for specific structural components

or the entire structure including all of its components and elements, which is considered in the length lj .

Therefore, the importance of the sensitivity indices at the various positions is expressed by the local re-

sponse significance factor SY . For the overall structural assessment, the integrative total-effects sensitivity

index considers the required sensitivity and significance information and is defined as:

S
M/MC,Y
Ti ,Xi

=

x=lj∫
x=0

S
M/MC,Y
Ti ,Xi

(x) · SY (x) dx . (6.1)
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The integrative sensitivity can be approximately determined assuming a piecewise linear distribution by:

S
M/MC,Y
Ti ,Xi

≈
N∑

n=1

S
M/MC,Y
Ti ,Xi

(n) · 1

2
· (xn+1 − xn−1) · SY (n)

N∑
n=1

1

2
· (xn+1 − xn−1) · SY (n)

(6.2)

with the initial summand n = 1 and the final summand n = N of the midpoint rule as:

for: n = 1 (xn+1 − xn−1) = (x2 − x1)

for: n = N (xn+1 − xn−1) = (xN − xN−1) (6.3)

where SY (n) is the local response significance factor at the position n in the structure, N is the total

number of all positions, and S
M/MC,Y
Ti ,Xi

are the total-effects sensitivity indices for each partial model Xi

with respect to the structural response quantity Y . The integrative sensitivity indices have to be separately

quantified in the model class (M, first step) or model choice (MC, second step) assessment. The sensitivity

analysis quantifies which model causes the variance in the structural model response. In addition, the local

response significance factor SY considers the importance of the prediction at each node or element in

relation to the overall structural behaviour. Thus, it is a parameter that requires a definition according to

engineering considerations, which may change for different response quantities.

Two different definitions of SY are proposed. On one hand, the factor can be defined as the ratio between

the maximum/minimum response value at a particular node (or element) Y min/max(n) of the numerical

model and the maximum/minimum response value of all nodes (or elements) over a chosen length of the

structural components Y
min/max
lj

, see Eq. 6.4a. On the other hand, the maximum or minimum response

value at a particular node (or element) can also be related to a permissible value Yperm, such as permissible

material stresses defined in design codes or guidelines, rendering it similar to a utilization ratio, see Eq. 6.4b.

SY ,rel(n) =
Y min/max(n)

Y
min/max
lj

(6.4a)

SY ,perm(n) =
Y min/max(n)

Yperm
(6.4b)

The non-linear material response of structures and the probably complex conditions in structures cause the

necessity for the quantification of the partial model’s influence with respect to the entire structural be-

haviour. The integrative sensitivity analysis connects the sensitivity indices at each position in the structure

with the response significance at the corresponding position. The numerical integrations of both quantita-

tive information (sensitivity of the partial model and local response significance) over a chosen length, for

example the length of the entire structure, enables the necessary overall assessment of the partial model’s

sensitivity. In addition to the varying sensitivity indices along the structural positions, the partial model

quality may also be different from positions to positions. This even more complex problem can be considered

in the integrative global model quality evaluation, which is discussed in the next section.

6.2 Integrative global model quality evaluation

In addition to variable sensitivity indices of the phenomena represented by partial models, the partial model

quality itself can be different at each position in the structure. For example, the partial model quality of
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6.2. Integrative global model quality evaluation

non-linear and linear material models for reinforced concrete are strongly dependent on the loading con-

dition and cracking stage, see Sec. 5.1. Hence, the quality of the same partial model is different among

positions in the structure in which concrete cracking occurs and positions with linear-elastic response.

Concrete cracking due to bending may occur in the span of the simply supported beam and linear-elastic

material response may appear near the supports, see Fig. 6.2. Based on the results of the previously illus-

trated assessment of material models for reinforced concrete flexural members, the qualities of non-linear

and linear models are similar in the uncracked stage, which occurs in structural positions near the support

of the simply supported beam. In contrast, concrete cracking significantly decreases the bending stiffness

of the cross sections in the span. The partial model quality of the linear models decreases in comparison to

the non-linear models, due to the stiffness degradation. Finally, the partial model quality can also depend

on the position in the structure, as does the sensitivity of the phenomenon, see Sec. 6.1.
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Figure 6.2: Variable partial model quality of simply supported beam in cracked stage with partial model’s
sensitivity and local response significance

The integrative assessment method is illustrated for the simple example of a simply supported beam in

Tab. 6.1 for the position dependency of the sensitivity indices (Scenario ¬) and the partial model quality

(Scenario ­). The longitudinal coordinates of the beam are expressed by x in line 1 and the beam element

length ∆x is shown in line 2. The phenomenon may be X1 for the linear-elastic material model and X2

for the non-linear material model and the vertical displacement w of the simply supported beam is the

response value of interest.

Due to the fact that concrete cracking only occurs in the span, the sensitivity of the linear-elastic model

(line 3) is the opposite (to the sum equal to 1) of the non-linear model (line 4). The prediction of the

vertical displacement near the supports is mainly influenced by the linear-elastic model and hence, the sen-

sitivities of both partial models are assumed to be STi ,X1 = 0.80 and STi ,X2 = 0.20. In contrast, the vertical

displacement at the span is significantly influenced by the non-linear model due to stiffness degradation,

which is assumed by the sensitivity indices STi ,X1 = 0.40 and STi ,X2 = 0.60. More general description about

the phenomena’s sensitivity on the entire structural load-deformation behaviour is needed, especially for

engineering design purposes, as discussed previously. Therefore, the importance of each position has to be
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determined in order to quantify its significance on the entire structure.

The local response significance factor SY is proposed, which enables the consideration of the importance

of each position in the global model quality evaluation. Hence, a simplified numerical integration of the

sensitivity values along the structure is enhanced to the integrative sensitivity analysis of the entire struc-

ture. For the example of the simply supported beam, the local response significance factor for the vertical

displacements Sw are shown in line 5 of Tab. 6.1. At the support positions (x = 0 and x = 1), the vertical

displacements are always zero and hence Sw (x = 0, x = 1) = 0. The greatest vertical displacement appears

at the mid span and consequently the local response significance factor is Sw (x = 0.5) = 1. Between these

positions, the shape of Sw is assumed to be a linear function, which is a more simplified determination

compared to quadratic or cubic functions.

Based on these pieces of information, the sensitivity of each phenomenon STi ,i and the local response sig-

nificance factor for the structural response value SY , the integrative sensitivity analysis can be computed in

order to quantify the sensitivity of each phenomenon according to the entire structure and not exclusively

analysed according to a certain position. The results of the integrative sensitivity analysis for the sensitivity

indices according to Eq. 6.3 are shown in line 6 and 7 in comparison to the computation based on numerical

integration by the midpoint rule. The integrative sensitivity indices for the partial models are STi ,X1 = 0.57

and STi ,X2 = 0.43. In comparison to the results of the numerical integration with the assumption of an

equal importance of each position in the structure, according to the entire load-deformation analysis, a

significant difference in the sensitivity indices appears. These results are STi ,X1 = 0.66 and STi ,X2 = 0.34

which lead to a difference of about 16 % and 21 %. Hence, the numerical integration underestimates the

importance of the non-linear model X2, because it assumes the same importance of the positions such

as x = 0.0 (support) and x = 0.5 (span), which is a very simplified assumption and is not adequate to

reasonably represent the load-deformation behaviour of the structure.

A first scenario for the global model quality evaluation is a constant partial model quality MQMi
PM at each

position along the entire structure. Therefore, the influence of the cracking stage on the partial model qual-

ity is neglected for this scenario. The global model quality evaluation according to Keitel et al. [211], see

Eq. 2.44, is enhanced to the integrative global model quality MQGM,Y considering the integrative sensitivity

values STi ,Xi
:

MQGM,Y =

nM,red∑
i=1

S
MC
Ti ,Xi

·MQMi
PM,Y

nM,red∑
i=1

S
MC
Ti ,Xi

. (6.5)

For the simply supported beam, a constant partial model quality is assumed to be MQ
MX1
PM = 0.95 and

MQ
MX2
PM = 0.40, see line 8 in Tab. 6.1. The global model quality according to Eq. 2.44, considering the

sensitivity values at each position is analysed in line 9. A range in the global model quality for all positions

is computed to be between 0.62 (span) and 0.84 (supports). The non-linear model is more sensitive to

the prediction of the vertical displacement in the span and the corresponding partial model quality is lower

than the quality of the linear model. Hence, the global model quality at the supports is greater than in the

span.

The numerical integration of these global model quality values at each position along the entire beam

length leads to MQGM,w = 0.76, see line 10 in Tab. 6.1. The integrative global model quality MQGM,w is

quantified to be 0.71, which leads to a considerable difference of 7 %.
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Table 6.1: Influence of structural local position on sensitivity of partial models and global model quality
analysed by integrative sensitivity analysis for a simply supported, cracked, concrete beam

Parameter PM Position

1 x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
2 ∆x 0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.05

3
STi ,Xi

X1 0.80 0.80 0.80 0.70 0.40 0.40 0.40 0.70 0.80 0.80 0.80
4 X2 0.20 0.20 0.20 0.30 0.60 0.60 0.60 0.30 0.20 0.20 0.20

5 Sw 0.00 0.20 0.40 0.60 0.80 1.00 0.80 0.60 0.40 0.20 0.00

6
STi ,Xi

X1 ISA: 0.57 numerical integration: 0.66
7 X2 ISA: 0.43 0.34

Scenario ¬:
Sec. 6.1: constant partial model quality:

8 MQ
MX1
PM = 0.95 MQ

MX2
PM = 0.40

9 MQGM,w 0.84 0.84 0.84 0.79 0.62 0.62 0.62 0.79 0.84 0.84 0.84

10 MQGM,w ISA: 0.71 numerical integration: 0.76

Scenario ­:
Sec. 6.2: variable partial model quality

11 MQ
MX1
PM X1 0.95 0.95 0.80 0.60 0.30 0.30 0.30 0.60 0.80 0.95 0.95

12 MQ
MX2
PM X2 0.95 0.95 0.40 0.50 0.80 0.80 0.80 0.50 0.40 0.95 0.95

13 MQGM,w 0.95 0.95 0.72 0.57 0.60 0.60 0.60 0.57 0.72 0.95 0.95

14 MQGM,w ISA: 0.64 numerical integration: 0.72

The assumption that the partial model quality is independent of the cracking stage is a very simplified

assumption, as it is analysed in Sec. 5.1. Hence, another enhancement of the global model quality evaluation

method is necessary in order to consider variable partial model qualities at each position in the structure.

For the example of the simply supported beam, the variable partial model qualities are shown in line 11

and 12 in Tab. 6.1 respresenting the scenario ­.

These quality values are adjusted to the quantified results of Sec. 5.1. Hence, the quality of linear and

non-linear models in the linear-elastic stage are similar, which is considered in the example by MQ
MX1
PM (x =

0.1) = MQ
MX2
PM (x = 0.1) = 0.95. In contrast, due to concrete cracking and resulting stiffness degradation,

the linear model is not adequate enough to represent the material behaviour. Hence, the quality of the

linear model in the span is MQ
MX1
PM (x = 0.5) = 0.30. In contrast, the non-linear material model X2 is much

more accurate to compute the cracked element stiffness than the linear-elastic model X1. The quality of

the non-linear model is consequently better than the linear-elastic partial model quality and is assumed to

be 0.80.

The global model quality may be computed according to the method of Keitel, see Eq. 2.44 which leads

to the range of global model quality MQGM,w between 0.57 and 0.90 depending on the position in the

structure, see line 13 in Tab. 6.1. What is the actual global model quality for selecting these two partial

models? Is it the lowest or highest quality of all positions? Is it the average of both? Is it the numerical

integration of all qualities at each position along the beam?

The integrative global model quality evaluation can consider a variable partial model quality along the entire

structure. Therefore, the sensitivity SMC
Ti ,Xi

(n), the partial model quality MQMi
PM,Y (n), and the local response

significance factor SY (n) should be taken into account in the assessment of global model quality which
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represents the entire load-deformation behaviour of the structure. The integrative global model quality is

defined as:

MQGM,Y =

x=lj∫
x=0

SMC
Ti ,Xi

(x) ·MQMi
PM,Y (x) · SY (x) dx . (6.6)

The integrative global model quality can be approximately determined assuming a piecewise linear distri-

bution by:

MQGM,Y ≈
N∑

n=1

nM,red∑
i=1

SMC
Ti ,Xi

(n) ·MQMi
PM,Y (n) · 1

2
· (xn+1 − xn−1) · SY (n)

N∑
n=1

nM,red∑
i=1

SMC
Ti ,Xi

(n) · 1

2
· (xn+1 − xn−1) · SY (n)

, (6.7)

with the initial summand n = 1 and the final summand n = N of the midpoint rule as:

for: n = 1 (xn+1 − xn−1) = (x2 − x1)

for: n = N (xn+1 − xn−1) = (xN − xN−1) (6.8)

in which the determination of the integrative global model quality consists of the sum according to the

positions in the structure N and the sum related to the important partial models assessed in the model

choice assessment nM,red.

The integrative global model quality for the prediction of the vertical displacement is quantified for the

simply supported beam to be MQGM,w = 0.64, according to line 14 in Tab. 6.1. The numerical integration

leads to 0.72 with a corresponding difference of 11 % in comparison to the integrative global model quality

evalution.

In conclusion, the academic example of a simply supported beam with variable sensitivity values and its

constant and variable partial model qualities shows the general methodology of the proposed integrative

sensitivity analysis and integrative global model quality evaluation. The difference between the assessment

of sensitivity and global model quality at each position and the entire quantification of the load-deformation

behaviour of the structure is even obvious for this simple type of structure.

The integrative assessment method allows for the quantification of the sensitivity and global model quality

with respect to the entire structure. Hence, it is possible to analyse and quantify the load-deformation

behaviour of the structure by considering all positions with the proposed local response significance factor

SY . For each combination of partial models, overall quantitative information can be assessed, which allows

for a more general and adequate insight into the structure in comparison to exclusively looking at a certain

position in the structure.

The integrative sensitivity analysis and integrative global model quality evaluation are applied to a much

more complex structure of semi-integral concrete bridges and the corresponding results are discussed in the

following sections. In this extensive study, various pier heights, different limit states, and several structural

response values are considered in the integrative assessment method. Furthermore, the consideration or

negligence of the foundation flexibility is quantified and the load-deformation behaviour of a continuous

girder bridge is compared to the coupled integral bridges. Integral bridges are chosen because a lot of partial

models and a strong interaction between the several phenomena determine the entire load-deformation

behaviour, see Sec. 3.5.4.2. Therefore, the method is applied to a complex engineering problem in order to

illustrate its general applicability and adequateness for challenging structures.
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6.3 Application to semi-integral concrete bridges

6.3.1 Geometry and Material Properties

In the present study, piers with varying cross section stiffness and heights are considered in order to analyse

the interaction between the structural components for different geometric conditions. It should be noted

that the load level condition also has a significant influence on the response of the structure and the partial

model’s sensitivity. Therefore, the serviceability limit state (SLS) as well as the ultimate limit state (ULS)

are taken into account in the structural behaviour assessment using the integrative sensitivity analysis.

The bridge considered here consists of 3 spans with corresponding span lengths of L1 = L3 = 40 m (side

spans) and L2 = 48 m (mid span). The geometry of the prestressed concrete bridge and the tendon profile

are illustrated in Fig. 6.3. Two different pier heights of H1 = 5 m and H2 = 10 m are considered in

combination with unmodified geometrical conditions of the superstructure. For the pier foundations, single

rows of piles in the transverse direction of the bridge are chosen according to the predimensioning. Each

pile row consists of 4 piles with a length of LP = 25.0 m, a diameter of DP = 1.0 m, and a clear spacing

of s = 1.0 m. This small clear spacing induces a high interaction between the piles in the group. The pile

partial models representing the foundation flexibility consider these interactions.

The cross section of the superstructure is a prestressed single box girder with a width of 14.50 m and a

depth of 2.35 m, see Fig. 6.3. The width is a standard cross section of a three-lane road with an additional

lane for one direction (2+1 system). The slenderness ratios λ = L/h of the prestressed concrete box girder

at the side spans are λ1 = λ3 = 14 and respectively λ2 = 13 at the mid span, which are both in the range

of a medium slenderness.

The cross sectional geometry of the piers with the different pier heights is predesigned using the pier

(respectively column) slenderness ratio λcol = l0/i with l0 = Hpier · β as the effective column length and

i =
√

I/A as the radius of gyration of the uncracked concrete cross section. In the range of 22 < λcol <

100, the geometric second-order effect should be considered [402]. More details on slenderness limits for

rectangular reinforced concrete columns can be found in [261]. For the bridge piers of the semi-integral

concrete bridges, the slenderness of λcol = 50 is chosen. The geometric properties of the piers in relation

to the varying pier heights are shown in Fig. 6.3. The material properties of the concrete, the reinforcing

steel, and the prestressing steel for the single box girder and the rectangular piers are listed in Tab. 6.2.

The check of decompression in the serviceability limit state is used for the predesign of the prestressing

tendons according to the provisions of the German national annex of Eurocode 2 [143]. Here, decompression

is checked in the quasi-permanent load combination [100]. In order to fulfil the decompression requirement,

the tensile stresses of the concrete are controlled to have a zero tensile stress at the extreme fibres of

the cross sections. The result of the predesign is 11 prestressing tendons in the side spans (Ap1 = Ap3 =

247.5 cm2) and 13 prestressing tendons at the mid span (Ap2 = 292.5 cm2).
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6.3. Application to semi-integral concrete bridges

Table 6.2: Material properties of concrete, reinforcing steel, and prestressing steel for superstructure and
piers of semi-integral concrete bridges

Material Property Unit Superstructure Piers

Concrete C 40/50 C 30/37
CEM CEM II 52.5 N CEM II 42.5
Ecm [MN/m2] 35, 000 33, 000
Ec0 [MN/m2] 36, 750 34, 650
fcm [MN/m2] 48.0 38.0
fcR [MN/m2] 28.9 21.7
fctm [MN/m2] 3.5 2.9
Reinforcing Steel B 500 B
Es [MN/m2] 200, 000
fy [MN/m2] 500
fyR [MN/m2] 550
ftR [MN/m2] 594
Prestressing Steel Y 1170 S7 - 16.0A
Ep [MN/m2] 195, 000
fp0,1k [MN/m2] 1, 520
fp0,1R [MN/m2] 1, 672
fpR [MN/m2] 1, 947

6.3.2 Limit states and material modelling

The serviceability limit state (SLS) and the ultimate limit state (ULS) are considered in the quantification

of the sensitivity indices in order to analyse the structural load-bearing behaviour for different loading

conditions. The quasi-permanent load combination is applied according to the SLS and the permanent load

combination is used for the ULS [100]. The timeline of the loading and the restraint conditions for the

semi-integral bridges is shown in Fig. 6.4 and the characteristic loads are listed in Tab. 6.3.

Serviceability Limit State (SLS)
quasi-permanent load combination

sensitivity analysis according to 100 years
design service life

Ultimate Limit State (ULS)
permanent load combination
sensitivity analysis according to 
ultimate limit state based on 100 
years design service life 

time t [d]

0

t = 150

36500

ts = 3

t0 = 10

undeformed
structure

deformed structure due to creep, 
shrinkage and temperature

deformed structure 
due to ULS

shrinkage
creep
G…dead load
P…prestressing
T…temperature

Q…traffic load
timeline of loading 
conditions

timeline of creep and 
shrinkage

Figure 6.4: Timeline of inner and outer loading conditions for the limit states

The compressive concrete stresses in SLS are controlled to be less than σc ≤ 0.40 · fcm. A linear-elastic
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6. Integrative assessment method

Table 6.3: Loading conditions

Type of Load Symbol Characteristic Loads

dead load Gk superstructure gk1 = 162.38 kN/m
pavement gk2 = 45.60 kN/m

prestressing Pk superstructure σpm0 = 1292 MN/m2

traffic load [142] Qk uniformly distributed load qk1 = 57.00 kN/m
tandem load qk2 = 1200 kN

temperature [104] Tk superstructure ∆TN,con = −26 K
∆TM,cool = −5 K

piers ∆TM = +5 K

material behaviour of the concrete in this compressive stress ratio can be generally assumed. Therefore,

the concrete is modelled as a linear-elastic material with the secant modulus of elasticity Ecm [187]. The

cracking of the concrete on the tension side after reaching the average concrete tensile strength fctm is

modelled using a smeared crack model. In the area affected by the reinforcement hct,eff, the tensile stresses

decrease to βt · fctm, thereby allowing for the tension stiffening effect. The depth of the area is defined

as 2.5 times the distance from the reinforcing steel centroid to the surface of the cross section [16, 141].

This model [187] assumes a constant contribution of stress to the concrete after cracking, expressed by the

integration factor for the steel strain along the mean transmission length βt . In the other “unreinforced”

concrete layers of the cross section, the tensile stress decreases immediately to zero for strains greater than

εct = fctm/Ecm.

In the SLS, the reinforcing bars and the prestressing tendons are modelled as linear-elastic materials. The

ULS defines significantly higher loading levels and therefore the response of the structure is influenced by the

non-linear behaviour of the material. In the ULS, the assumption of the physical linearity of the material

models is not appropriate. The model selection of adequate stress-strain relationships for the material

description is fundamentally important for the non-linear simulations. The behaviour of the concrete under

compression at ULS is modelled using the non-linear stress-strain relationship for the structural load-bearing

analysis (broken-rational function) according to [101, 187].

The material behaviour of the concrete cracking under tension in the ultimate limit state is modelled

similarly to the serviceability limit state, except for the integration factor βt . The ultimate limit state is a

short-term loading state. Hence, the completeness factor is time-independent and has a constant value of

βt = 0.4 [187]. The reinforcing and prestressing steel in the ULS are modelled as bi-linear materials with

the “calculation values” according to [141], see Tab. 6.2.

6.3.3 Model classes and structural response values

The model classes: (1) cracking of the concrete under tension in the superstructure and (2) in the piers, (3)

the creep and (4) the shrinkage of concrete, (5) the geometrically non-linear kinematics, (6) the thermal

action, and the (7) foundation flexibility are taken into account for the simulation of the semi-integral

concrete bridges. The model classes “cracking tension superstructure” (X1) and “cracking tension piers”

(X2) describe the importance of the consideration of the concrete cracking under tension. If these model

classes are activated, the cracking is considered according to the comments of Sec. 6.3.2. The deactivation

of both model classes describes a purely linear-elastic stress-strain relationship of the concrete, even in

tension. The compressive relationship is not influenced by these model classes.
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6.3. Application to semi-integral concrete bridges

The model classes “creep” (X3) and “shrinkage” (X4) of the concrete are computed using the model pub-

lished in the Model Code 90-99 [185]. If the model class is activated, then the creep strains εc,cr (t) are

computed according to [185]. In contrast, if the creep phenomenon is deactivated, the creep strains are

εc,cr (t) = 0. The shrinkage phenomenon in the sensitivity analysis is considered equivalent to the creep

model class. Either the shrinkage strains εc,sh(t) are calculated according to Model Code 90-99 [185], or

εc,sh(t) = 0 in the case of the deactivation of the “shrinkage” model class.

The non-linear kinematic relationship between the nodal displacements and the cross sectional strains in

the Finite Element analysis is considered in the “geometric kinematic” model class. In the practical design

of engineering structures, the second order theory is commonly used. The non-linear kinematics of the

beam element (X5) are considered in the simulation of the bridge load-bearing behaviour, which results in

an increase in complexity and accuracy of the computational model in comparison to the simplified second

order theory.

Thermal actions of the superstructure and the piers are applied according to the specifications of EC 1 [104]

and are considered in the “thermal action” model class. The thermal loading condition considered for the

superstructure is the contraction state with the constant part ∆TN,con = −26 K and the linear temperature

cooling gradient of the magnitude ∆TM,cool = −5 K. The piers of the concrete bridge are subjected to a

linear temperature gradient of ∆TM = +5 K. In the case of the deactivated “thermal action” model class

(X6), the thermal strains are defined as εc,t(t) = 0.

The stiffness prediction of the pile foundation is computed by different pile group models for the separate

loading conditions. In the case of the vertical pile group stiffness, the model by Randolph and Wroth

[334] is applied, see Sec. 3.6.1. For the calculation of the displacement due to the lateral loading of the pile

group, the model according to Randolph [331] is used. Taking into account the multiplier coefficients of

Poulos [318], the lateral and rotational spring stiffnesses for the pile group are computed at the pile top.

Both models for vertical and lateral loading conditions consider the assumption of an elastic soil continuum.

The horizontal, vertical, and rotational stiffnesses are implemented in the bridge Finite Element model by

support springs. If the model class “foundation flexibility” (X7) is deactivated, the support springs are

substituted into fixed support conditions at the pier base (u = w = ϕ = 0) on both bridge axes.

The sensitivity analysis for the considered model classes is strongly dependent on the structural response

values. The importance of the model classes may change with respect to the various response output

values, which are typically the horizontal translations, the vertical displacements, the concrete stresses,

the reinforcing steel stresses, and the prestressing steel stresses. For the assessment of the load-bearing

behaviour of the semi-integral concrete bridges, the sensitivities of the model classes are hence quantified

using the integrative sensitivity analysis for these various response values, see Fig. 6.5. The displacements

u and w are evaluated at each node of the Finite Element model. The concrete stresses σc1 and σc2 are

the stresses at the top and bottom level of the cross sections of the girder and the piers, respectively. The

positions of the reinforcement stresses σs1 and σs2 in the cross sections are similarly defined for the top

(index 1) and bottom (index 2) concrete stresses. The prestressing steel stresses σp are evaluated at each

finite element of the superstructure, similar to the concrete and reinforcement stresses . The results of the

integrative sensitivity analysis for the structural assessment of the semi-integral bridges in the serviceability

limit state and ultimate limit state are presented in the following sections.
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x = 0 m

w

σc1 , σs1

σc2 , σs2

σp

A B C D
x = 40 m x = 88 m x = 128 m

z = 0 m

z = 5 or 10 m
u

Figure 6.5: Response values of semi-integral concrete bridges for assessment of load-bearing behaviour
based on integrative sensitivity analysis

6.3.4 Results of integrative assessment method

6.3.4.1 Sensitivity indices and local response significance factor

The integrative sensitivity analysis is applied to the above-mentioned semi-integral concrete bridges. In this

study, the focus is the important evaluation of the physical phenomena represented by the partial models.

Several model combinations between the partial models are necessary to compute the sensitivity of each

phenomenon according to the structural response value. In the assessment of model choice, 128 model

combinations (ncomb = 27, see Eq. 2.41) are analysed by numerical simulation of the semi-integral concrete

bridges based on FEM. The sensitivity indices can subsequently be computed based on these predictions.

As an example of the several predictions, the vertical displacements w in the left side span at the point of

the applied traffic load between bridge axis A and B, the settlement sz at the pier base at bridge axis B,

the horizontal displacement u at the abutment at bridge axis A, and the displacement at the pier base at

bridge axis B are shown in Fig. 6.6 in a relative determination Yi/Yi ,max.
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Figure 6.6: Relative scatter of model predictions for each model combination, ultimate limit state, semi-
integral concrete bridge with pier height H1 = 5 m

Each model prediction Yi is related to the corresponding maximum response quantity Yi ,max. The several

relative model outputs for the vertical displacement w and the settlement sz are shown in Fig. 6.6(a).
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6.3. Application to semi-integral concrete bridges

For model combinations with fixed support conditions, the settlement is zero and hence Ysz/Ysz ,max = 0.

In contrast, in the case that the pile foundation flexibility is considered, the relative model responses are

similar and close to 1.0. Only very small interaction between the partial models appears in the prediction

of this settlement, which is obvious in the relative determination of the model responses.

Very high interaction occurs in the model output of the vertical displacement w in the left side span at the

point of applied vehicle loading. One major variance is predicted between model combinations considering

either linear-elastic concrete tensile behaviour (model combination 1 up to 64) or the non-linear modelling

considering the tension stiffening effect ((model combination 65 up to 128). Due to the fact that concrete

cracking appears in the ultimate limit state, the stiffness of the beam elements in the superstructure de-

creases, which finally leads to greater vertical displacements in the side span. Hence, the consideration of

the material non-linearity results in greater displacement prediction instead of the assumption of linear-

elastic material behaviour.

In the prediction of the horizontal displacement sx at the pier base, no displacements are allowed in the

case that the partial model pile foundation flexibility is not considered in the global structural model, as

similar for sz . In contrast to the vertical settlement, some interaction appears in the prediction of the

horizontal displacement. The greatest displacement appears for the case that the pile foundation flexibility,

cracking in the superstructure, shrinkage, and thermal action are considered in the global structural model.

Strong interaction is also visible in the prognosis of horizontal displacement at the abutment. The maximum

displacement occurs in the case that creep of concrete, shrinkage, and thermal action are all considered

in the simulation. For such strong interactions between the partial models, it is not obvious which model

influences the response of the structure. Therefore, the sensitivity analysis is necessary in order to quantify

the importance of each partial model on the structural load-deformation behaviour.

Which phenomenon influences these response values is assessed in the following section. Moreover, the

above presented results are only local information at a certain structural position. The following results

show that these relationships and corresponding sensitivity indices differ with respect to the structural po-

sition and the load-deformation behaviour, respectively. In order to obtain a general quantitative value for

the sensitivity of the partial models, the integrative sensitivity analysis is applied to complex semi-integral

concrete bridges.

As a first result of the analysis, the assessment of the partial model’s sensitivity is illustrated in Fig. 6.7

for the concrete stresses at the bottom level σc2 in the serviceability limit state as well as the ultimate

limit state of the prestressed single box girder with the pier height H1 = 5 m. On the right side of Fig. 6.7,

the computed sensitivity indices are shown along the pier height (inner side), in which z = 0 m is the

foundation ground level and z = 5 m is the top of the bridge pier in the centre of the box girder.

The horizontal axis for the box girder expresses the position in the longitudinal direction of the superstruc-

ture. The vertical axis for the box girder in the graph shows the total-effects sensitivity index SM,σc2
Ti ,Xi

, which

takes into account all possible interactions among the partial models. For the bridge pier on the right side,

the axes show just the opposite.

The strong dependency of the partial model’s sensitivity on the position in the structure and the limit state

is clearly evident. In general, a significant influence of the partial models of the concrete shrinkage and

creep is visible in the ranges of the side spans and the mid span. These internal restraint effects caused

by the statical indeterminacy result in a large influence of both partial models on the structural response

prediction. At the monolithic connection between the superstructure and the piers, the thermal action and

the foundation flexibility are also important phenomena.
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Figure 6.7: Total-effects sensitivity index SM,σc2
Ti ,Xi

for concrete stresses σc2 at box girder’s bottom level with
respect to position at superstructure (left side), and for piers’s inner side at bridge axis B (right
side); semi-integral concrete bridge with pier height H1 = 5 m

In the ultimate limit state, the sensitivity of the partial models is changed compared to the serviceability

limit state. The prediction of the concrete stress at the bottom level of the box girder is mainly influenced

by the material modelling of the superstructure in the ultimate limit state. In the range of the right side

span, the loading level is less compared to the left side span, because the position of the traffic tandem load

is applied at the left side span (position: x = 14.75 m). Hence, the higher loading condition in the range

of the left side span causes more non-linear material response compared to the right side span. Moreover,

the consideration of the cracking of the superstructure is less important on the right side span compared

to the left side span. This will reverse if the point of applied load for the tandem load is transferred to

the right span. In addition, this bending stiffness degradation is also recognisable at the left frame corner

connection point between the box girder and the bridge piers.

For the semi-integral concrete bridges, the visible importance of the restraint effects in the serviceability

limit state is caused by the creep, shrinkage, and thermal action model classes. In the ultimate limit state,

the reduction of the cross section stiffness, due to the tensile cracking at various positions in the bridge

girder, results in the degradation of the restraint effects. This interaction between the material non-linear
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6.3. Application to semi-integral concrete bridges

behaviour and the restraint effects is generally observable in statically indeterminate structures [195], see

Sec. 3.5, which is similarly assessed by the sensitivity indices.

In addition to the concrete stress σc2, the total-effects sensitivity indices for the vertical displacements w

at all points of the super- and substructure are shown in Fig. 6.8 for the semi-integral concrete bridge with

the pier height of H1 = 5 m.
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Figure 6.8: Total-effects sensitivity index SM,w
Ti ,Xi

for vertical displacements w with respect to position at
superstructure (left side), and bridge axis B (right side); semi-integral concrete bridge with
pier height H1 = 5 m

In the serviceability limit state, the most important partial models are the foundation flexibility, creep, and

shrinkage and almost negligible are the concrete cracking in superstructure and piers, geometric kinematic,

and thermal action, see Fig. 6.8(a). The foundation is evaluated either by considering the pile group flexi-

bility or introducing fixed support conditions at the pier base (u = w = ϕ = 0). Hence, a great difference

in the prediction of vertical displacement occurs between both scenarios which finally results in the highest

sensitivity of the foundation flexibility.

The sensitivity of the foundation flexibility is 0.92 and 0.66 between the superstructure-pier corners and the

mid-span. Concrete creep is mainly important close to the supports at the side spans with the sensitivity

between 0.78 and 0.60. In contrast, the sensitivity of concrete shrinkage is higher in the mid span with 0.32
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6. Integrative assessment method

and less at the side spans and abutments with 0.13. Moreover, the vertical displacements of the bridge

piers are mainly influenced by the foundation flexibility and slightly by concrete shrinkage.

The sensitivity results according to the other structural response values and the bridge pier height of

H2 = 10 m are illustrated in appendix C with the following figures:

� concrete stress σc1 Fig. C.1,

� concrete stress σc2 Fig. C.2,

� reinforcement stress σs1 Fig. C.3,

� reinforcement stress σs2 Fig. C.4,

� horizontal displacement u Fig. C.5, and

� vertical displacement w Fig. C.6.

The results of the sensitivity analysis presented in these figures show the crucial influence of the local

position in the structure on the partial model’s sensitivity which is very adequate and effective in order

to quantify the load-deformation behaviour for any type of structure. Based on the discussion of the aca-

demic example of a simply supported beam, the global model quality is changed from position to position

according to variable sensitivity indices, see Sec. 6.2, and/or variable partial model qualities, see Sec. 6.1.

In order to quantify the overall global model quality for the entire structure, the significance of each po-

sition with respect to the entire structure has to be quantified. Therefore, the integrative assessment is

proposed considering both variable sensitivity values by the integrative sensitivity analysis and inconstant

partial model qualities by the integrative global model quality evaluation.

The integrative sensitivity analysis computes the influence of the partial models by a weighted numerical

integration of the total-effects sensitivity indices in order to assess an overall quantitative importance in

relation to the entire load-bearing behaviour of the structure. Therefore, the local response significance

factor SY can be applied for this purpose. The distribution of SY for the concrete stress at the top level

of the box girder Sσc1 and bottom level Sσc2 , the outside Sσc1 and inner side of bridge piers at axis B

Sσc2 , and the horizontal translations Su, and the vertical displacements Sw are shown in Fig. 6.9(b) for the

serviceability limit state and the shorter piers.

Due to the fact that the superstructure and the piers are designed with different concrete strength classes,

the local response significance factors Sσc1 , and Sσc2 are assessed separately between the single box girder

and the piers, because of the different concrete material strength classes with corresponding varying strength

characteristics. On one hand, the order of magnitude of concrete compressive stress σc at each node (or

element) can be related to the minimum value of all nodes (or elements) of the entire single box girder

and bridge piers, respectively. This determination of the local response significance factor can be computed

according to Eq. 6.9.

Sσc ,rel(n) = σmin
c (n) / σmin

c,lsuperstructure
(6.9)

Sσc ,perm(n) = σmin
c (n) / σc,perm (6.10)

Su,rel(n) = umax(n) / umax
lstructure

(6.11)

Sw ,rel(n) = w max(n) / w max
lstructure

(6.12)

On the other hand, the significance of the local response of the concrete compressive stress of a certain finite

element/node can be related to a permissible concrete stress, see Eq. 6.10. In the case of the serviceability
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(a) σc1, top cross sectional level of box girder, outside of bridge pier at axis B
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(b) σc2, bottom cross sectional level box girder, inner side of bridge pier at axis B
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(c) u, w , displacements

Figure 6.9: Local response significance factors SY for serviceability limit state and pier height H1 = 5 m;
concrete stress at top and bottom level: relative definition Sσc1,2,rel, permissible definition
Sσc1,2,perm, horizontal displacements Su,rel, vertical displacements Sw ,rel

limit state, the Eurocode 2 [141] permits σc,perm = 0.45·fck for the quasi-permanent load combination. The

determination of the local response significance factor for both proposals (Sσc ,rel, Sσc ,perm, both sectional

levels σc1 and σc2) is shown in Fig. 6.9(b). The minimum concrete stress at the bottom level of the single

box girder occurs at both side spans and has the magnitude of σmin
c2 = −7.1 MN/m2. The permissible stress

is σc,perm = 0.45 · −40 = −18.0 MN/m2. Therefore, the local response significance factor for all elements

of the superstructure is Sσc2,perm(n) < 0.40, see Fig. 6.9(b).

The local response significance factor for the concrete stress σc1 is very close to the opposite of the stress

σc2. The main compressive stresses appear at the connections between the superstructure and the piers.

Hence, the local response significance factor is greater at these local positions than the positions at mid

and side spans. The compressive concrete stress at the top level of the single box girder has the magnitude

of σmin
c1 = −7.2 MN/m2 and is comparable to the minimum stress at the bottom level. Therefore, the

local response significance factor for both sectional levels at the box girder for all elements is very similar,
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6. Integrative assessment method

because Sσc1,perm(n) < 0.40 is similarly quantified, see Fig. 6.9(a).

For the outer side and inner side of the bridge pier at axis B, compressive stresses are higher than the

permissible stress level according to Eurocode 2. Hence, Sσc ,perm(n) > 1.00 is quantified at the pier top

for σc1 and at the pier base for σc2. Such high stresses occur for the combination of activated concrete

shrinkage and thermal action model class in the case of linear-elastic material modelling. All the other

phenomena are deactivated in this model selection. The highest compressive stress at the outside cross

sectional level is σmin
c1 = −25.7 MN/m2 and results in Sσc1,perm(n = 5 m) = 1.90 at the pier top. At the

inner side of the bridge pier, the values are σmin
c2 = −25.9 MN/m2 and Sσc2,perm(n = 0 m) = 1.92 at the

pier base.

Hence, such high local response significance factors introduce a significant importance to these locations

in the assessment of numerical models compared to positions in which the response is under the permissi-

ble recommendation of guidelines and codes. This methodology scales the importance of each location in

the structure according to engineering design criteria. The evaluation of global structural models can be

related to any criteria, which may be different depending on the design purposes. Finally, the integrative

assessment method for the entire structure can automatically consider any design requirements, such as

stress limitations, displacement limits, reinforcement design and others in the evaluation method. Hence,

the global model qualities quantified by this method allow for the selection of an adequate model, with

respect to the design criteria, with high reliability.

In contrast, the relative determination scales the minimum stress at each element to the minimum stress of

the entire box girder. Therefore, the local response significance factor is Sσc2,rel(n : 10 < x [m] < 20) ≈ 1.00

in the left side span between the bridge axes A and B. In the span between the bridge axes C and D, the

local response significance factor is similarly Sσc2,rel(n : 105 < x [m] < 115) ≈ 1.00.

Furthermore, the distribution of the local response significance factors for the horizontal (Su,rel, see Eq. 6.11)

and vertical (Sw ,rel, see Eq. 6.12) displacements is illustrated in Fig. 6.9(b). The maximum horizontal

displacements occur in the sliding bearings at the transition between the box girder and the embank-

ment. The horizontal translations in the centre of the mid span are almost zero for all model combina-

tions. Therefore, the local response significance factor for the horizontal translations at the end of the

side spans is Su,rel(n : x = 0 m) = Su,rel(n : x = 128 m) = 1.00 and in the centre of the mid span

Su,rel(n : x = 64 m) = 0.00. The maximum vertical displacement occurs at the centre of the mid span due

to the pile foundation settlement, the creep and the shrinkage of the concrete. The vertical displacements

at the bridge abutment axes are assumed to be fixed (w = 0). Thus, the local response significance factor

for the vertical displacements in the range of the mid span is Sw ,rel(n : 50 < x [m] < 78) ≈ 1.00 and in the

abutment axes Sw ,rel(n : x = 0 m) = Sw ,rel(n : x = 128 m) = 0.00.

In the ultimate limit state, the permissible concrete compressive stress is different when compared to the

previously mentioned criteria in the serviceability limit state. The peak compressive strength fcR , according

to the non-linear safety concept of Eurocode 2, see Sec. 2.6.4, is applied for the computation of permissible

local response significance factor Sσc ,perm(n) in the ULS. Hence, the permissible concrete stress σc2,perm

is fcR in the ULS, see Eq. 6.10. The relative determination of the local response significance factor for the

concrete, reinforcement, prestressing steel stresses and the vertical and horizontal displacements is similarly

defined in the ULS compared to the SLS, see Eq. 6.9, 6.11, 6.12. The determination of the local response

significance factors for the concrete stresses σc1, σc2, and vertical w , horizontal u displacements are shown

in Fig. 6.10.

In the assessment of concrete stresses, the minimum stresses (compressive stresses) are analysed at the top
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6.3. Application to semi-integral concrete bridges

and bottom levels of the cross sections. The prestressing of concrete induces, compressive stresses in the

concrete in those areas in which tensile stresses may occur, due to external loadings, such as dead load or

traffic loading. The external loading level in the ULS is much higher when compared to the SLS. Therefore,

the compressive stresses due to prestressing are reduced and tensile stresses may also occur. Hence, the

local response significance factors are very different for the concrete compressive stress between SLS and

ULS.
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(a) σc1, top cross sectional level of box girder, outside of bridge pier at axis B
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(b) σc2, bottom cross sectional level box girder, inner side of bridge pier at axis B
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(c) u, w , displacements

Figure 6.10: Local response significance factors SY for the ultimate limit state and the pier height H1 =
5 m; concrete stress at top and bottom level: relative definition Sσc1,2,rel, permissible definition
Sσc1,2,perm, horizontal displacements Su,rel, vertical displacements Sw ,rel

The loading condition in the ULS induces tensile stresses at the superstructure‘s top level in the frame

corners at bridge axes B (x = 40 m) and C (x = 40 m) for all model combinations. Therefore, no concrete

compressive stresses occur in these structural positions and, consequently, the local response significance

factor is Sσc1 = 0, at positions in which exclusively tensile stresses are predicted for all model combinations.

In Fig. 6.10(a), it is evident that tensile stresses appear at the top level of the superstructure in the corner
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6. Integrative assessment method

positions between superstructure and piers. Compressive stresses are predicted in the mid span and side

spans. The tandem vehicle load is applied in the left side span between bridge axes A and B and hence the

local response significance is Sσc1,rel(n : x = 14.75 m) = 1.00 at the point of the applied load. The greatest

compressive stress in the superstructure at the top level is −11.7 MN/m2 and hence Sσc1,perm ≤ 0.40,

because σc,perm = fcR = 28.9 MN/m2.

At the outside cross sectional level of the bridge pier at axis B, the maximum concrete compressive stress

is close to the permissible strength value. Hence, the permissible and relative determination of the local

response significance factor is close to 1.00 at the top of the bridge pier. Furthermore, the trend and shape

of both determinations are very similar, see right side of Fig. 6.10(a).

The results of the local response significance for the opposing cross sectional levels σc2 are shown in

Fig. 6.10(b) for the superstructure and piers. Tensile stresses are predicted at the bottom level of the box

girder in the side spans for all model combinations, which similarly leads to Sσc2 = 0. Maximum compressive

stress is predicted at the left corner of bridge axis B and at the bottom of bridge pier at axis B. Hence, the

relative determination is 1.00 at these structural positions.

In the prediction of the horizontal displacements u at each node of the entire structure, the shape of the

response along the entire structure is relatively similar between the ultimate and serviceability limit states.

The absolute values are much higher in the ULS, but the general relative scope of minimum and maximum

horizontal displacements are comparable between both limit states. Therefore, the local response signifi-

cance factors for these displacements are similar for the SLS and ULS, see Fig. 6.9(c) and 6.10(c).

Major differences between both limit states appear in the significance of each position in the structure with

respect to the prognosis of vertical displacements. The much greater loading level in the ultimate limit

state increases the loading level, which causes concrete cracking, especially in the side span between axes

A and B, in which the tandem vehicle load is applied at x = 14.75 m. Therefore, the stiffness of the super-

structure decreases due to the non-linear material behaviour, which causes great vertical displacements in

these positions. The local response significance factor is consequently 1.0 under the point of applied vehicle

load.

For the application of the integrative assessment method, the local response significance factors are com-

puted by the relative determination (Srel) and the structural load-bearing behaviour is expressed by several

response quantities. These are: the horizontal translations u, the vertical displacements w , the concrete

stresses σc1,c2, the reinforcing steel stresses σs1,s2, and the prestressing steel stresses σp.

6.3.4.2 Integrative sensitivity analysis

Serviceability limit state

Based on the integrative sensitivity analysis, the results for the structural load-bearing assessment of the

semi-integral concrete bridge with the shorter pier height H1 = 5 m in the serviceability limit state are shown

in Fig. 6.11(a) and listed in the appendix in Tab. C.1. In the case of the longer pier height H2 = 10 m,

the quantification of the phenomena‘s influence is illustrated in Fig. 6.11(b) and listed in the appendix in

Tab. C.2.

The creep, shrinkage, and thermal strains induce horizontal displacements. Therefore, the prediction of

the horizontal translations u in the bridges is mainly sensitive to the phenomena of creep and shrinkage.

In addition, a considerable influence of the thermal action is recognisable. The concrete shrinkage has an

integrative sensitivity of 0.74 for the shorter bridge piers and an influence of 0.75 for the longer bridge
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Figure 6.11: Integrative sensitivity indices S
M,Y
Ti ,Xi

for semi-integral concrete bridges with different pier
heights (H1, H2) in serviceability limit state (SLS), 7 model classes considered, foundation
flexibility additionally modelled

piers. In contrast, the concrete creep has a sensitivity of 0.18 for the shorter pier height and 0.16 for the

longer pier height. The sensitivity of the thermal action is 0.08 for both pier heights. In order to predict the

horizontal translations in the semi-integral concrete bridges in SLS, the structural model mainly requires

adequate shrinkage and creep models.

In the entire structural model, a high variation in the prediction of vertical displacement w is caused by

considering or neglecting the pile foundation flexibility. This is mainly due to the fact that the deactivation

(disregard) of the pile foundation flexibility is considered by fixed support conditions at both pier bases

(u = w = ϕ = 0) and the activation (consideration) is considered by support springs (u 6= 0, w 6= 0,

ϕ 6= 0). Hence, the high variation in the prediction of the vertical displacement is forced by the foundation,

which leads to a corresponding high sensitivity. Furthermore, maximum vertical displacements occur at the

bridge piers, the mid span, and at the range in the side span close to the bridge piers. This is considered in

the response significance factor, see Fig. 6.9(b). Hence, the foundation flexibility has a high sensitivity at

these positions where the maximum vertical displacements occur. Consequently, the vertical displacement

prognoses are mainly influenced by the foundation flexibility. The pile foundation flexibility has an integrative

sensitivity of 0.75 for the shorter pier height.

In general, the foundation flexibility determines the structural behaviour more decisively for shorter piers in

comparison to longer piers. In this respect, the integrative sensitivity analysis computes a similar interaction

between the pile foundation flexibility and the pier height. The integrative sensitivity is reduced to a

magnitude of 0.57 for the longer bridge piers. In addition to the foundation flexibility, creep and shrinkage

of concrete have a relevant importance for the vertical displacement predictions. Finally, the selection of

the pile foundation model and the determination of the soil material properties at the construction site are

fundamentally important for predicting the entire vertical displacements.

The overall load-bearing behaviour for both semi-integral concrete bridges in the serviceability limit state,

see Fig. 6.11(a) and Fig. 6.11(b), is not significantly influenced by the concrete tensile cracking in the

superstructure and piers. The concrete tensile cracking in the superstructure and in the piers have a very

small overall influence (< 0.03) due to the SLS for all response quantities. Consequently, the concrete tensile

cracking for both structural components can either be neglected or considered with simplified models in the

SLS. For other structures with different prestressing layout, prestressing forces, cross section stiffness, or
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6. Integrative assessment method

girder span - pier height ratio, the concrete tensile cracking can be more sensitive, even in the serviceability

limit state.

Ultimate limit state

In addition to the SLS, the load-bearing behaviour of the semi-integral concrete bridges is similarly assessed

in the ULS, based on the integrative sensitivity analyses for various response quantities. For the shorter

pier height, Fig. 6.12(a) and Tab. C.1 in the appendix illustrate the importance of the various phenomena.

Moreover, the results for the longer piers are illustrated in Fig. 6.12(b) and listed in Tab. C.2 in the appendix.
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Figure 6.12: Integrative sensitivity indices S
M,Y
Ti ,Xi

for semi-integral concrete bridges with different pier
heights (H1, H2) in ultimate limit state (ULS), 7 model classes considered, foundation flex-
ibility additionally modelled

The concrete tensile cracking in the box-girder and bridge piers has no importance for all structural response

values in the serviceability limit state. In contrast, in the ultimate limit state, the concrete tensile cracking

in the entire structure has a high influence on the overall structural load-bearing behaviour.

The prediction of the concrete stress at the upper cross section level σc1 is mainly influenced by concrete

shrinkage and tensile cracking in the superstructure. In the case of the shorter piers, the shrinkage has

an overall integrative sensitivity of 0.56 and the concrete tensile cracking has a sensitivity of 0.20. The

concrete shrinkage influence is reduced to 0.47 for the longer bridge piers. Furthermore, the influence of the

concrete tensile cracking is similarly reduced to 0.10 for the longer piers. An opposite effect in the stress

prediction is visible in the sensitivity of the thermal action. The thermal action has an integrative sensitivity

of 0.16 for the shorter piers and a sensitivity of 0.36 for the longer piers. Due to the higher horizontal and

rotational rigidities of the shorter piers, the restraint loading conditions cause much higher section forces

in comparison to the longer piers. The influence of the thermal action (especially constant temperature

component) compared to the shrinkage of concrete is less, because the shrinkage strain of the box girder

is high (higher than the temperature strain) and the corresponding safety factors and combination rules

additionally affect the importance of both phenomena.

Therefore, the restraint section forces increase in the range of the mid span and the connection positions

between the superstructure and the piers for the shorter pier height. These indirect loading conditions

cause more non-linear material responses in the structure. Hence, the importance of the concrete cracking,

due to tension, is higher for the shorter piers compared to the longer piers. These results represent a
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clear interaction between the magnitude of restraint effects and the material non-linear responses in the

structure. The less cross section stiffness degradation for the longer piers and the consequently greater

remaining restraint effects result in a higher sensitivity of the thermal induced strains in the ultimate limit

state.

The thermal contraction loading state considered in this analysis has a much higher influence on the

concrete stress at the bottom cross section level σc2. As a result, the integrative sensitivity of the thermal

action is higher in comparison to the prediction at the upper cross section level. The thermally induced

strains have a sensitivity of 0.34 for the shorter piers and 0.53 for the longer piers. This shows again the

interaction between the restraint thermal effects and the concrete cracking on the prediction of the concrete

stresses in the entire structure. The concrete tensile cracking in the superstructure, shrinkage, and creep

additionally influence the prediction of the concrete stresses at the bottom layer of the cross sections.

The thermally induced strains are not completely degraded, due to the concrete tensile cracking, even in

the ultimate limit state. Therefore, it is necessary to use non-linear material models in order to analyse the

effect of the thermal action on the overall load-bearing behaviour in an accurate way. The linear-elastic

material models are not capable of analysing the restraint effects in integral bridges and should not be used

for structural designs in the SLS and ULS. Nevertheless, in the case that the prestressing cause compressive

stresses in the cross sections at SLS load level, the linear-elastic material modelling can still be considered

as adequate and accurate.

6.3.4.3 Integrative global model quality evaluation

In order to illustrate the significance of the integrative assessment method, the global model quality as-

sessment is shown in Table 6.4 in the serviceability limit state for the shorter piers at several positions. The

concrete stress at the bottom level of the cross sections σc2 is chosen as an exemplary response value. The

creep, shrinkage, thermal action and the foundation flexibility influence this concrete stress prediction, see

Fig. 6.7 and Fig. 6.11(a).

Table 6.4: Global Model Quality Evaluation based on Partial Model Quality Scenario in the Serviceability
Limit State

Position X3 X4 X6 X7 MQσc2
GM

creep shrinkage thermal foundation
action stiffness

MQPM,X3 MQPM,X4 MQPM,X6 MQPM,X7

= 0.70 = 0.90 = 0.50 = 0.60

local position
SM,σc2

Ti ,Xisensitivity
x = 14.75 m (span 1) 0.34 0.64 0.03 0.01 0.82
x = 39.68 m (axis B) 0.23 0.18 0.62 0.20 0.61
x = 64.00 m (span 2) 0.22 0.77 0.02 0.00 0.85

integrative
S

M,σc2

Ti ,Xiassessment method
entire structure 0.27 0.65 0.08 0.03 0.81

The partial model qualities are assumed by the following scenario MQPM,X3 = 0.70, MQPM,X4 = 0.90,

MQPM,X6 = 0.50, and MQPM,X7 = 0.60. In addition, these qualities are chosen as constant values along

each position in the structure. Hence, the integrative global model quality evaluation according to Sec. 6.2
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with Eq. 6.5 is applied for the presented results.

The assessment at local positions shows the significant influence of each position on the sensitivity indices,

see Table 6.4. Therefore, the global model quality for the same partial model combination is different at

each position due to the changed sensitivity values. Moreover, it is also obvious that some phenomena have

no influence at a certain position in the structure on the response quantity. In contrast, they can affect

the structural load-bearing behaviour at other positions. Consequently, for three positions in the structure

listed in Table 6.4, the quality assessment quantifies three different global model qualities for the same

partial model combination.

In practical engineering problems, there is no requirement to establish various global models with the cor-

responding best (highest) prediction quality at a local position in the structure for design purposes. For

example, it would not be feasible for practical engineering projects to choose a certain global model with

high quality for predicting a response quantity at the side span and subsequently select a different global

model with high quality for predicting the same response quantity at the mid span. The structural engineer

needs to have a global model with an acceptable and adequate overall prediction quality.

But what are the partial model’s influences with respect to the entire structure? What is the global struc-

tural prediction quality for the entire structure? These questions cannot be answered by the local position

sensitivity assessment. Consequently, the integrative assessment method is established, which is capable of

computing quantitative information to address these questions.

The enhancement to the integrative assessment method enables an overall evaluation of the entire struc-

tural load-bearing behaviour. Hence, the global model quality for the same partial model combination based

on the integrative assessment method is not dependent on the local position, because all positions are taken

into account by the local response significance factors. Finally, an overall sensitivity index for each partial

model and, subsequently, entire structural prediction quality for each partial model combination can be

assessed. Hence, for each partial model combination (here only one scenario is presented) a representative

structural prediction quality MQσc2
GM,scenario = 0.81 can be evaluated, see Table 6.4.

A quantitative comparison between several global structural models is then clearly feasible on the entire

structural level. The integrative assessment method assists the structural engineers in the decision mak-

ing process in various project design phases. The engineers can then choose a structural model with an

adequate prediction quality for the entire structure in order to obtain more reliable simulation results and

finally a safer and more economical design.

6.3.4.4 Design recommendations

The results of the integrative sensitivity analysis in the serviceability and the ultimate limit states present a

clear quantification of the importance of certain phenomena on the overall structural load-bearing behaviour.

The decomposition of integral bridges into superstructure and substructure is only valid on a geometric

level. In the establishment of a numerical model for semi-integral bridges, the girder, pier, and foundation

(soil) components have to be directly coupled in order to consider the high interaction between these

structural parts. A decoupled design of the integral bridge structure separating the superstructure and

substructure, is not appropriate and cannot provide reliable predictions.

The shrinkage and the creep of the concrete have a significant influence on the structural load-bearing

behaviour for the SLS and ULS. These phenomena are mainly influenced, among others, by the modulus

of elasticity and the concrete compressive strength, which both have generally a high variance (parameter

uncertainty). The parameters defined in design codes and guidelines are only imprecise estimates. Therefore,
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it can be necessary and very useful to perform short-term (modulus of elasticity, compressive strength)

and long-term (creep and shrinkage) experiments in order to measure more accurate data for a particular

concrete mixture. This parameter estimation can significantly reduce the uncertainty in the model prediction.

Finally, the design of the entire structure becomes safer and more reliable.

In addition, the foundation and soil stiffness is quantified to be very sensitive according to the vertical bridge

displacements. Hence, the foundation flexibility should also be carefully checked on the construction site in

the preliminary design. Material properties for the surrounding soil and the piles should not be exclusively

related to experience and empirical values. Soil tests or even pile foundation tests should be performed

on site, because such experiments already include the interaction between the soil and the pile and can

additionally reduce the model prediction uncertainty.

For integral bridge structures with high rigidity of the structural components (e.g. shorter bridge piers),

the restraint effects due to temperature, shrinkage and creep could lead to a material non-linear response

in the structure. The higher rigidity of the shorter piers results in larger section forces due to the restraint

effects, which cause the concrete cracking. In the application example, concrete cracking under tension

is not sensitive to the structural behaviour for the SLS, but being a considerable sensitivity for the ULS.

This relationship cannot be generalised, because a lot of factors, such as loading conditions, cross section

stiffness/shape, material properties, prestressing forces, or the span - height ratio affect the magnitude of

the restraint effects. In general, structural engineers should care about the non-linear material behaviour

and cannot assume a simplified linear-elastic material description for integral bridges. The linear-elastic

computation only will otherwise result in highly inaccurate sectional forces, due to the restraint effects,

and thus the amount of reinforcement increases significantly. In contrast, concrete cracking and stiffness

degradation reduce the section forces due to these indirect loading conditions. Therefore, a non-linear

simulation leads to a more suitable design approach.

Due to the fact that integral bridges are very sensitive to the material and structural component stiffness,

the structural engineers have to take care about the model selection and should assess the main influencing

phenomena. This analysis will illustrate where the global structural model has to use more accurate partial

models and where even simplified partial models can suffice. Therefore, the integrative assessment method

is a powerful tool, which can significantly reduce the uncertainty in model predictions. The design of

engineering structures in accordance with the recommendations of codes and guidelines should be performed

based on the results of a global structural model with a high prediction quality in order to obtain a safer

and more reliable design.

6.4 Semi-integral concrete bridges neglecting foundation flexibility

In the preliminary project phases of engineering structures, the first major design proofs are checked with-

out exactly knowing some parameters, such as the detailed pile foundation layout. Hence, in most cases

some basic support conditions are assumed at the foundation nodes in the global structural model. The

vertical, lateral, and rotational stiffness/flexibilities are considered by either free or fixed support conditions

in the corresponding displacement criteria. Such change in the global structural model may modify the

importance of the phenomena due to a different load-deformation behaviour. Therefore, the integrative

sensitivity analysis is similarly applied to the simulation of semi-integral concrete bridges with simplified

support conditions at the pier base (u = w = ϕ = 0) in order to quantify the influence of neglecting a

certain phenomenon such as the pile foundation flexibility.
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6. Integrative assessment method

The influence of the partial models on the prediction of vertical and horizontal displacements is shown in

Fig. 6.13(a), quantified by the total-effects sensitivity indices SM,Y
Ti ,Xi

. The results of the integrative sensitivity

analysis are shown in Fig. 6.14 by the determination of the local response significance factors SY along the

entire structure. Both results are presented for the short pier height H1 = 5 m and the serviceability limit

state.
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Figure 6.13: Sensitivity indices and local response significance factors for vertical w and horizontal u
displacements with respect to positions at superstructure (left side), and bridge axis B (right
side); semi-integral concrete bridge with pier height H1 = 5 m and fixed support conditions
in serviceability limit state

The vertical displacement of the bridge pier is mainly influenced by the shrinkage (0.7 < SM,w
Ti ,shrinkage < 0.9)

instead of the pile foundation flexibility as assessed in the previous section, see Fig. 6.8(a). In the mid

span of the superstructure, shrinkage shows even a higher sensitivity than the creep. Nevertheless, concrete

creep mainly affects the prediction of vertical displacements in the side spans resulting in SM,w
Ti ,creep ≈ 0.86.

The numerical integration of these sensitivity indices along the superstructure and piers is computed to be

SM,w
Ti ,creep = 0.48 and SM,w

Ti ,shrinkage = 0.51. These results indicate almost same importance of both phenomena

with respect the vertical displacements.

However, an identical importance of each position in the structure is assumed in the numerical integra-

tion. The enhancement to the integrative sensitivity analysis additionally takes into account the local

response significance of each node/beam in the entire structure. The relative determination Sw ,rel is shown

in Fig. 6.13(b). Due to the fixed pier base (w = 0), the local response significance at these positions is

0.00 and is smaller than 0.04 for the entire bridge piers. Hence, the high sensitivity of the shrinkage on

228



6.4. Semi-integral concrete bridges neglecting foundation flexibility

the vertical displacements of the bridge piers has a very small effect on the load-deformation behaviour of

the entire structure. Moreover, the vertical displacements are very small in the mid span and hence the

corresponding local response significance is similarly small.

The absolute maximum displacements occur in the side spans and are negative (upward) displacements,

due to the combination of prestressing and external loading conditions. The tandem vehicle load is applied

in the left side span and hence the upward is smaller compared to the right side span. Therefore, the local

response significance is a bit higher in the right side span. The integrative sensitivity analysis computes an

overall influence of both phenomena to be S
M,w
Ti ,creep = 0.79 and S

M,w
Ti ,shrinkage = 0.21, which is an increase

of 0.31 (65 %) for the creep and a decrease of 0.30 (41 %) for the shrinkage, compared to the numerical

integration. This example additionally illustrates the necessity of considering sensitivity indices and local

response significance factors together in order to quantify the load-deformation behaviour of the entire

structure.

The results of the integrative sensitivity analysis are shown in Fig 6.14 for both limit states and both pier

heights. Moreover, the results according to the serviceability and ultimate limit states are listed in the

appendix in Tab. C.3 for the pier height H1 = 5 m and in Tab. C.4 for H2 = 10 m. The concrete cracking

in the superstructure and piers does not influence the entire structural behaviour, which is as same as the

one for the global model with consideration of the pile foundation flexibility, see Sec. 6.3.4.2.

 

 

S
M,Y

Ti ,Xi
[-]

u
w
σc1
σc2

σp
σs1
σs2

cracking tension
superstructure

cracking tension
piers

creep

shrinkage

geometric
kinematic

thermal action

0.79

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) SLS, H1 = 5 m

 

 

S
M,Y

Ti ,Xi
[-]

u
w
σc1
σc2

σp
σs1
σs2

cracking tension
superstructure

cracking tension
piers

creep

shrinkage

geometric
kinematic

thermal action

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) ULS, H1 = 5 m

 

 

S
M,Y

Ti ,Xi
[-]

u
w
σc1
σc2

σp
σs1
σs2

cracking tension
superstructure

cracking tension
piers

creep

shrinkage

geometric
kinematic

thermal action

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(c) SLS, H2 = 10 m

 

 

S
M,Y

Ti ,Xi
[-]

u
w
σc1
σc2

σp
σs1
σs2

cracking tension
superstructure

cracking tension
piers

creep

shrinkage

geometric
kinematic

thermal action

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(d) ULS, H2 = 10 m

Figure 6.14: Integrative sensitivity indices S
M,Y
Ti ,Xi

for semi-integral concrete bridges with different pier
heights (H1, H2) in serviceability limit state (SLS) and ultimate limit state (ULS), 6 model
classes considered, foundation flexibility neglected
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6. Integrative assessment method

The main difference appears in the prediction of the vertical displacement, as previously discussed. For the

pier height of H2 = 10 m, greater vertical displacements are induced, due to concrete shrinkage, which leads

to a local response significance along the pier axis of about 0.0 < Sw ,rel < 0.3. The maximum displacement

occurs at the mid span where the shrinkage additionally mainly influenced the vertical displacement. Hence,

the integrative sensitivity indices are S
M,w
Ti ,creep = 0.31 (39 %) and S

M,w
Ti ,shrinkage = 0.69 (329 %), which are

much different when compared to the shorter pier height H1 = 5 m.

In the ultimate limit state, the vertical displacement is mainly influenced by concrete cracking in the su-

perstructure and also the shrinkage. The stiffness degradation is higher, due to the increasing stiffness of

the entire structure, compared to the global model with consideration of the foundation flexibility. Hence,

concrete cracking in the superstructure has an integrative sensitivity of 0.51 for the fixed support condition

and only 0.28 for the consideration of pile group flexibility in the case of the short pier height H1 = 5 m.

For the longer piers, the sensitivity values are 0.19 and 0.10, respectively.

The presented results show that the consideration or disregard of a certain phenomenon can cause consider-

able changes in the integrative sensitivity values, due to the changing structural load-deformation behaviour.

Therefore, the pre-selection of the phenomena and corresponding partial models by the engineers is very

important and crucially influences the results of the quantification of partial model sensitivity and finally

the global model quality.

6.5 Girder bridge on bearings

In addition to the semi-integral bridges, the load-deformation behaviour of a conventional girder bridge

is quantified and the results are presented in the following section. All geometric, material, prestressing,

and loading conditions are the same as studied for the semi-integral bridges except for the bridge piers

and pile groups. Therefore, the “foundation flexibility” and “cracking tension piers” model classes are not

considered in this assessment.

The girder is modelled as a continuous three-span beam with one vertical and horizontally fixed abutment,

two vertically fixed pier axes and one vertically fixed abutment axis. The results of the integrative sensitivity

analysis are shown in Fig. 6.15. In addition, the results are listed in the appendix, see Tab. C.5.
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Figure 6.15: Integrative sensitivity indices S
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for concrete girder bridge in serviceability limit state
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In the serviceability limit state, the concrete cracking has no influence on the entire structural behaviour.
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6.5. Girder bridge on bearings

The restraint effects, which cause additional section forces in the semi-integral bridges, are limited in the

bridge girder. Therefore, no tensile stresses occur at the top and bottom surfaces of the box girder. Due

to the one-dimensional beam structure in the longitudinal bridge direction, the geometric kinematic has no

effect in the SLS and ULS.

The vertical displacement is mainly influenced in the serviceability limit state by creep of concrete and in

the ultimate limit state by the concrete cracking in the box girder. The corresponding integrative sensitivity

values are 0.82 for the creep in SLS and 0.68 for the concrete cracking in the ULS. No tensile stresses

occur in the SLS because less section forces are predicted caused by the combination of direct and indirect

loading conditions.

Therefore, concrete cracking does not occur in the SLS; hence, the non-linear material modelling can be

neglected in the tensile zone of the cross section. In contrast, a great amount of stiffness degradation is

predicted in the ULS, which causes great integrative sensitivity of the “cracking tension superstructure”.

The thermal action mainly affects the concrete stress at the bottom level of the box girder σc2. In the SLS,

the integrative sensitivity is 0.10 and in the ULS is 0.40. The higher importance of the temperature strains

in the ULS is caused by the higher loading level (according to the combination rule of EC 0) of the induced

bending moments by the temperature component ∆TM .

231





7 Conclusions

The assessment of material models for reinforced concrete highlights that the quality of simplified or more

complex material models can be quantitatively similar as well as diverse. A clear assignment between the

complexity and quality of models does not exist in general. The statement of the uncertainty hypothesis

that increasing the complexity can reduce the model uncertainty is analysed to be an appropriate assump-

tion in the assessment of concrete material models. In contrast, the theorem that parameter uncertainty

increases with increasing complexity cannot be generalised and does not represent the quantified results.

The relationship between total uncertainty and complexity is strongly dependent on the model character-

istics and the loading condition.

The individual model characteristics and the influence of external loading conditions on the model response

significantly impact the relationship between complexity and uncertainty. Consequently, a general determi-

nation of the dependence between complexity and uncertainty is not appropriate and should be carefully

investigated in each application. It is not the result of this assessment, that the hypothesis is inaccurate or

even wrong, but it cannot be generalised as it is shown in the presented results. Nevertheless, the quan-

tification of uncertainty and complexity allows a clear and objective comparison between various models.

Therefore, the choice of an adequate model for each application is assisted by quantitative information

which is based on the uncertainty and not solely on qualitative engineering judgement.

The assessment of pile foundation models shows the crucial influence of selecting a constant, such as initial

linear-elastic stiffness or a variable reference value, such as the displacement in the model uncertainty as-

sessment. In the case of the selection of a constant response value in the assessment, the standard deviation

(difference between model predictions) increases and average value (model prediction of reference model)

decreases between two successive load steps. If this relation becomes more and more disproportional due

to the high stiffness degradation in the non-linear reference model and the constant elastic stiffness in the

simplified models, the model uncertainty is significantly overestimated and is not capable of representing

the average load-deformation behaviour of the models.

For simplified elastic models, the increase in displacement/deformation/settlement is always proportional

to the external load increment due to the same initial elastic stiffness. Similarly, the coefficient of variation

is characterised as a proportional change between standard deviation and average value leads to a constant

coefficient of variation between two neighbouring load steps, which should be considered in the model un-

certainty assessment. The evaluation of the stiffness and deformation response in the uncertainty analysis

shows that the deformation response value is more adequate and accurate in the model uncertainty quan-

tification, because by the selection of this model output enables the uncertainty analysis of investigating

the entire load-deformation analysis.

On the structural level, the assessments at local positions show the significant influence of each position

on the sensitivity indices of the phenomena. Therefore, the global model quality for the same partial model

combination is different at each position due to the changed sensitivity values or partial model qualities.

Moreover, it is also obvious that some phenomena have no influence at certain positions in the structure
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7. Conclusions

indicated by the response quantity. In contrast, they can affect the structural load-bearing behaviour at

other positions. Consequently, the quality assessment at local structural positions quantifies different global

model qualities for the same partial model combination.

In practical engineering problems, there is no requirement to establish various global models with the corre-

sponding best prediction quality at a local position in the structure for the design purposes. Engineers need

to have a global model with an acceptable and adequate overall prediction quality. Hence, the integrative

assessment method is established, which is capable of computing quantitative information in order to assess

global structural prediction qualities for each partial model combination in relation to the entire structural

load-deformation behaviour.

Hence, the global model quality for the same partial model combination based on the integrative assessment

method is not dependent on the local positions, because all positions are taken into account by the local

response significance factors. Finally, an overall sensitivity index to each partial model and, subsequently

the entire structural prediction quality for each partial model combination can be assessed.

A quantitative comparison between several global structural models is then clearly feasible on the entire

structural level. The integrative assessment method assists the structural engineers in the decision making

process in various project’s design phases. The engineers can then choose a structural model with an ade-

quate prediction quality for the entire structure in order to obtain more reliable simulation results and finally

a more economical design. An adequate global model quality in the structural model allows the reduction

of the corresponding safety factor of the model uncertainty.

Nevertheless, the presented results show that the consideration or disregard of a certain phenomenon can

cause significant changes in the integrative sensitivity values due to the changes in the structural load-

deformation behaviour. Therefore, the pre-selection of the phenomena and corresponding partial models

by engineering judgement is still very important and crucially influences the results of the quantification of

partial model sensitivity and finally the global model quality.

The applications of the integrative assessment method to the evaluation of the load-deformation behaviour

of complex semi-integral concrete bridges show that shrinkage and creep of concrete have a significant

influence on the structural load-bearing behaviour for the serviceability limit state and ultimate limit state.

Therefore, it can be necessary and very useful to perform short-term (modulus of elasticity, compressive

strength) and long-term (creep and shrinkage) experiments in order to measure more accurate data for a

particular concrete mixture in comparison to the imprecise values of the existing design codes such as the

Eurocode 2. This parameter estimation can significantly reduce the uncertainty in the model prediction.

Finally, the design of the entire structure becomes more reliable.

In addition, the foundation and soil stiffness is quantified to be very sensitive with respect to the vertical

bridge displacements. Soil tests or even pile foundation tests should be performed on site, because these

studies can further reduce the model prediction uncertainty.

For integral bridge structures with high rigidity of the structural components, the restraint effects due to

temperature, shrinkage and creep could lead to a non-linear material response of the structure material.

In the application examples, concrete cracking under tension is not a sensitive phenomenon with respect

to the structural behaviour for the serviceability limit state, but is a sensitive parameter for the ultimate

limit state. This relationship cannot be generalised, because a lot of factors, such as loading conditions,

cross section stiffness/shape, material properties, prestressing forces, or the span - height ratio affect the

magnitude of the restraint effects.

In general, engineers should care about the non-linear material behaviour and cannot assume a simplified
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linear-elastic material description for integral bridges. Otherwise, the linear-elastic computation will only re-

sult in highly inaccurate sectional forces, due to the restraint effects, and thus the amount of reinforcement

increases significantly. In contrast, concrete cracking and stiffness degradation reduce the section forces

due to these indirect loading conditions. Therefore, a non-linear simulation leads to a more suitable design

approach.

Due to the fact that integral bridges are very sensitive to material and structural component stiffness, struc-

tural engineer should take care of the model selection process and assess the main influencing phenomena.

This analysis illustrates where more accurate partial models and where simplified partial models can suffice

in the establishment of the global structural model. Therefore, the integrative assessment method is a

powerful methodology, which can significantly reduce the uncertainty in model predictions. The design of

engineering structures in accordance with the recommendations of codes and guidelines should be per-

formed based on the results of a global structural model with a high prediction quality in order to obtain

a more reliable design.
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8 Outlook

In the assessment of partial models, the evaluation of model uncertainty and parameter uncertainty should

be extended to the failure regions. In some engineering fields, such as reliability analysis, it is not necessary

to know the exact distribution type in the range of the mean values. Knowledge about the tail of the

distribution is much more important and influential for the simulated results. Therefore, research is needed

to assess models in the failure region. How is it possible to quantify the difference of the failure of a certain

structural element or the entire structure at a loading condition based on a specific model selection versus

another model that may predict a stable equilibrium for the same loading level and structural elements?

Hence, it is necessary to combine the model quality assessment and the reliability analysis. Each model

will compute a different probability of failure for the system of interest. But what is the actual failure

probability? Therefore, the model uncertainty of the partial models may be scaled according to their effect

on the structural level using the integrative assessment method. This should be analysed in further research

studies in order to quantify the difference between the several predicted probabilities of failure for the same

structure. Based on such results, it should be possible to assess the partial safety factors for the model

uncertainty for each model. Hence, for the structural engineering design practice, some more accurate

information about the safety factors can be given to the semi-probabilistic design concept.

The consequent application of the integrative assessment method according to the various types of engineer-

ing structures could make it possible to deduce design recommendations for the modelling and simulation

process. Therefore, statements in guidelines and textbooks regarding the design of structures can then be

given based on the quantitative evaluation of various phenomena and loading levels under different condi-

tions. In the ensuing decades, it would be more appropriate to give recommendations regarding methods,

such as the integrative assessment method, which are able to quantify the influence of the phenomena and

can adequately assess the prediction quality rather than giving the design recommendations for a specific

type of structure or structural element.

Engineers can then analyse the load-deformation behaviour for the structure of interest by the assessment

method. Therefore, clear insight into the structural behaviour and the model evaluation can lead to the

selection of an accurate model, which finally can reduce modelling errors and design mistakes. In design

guidelines, a lot of the text is related to a specific type of structure for which the engineers should care

about certain phenomena. Due to the fact that the importance of phenomena varies for different structural

types and conditions in the design, a lot of recommendations are mentioned and extended to the length

and detail of design codes and text books. Hence, it may be more efficient to recommend methods, such as

the integrative assessment method, which are more accurate and efficient at quantifying and recognizing

the sensitive phenomena that the engineers should give consideration to in the design process of specific

structures.

Engineers and researchers should be motivated to objectively discuss their model selection and always should

have in mind that numerical and mathematical simulation methods are approximations of the “reality”.

More research about the evaluation methods for the assessment of partial and global structural models

237



8. Outlook

such as the proposed integrative assessment method, have to be studied in comparison to experimental

models in order to evaluate the interaction between measurement data and simulation results.
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[36] Bažant, Z.P. and Prasannan, S.: Solidification Theory for Concrete Creep. II: Verification and Appli-

cation. Journal of Engineering Mechanics, 115(8):1704–1725, 1989.
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[74] Comité Euro-International du Béton: CEB-FIP model code 1990: Design code, volume 213/214 of
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[119] Fröbel, Toni: Data coupled civil engineering applications : modeling and quality assessment methods.

PhD thesis, Bauhaus-Univerisität Weimar, Weimar, 2013.

[120] Froli, M., Hariga, N., Nati, G., and Orlandini, M.: Longitudinal Thermal Behaviour of a Concrete

Box Girder Bridge. Structural Engineering International, 6(4):237–242, 1996.

[121] Gaganis, P. and Smith, L.: A Bayesian Approach to the quantification of the effect of model error

on the predictions of groundwater models. Water Resources Research, 37(9):2309, 2001.

[122] Gardner, N.J.: Comparison of prediction provisions for drying shrinkage and creep of normal-strength

concretes. Canadian Journal of Civil Engineering, 31(5):767–775, 2004.

[123] Gardner, N.J. and Lockman, M.J.: Design Provisions for Drying Shrinkage and Creep of Normal-

Strength Concrete. ACI Materials Journal, 98(2):159–167, 2001.

[124] Garwood, F. and Wright, P.J.F.: The effect of the method of test on the flexural strength of concrete.

Magazine of Concrete Research, 4(11):67–76, 1952.

[125] Gazetas, G.: Analysis of machine foundation vibrations: State of the art. International Journal of Soil

Dynamics and Earthquake Engineering, 2(1):2–42, 1983.

[126] German Board for Reinforced Concrete (DAfStb): Comments according DIN 1045-1 - 2nd revised
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und Stahlbetonbau, 60(7):157–163, 1965.

[248] Lichte, U.: Klimatische Temperatureinwirkungen und Kombinationsregeln bei Brückenbauwerken.

PhD thesis, Universität der Bundeswehr, München, 2005.

[249] Lindner, C.P. and Sprague, J.C.: Effect of depth of beam upon the modulus of rupture of plain

concrete. Proc. ASTM, 55, 1955.

[250] Lu, Z. H. and Zhao, Y. G.: Empirical Stress-Strain Model for Unconfined High-Strength Concrete

under Uniaxial Compression. Journal of Materials in Civil Engineering, 22(11):1181–1186, 2010.

[251] Lutz, B.: Beitrag zur Modellierung des Tragverhaltens kombinierter Pfahl-Plattengründungen (KPP)

unter Verwendung geotechnischer Messungen. PhD thesis, Institut und Versuchsanstalt für Geotech-

nik, Technische Universität Darmstadt, 2002.

[252] Macgregor, J.G and Bartlett, F.M: Statistical Analysis of the Compressive Strength of Concrete in

Structures. ACI Materials Journal, 1996.

[253] MacKay, D.J.C.: Bayesian Interpolation. Neural Computation, 4(3):415–447, 1992.

[254] MacKay, M.D., Beckham, R.J., and Conover, W.J.: A Comparison of three Methods for Selecting

Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21:239–

245, 1979.
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Stahlbetonbau, 80(4,5):108–113,134–136, 1985.

[353] Rudolf, M.: Beanspruchung und Verformung von Gründungskonstruktionen auf Pfahlrosten und
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[357] Rüsch, H., Sell, R., and Rackwitz, R.: Statistische Analyse der Betonfestigkeit. Beuth Verlag GmbH,

1969.

[358] Russel, H.G. and Larson, S.C.: Thirteen Years of Deformations in Water Tower Place. ACI Structural

Journal, 86(2):182–191, 1989.

[359] Saetta, A., Scotta, R., and Vitaliani, R.: Stress Analysis of Concrete Structures Subjected to Variable

Thermal Loads. Journal of Structural Engineering, 121(3):446–457, 1995.

[360] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., and Gatelli, D.: Global Sensitivity

Analysis: The Primer. Wiley-Interscience, 1st edition, 2008.

257



9 Bibliography

[361] Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.: Sensitivity analysis in practice - A guide

to assessing scientific models. John Wiley & Sons Ltd, Chichester, 2004.

[362] Sanayei, M., Arya, B., Santini, E.M, and Wadia-Fascetti, S.: Significance of Modeling Error in Struc-

tural Parameter Estimation. Computer-Aided Civil and Infrastructure Engineering, 16(1):12–27,

2001.

[363] Sangha, C.M. and Dhir, R.K.: Strength and complete stress-strain relationships for concrete tested

in uniaxial compression under different test conditions. Matériaux et Constructions, 5(6):361–370,

1972.

[364] Sargin, M.: Stress - strain relationships for concrete and the analysis of structural concrete sections.

University of Waterloo, Waterloo and Ontario, 1971.

[365] Schenkel, M., Goldack, A., Schlaich, J., and Kraft, S.: Die Gänsebachtalbrücke, eine integrale
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A Appendix - modelling aspects

A.1 Restraint effects

Table A.1: Material properties for sectional analysis of restraint effects

Material E fR fuR fctm ε1 ε2[
MN/m2

] [
MN/m2

] [
MN/m2

] [
MN/m2

]
[�] [�]

concrete 33300 −25.29 - 3.2 −2.40 −3.50
reinforcing steel 200000 55.00 59.40 - 2.75 25.00

Table A.2: Reinforcement area for restraint effect analysis depending on reinforcement ratio

Cross-Section Reinforcement Ratio Tensile Reinforcement Compressive Reinforcement
ωs1 [−] As1

[
cm2

]
As2 = 1/5 · As1

[
cm2

]

rectangular

0.029 6.40
0.05 10.92 2.18
0.10 21.84 4.37
0.20 43.68
0.30 65.52 13.10
0.40 87.36 17.47
0.50 109.20

box girder

0.029 128.00
0.05 218.39
0.10 436.79
0.20 873.57
0.30 1310.35
0.40 1747.13
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A. Appendix - modelling aspects

A.2 Pile foundation

The parameters for the estimation of the group “magical radius” based on the study of Guo and Ran-

dolph according to Eq. 3.152 are defined to [157, 158]:

rm,g = A
1− νs

1 + ρdsh
lP + Br0 + αgrg , (A.1a)

A =
Ah

Aoh

[
1

1 + ρdsh

(
0.4− νs

ρdsh + 0.4
+

2

1− 0.3ρdsh

)
+ Cλ (νs − 0.4)

]
, (A.1b)

Cλ =


0 λ = 300

0.5 λ = 1000

1.0 λ = 10000

, (A.1c)

λ =
EP

Gs,lP

, (A.1d)

Ah = 0.124e2.23ρg

(
1− e

1− lP +hb
lP

)
+ 1.01e0.107ρdsh , (A.1e)

ρg =
1

1 + ρdsh
, (A.1f)

B ≈


1 [157]
lP
r0
< 20 5

(lP + hB)→∞ 5

, (A.1g)

αg = 1− e
1− lp+hb

lp , (A.1h)

rg ≈


1

3
...

1

2
· s

(0.3 + 0.2ρdsh) · s with s ≤ A 1−νs
1+ρdsh

lP + Br0

. (A.1i)

(A.1j)

The integration constants A11, B11, A21 and B21 for the pile settlement profiles based on the model by

Moylonakis and Gazetas [291] are given by:

A11 =
1

2
− K

2EPAPλ
, (A.2a)

B11 =
1

2
+

K

2EPAPλ
, (A.2b)

A21 =
ψ(rij )

2

(
ζ − K

2EPAPλ

)
, (A.2c)

B21 =
ψ(rij )

2

(
ζ +

K

2EPAPλ

)
. (A.2d)
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A.2. Pile foundation

The 2 by 2 transfer matrix [LI]i is defined to [291]:

[LI]i = (kzi + iωczi )
ψ (rij )

2λi

 − hi

EpAp
sinh (hiλi )

1

(EpAp)2 λi

[
hi cosh (hiλi )−

sinh (hiλi )

λi

]
hiλi cosh (hiλi ) + sinh (hiλi ) − hi

EPAP
sinh (hiλi )


(A.3)

The stresses at a point in an elastic half-space due to a vertical load Pb at a certain depth (here pile length

lP , see Fig. A.1) can be computed according to the study of Mindlin [280, 315]:

σx =
−Pb

8π (1− νs)

[
(1− 2νs) (z − lP)

R3
1

− 3x2 (z − lP)

R5
1

+
(1− 2νs) [3 (z − lP)− 4νs (z + lP)]

R3
2

−3 (3− 4νs) x2 (z − lP)− 6lP (z + lP) [(1− 2νs) z − 2νs ]

R5
2

− 30lPx2z (z + lP)

R7
2

−4 (1− νs) (1− 2νs)

R2 (R2 + z + lP)
·
(

1− x2

R2 (R2 + z + lP)
− x2

R2
2

)]
, (A.4a)

σz =
−Pb

8π (1− νs)

[
−(1− 2νs) (z − lP)

R3
1

+
(1− 2νs) (z − lP)

R3
2

− 3 (z − lP)3

R5
1

−3 (3− 4νs) z (z + lP)2 − 3lP (z + lP) (5z − lP)

R5
2

− 30lPz (z + lP)3

R7
2

]
, (A.4b)

τzx =
−Pb · x

8π (1− νs)

[
−(1− 2νs)

R3
1

+
(1− 2νs)

R3
2

− 3 (z − lP)2

R5
1

−3 (3− 4νs) z (z + lP)− 3lP (3z + lP)

R5
2

− 30lPz (z + lP)2

R7
2

]
. (A.4c)

R2 = (r2+(z+lP)2)1/2

Pt

lP

Pb

r0

lP

z = lP +r0 P1…P5

R1 = (r2+(z-lP)2)1/2

x
r = (x2+y2)1/2

Figure A.1: Mindlin solution [280] for vertical load at a certain depth in elastic half-space, based on [315]

In comparison to Finite Element simulations, the mathematical model for vertical loaded single piles by

Rudolf [353] is checked for the prediction of the resistance-settlement relation under various soil condi-

tions, see Fig. A.2. The soil properties are listed in Tab. A.3. The soil layer below the surface is assumed to

a soft soil layer with the depth of 3 m.
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soil, over-consolidated, E = 11.0 MN/m2
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(c) Kv ,lin = 262 MN/m, lP = 24.0 m, dP = 0.9 m, cohesive
soil, over-consolidated, E = 19.0 MN/m2
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non-cohesive soil, ϕ
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= 30◦, ψ = 0, c
′

= 0
E = 22.0 MN/m2

Figure A.2: Comparison between mathematical model and numerical simulation of resistance-settlement
relation for single pile with various soil conditions, based on the study by Rudolf [353, 353]

Table A.3: Soil properties considered in the study by Rudolf [353], NC...normal-consolidated,
OC...over-consolidated

Soil Property Soft cohesive
soil

cohesive soil non-
cohesive

Layer NC OC soil

friction angle ϕ
′

[◦] 20.0 25.0 25.0 20.0 32.5

cohesion c
′

[kN/m2] 0 10 10 40 0
unit weight (natural state) γ [kN/m3] 14.0 19.5 17.5 19.5 17.0

unit weight under buoyancy γ
′

[kN/m3] 4.0 9.5 7.5 9.5 9.5
soil oedometric modulus Es [MN/m2] 1.5 9.0 15.0 25.0 30.0
soil modulus of elasticity E [MN/m2] 0.4 6.5 11.0 19.0 22.0
soil Poisson’s ratio νs [-] 0.45 0.30 0.30 0.30 0.30
earth pressure at rest coefficient K0 [-] 0.66 0.58 0.58 0.66 0.46
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(d) corner pile, Kv ,lin = 71 MN/m

Figure A.3: Comparison between mathematical model and numerical simulation based on Rudolf [353]
for 5x5 pile group, rm,g = lp, cohesive soil, over-consolidated, E = 11.0 MN/m2, lP = 18.0 m,
dP = 0.9 m, sx = sy = 6dP , Kv ,lin = 1017 MN/m
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B Appendix - partial model quality evaluation

B.1 Evaluation of concrete material models

B.1.1 Comparative study of model uncertainty
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Figure B.1: Load level dependency of model uncertainty of material models

B.1.2 Samples in equilibrium condition for all loading levels
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B. Appendix - partial model quality evaluation
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Figure B.2: Number of samples without material failure
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B.1. Evaluation of concrete material models

B.1.3 High reinforcement ratio
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Figure B.3: Probabilistic σ-ε relation for reinforced concrete in tension, concrete models until crack for-
mation stage
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(a) bi-linear model for model “br-func”
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Figure B.4: Probabilistic σ-ε relation for bi-linear model of reinforcing steel

B.1.4 Medium reinforcement ratio
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B. Appendix - partial model quality evaluation
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(b) relative bending stiffness - dimensionless moment

Figure B.5: Deterministic load-bearing behaviour of rectangular cross-section for medium reinforcement
ratio
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(b) parameter uncertainty

Figure B.6: Load level dependency of model and parameter uncertainty of material models for medium
reinforcement ratio
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Figure B.7: Load level dependency of total uncertainty of material models for medium reinforcement ratio
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B.1. Evaluation of concrete material models

B.1.5 Low reinforcement ratio
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Figure B.8: Deterministic load-bearing behaviour of rectangular cross-section for low reinforcement ratio
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Figure B.9: Load level dependency of model and parameter uncertainty of material models for low rein-
forcement ratio
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B. Appendix - partial model quality evaluation
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Figure B.10: Load level dependency of total uncertainty of material models for low reinforcement ratio

B.2 Pile foundation

Table B.1: Pile spaces rij in pile group 4x1 with pile diameter dP = 1.0 m for various pile space-pile
diameter ratios s/dP

Pile Space Pile Spaces rij [m]
Ratio Pile Number 1 2 3 4

s/dP = 2

1 0.5 2.0 4.0 6.0
2 2.0 0.5 2.0 4.0
3 4.0 2.0 0.5 2.0
4 6.0 4.0 2.0 0.5

s/dP = 3

1 0.5 3.0 6.0 9.0
2 3.0 0.5 3.0 6.0
3 6.0 3.0 0.5 3.0
4 9.0 6.0 3.0 0.5

s/dP = 5

1 0.5 5.0 10.0 15.0
2 5.0 0.5 5.0 10.0
3 10.0 5.0 0.5 5.0
4 15.0 10.0 5.0 0.5

s/dP = 10

1 0.5 10.0 20.0 30.0
2 10.0 0.5 10.0 20.0
3 20.0 10.0 0.5 10.0
4 30.0 20.0 10.0 0.5
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B.2. Pile foundation

Table B.2: Pile spaces rij in pile group 2x2 with pile diameter dP = 1.0 m for various pile space-pile
diameter ratios s/dP

Pile Space Pile Spaces rij [m]
Ratio Pile Number 1 2 3 4

s/dP = 2

1 0.500 2.000 2.000 2.828
2 2.000 0.500 2.828 2.000
3 2.000 2.828 0.500 2.000
4 2.828 2.000 2.000 0.500

s/dP = 3

1 0.500 3.000 3.000 4.243
2 3.000 0.500 4.243 3.000
3 3.000 4.243 0.500 3.000
4 4.243 3.000 3.000 0.500

s/dP = 5

1 0.500 5.000 5.000 7.071
2 5.000 0.500 7.071 5.000
3 5.000 7.071 0.500 5.000
4 7.071 5.000 5.000 0.500

s/dP = 10

1 0.500 10.000 10.000 14.142
2 10.000 0.500 14.142 10.000
3 10.000 14.142 0.500 10.000
4 14.142 10.000 10.000 0.500
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B. Appendix - partial model quality evaluation
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(c) group 2x2 (II) with s/dP = 3
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Figure B.11: Model uncertainty CVMi
mod for pile foundation assembly 4x1 (I) and 2x2 (II),

Randolph et al. [334], Mylonakis et al. [291], reference model Rudolf [353]
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B.2. Pile foundation
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Figure B.12: Parameter uncertainty CVMi
par for pile foundation arrangement 4x1 (I) and 2x2 (II),

Randolph et al. [334], Mylonakis et al. [291], Rudolf [353]
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B. Appendix - partial model quality evaluation
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Figure B.13: Total uncertainty CVMi
tot for pile foundation arrangement 4x1 (I) and 2x2 (II),

Randolph et al. [334], Mylonakis et al. [291], Rudolf [353]
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C Appendix - integrative sensitivity analysis

C.1 Semi-integral concrete bridges
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(b) serviceability limit state, H2 = 10 m
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(c) ultimate limit state, H1 = 5 m
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(d) ultimate limit state, H2 = 10 m

Figure C.1: Total-effects sensitivity index SM,σc1
Ti ,Xi

for concrete stress at top level of the box girder σc1 with
respect to position x at superstructure (left side), and bridge pier outside at axis B (ride side)
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(a) serviceability limit state, H1 = 5 m
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(b) serviceability limit state, H2 = 10 m
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(c) ultimate limit state, H1 = 5 m
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(d) ultimate limit state, H2 = 10 m

Figure C.2: Total-effects sensitivity index SM,σc2
Ti ,Xi

for concrete stress at bottom level of the box girder σc2

with respect to position x at superstructure (left side), and bridge pier inner side at axis B
(ride side) 287
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(a) serviceability limit state, H1 = 5 m
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(b) serviceability limit state, H2 = 10 m
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(c) ultimate limit state, H1 = 5 m
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(d) ultimate limit state, H2 = 10 m

Figure C.3: Total-effects sensitivity index SM,σs1
Ti ,Xi

for reinforcement stress at top level of the box girder σs1

with respect to position x at superstructure (left side), and bridge pier outside at axis B (ride
side) 288
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(a) serviceability limit state, H1 = 5 m
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(b) serviceability limit state, H2 = 10 m
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(c) ultimate limit state, H1 = 5 m
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(d) ultimate limit state, H2 = 10 m

Figure C.4: Total-effects sensitivity index SM,σs2
Ti ,Xi

for reinforcement stress at bottom level of the box girder
σs2 with respect to position x at superstructure (left side), and bridge pier inner side at axis
B (ride side) 289
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(a) serviceability limit state, H1 = 5 m
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(b) serviceability limit state, H2 = 10 m
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(c) ultimate limit state, H1 = 5 m
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(d) ultimate limit state, H2 = 10 m

Figure C.5: Total-effects sensitivity index SM,u
Ti ,Xi

for horizontal displacement u with respect to position x
at superstructure (left side), and bridge pier at axis B (ride side)
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(a) serviceability limit state, H1 = 5 m
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(b) serviceability limit state, H2 = 10 m
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(c) ultimate limit state, H1 = 5 m
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(d) ultimate limit state, H2 = 10 m

Figure C.6: Total-effects sensitivity index SM,w
Ti ,Xi

for vertical displacement w with respect to position x at
superstructure (left side), and bridge pier at axis B (ride side)
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C. Appendix - integrative sensitivity analysis

Table C.1: Integrative sensitivity indices S
M,Y
Ti ,Xi

for semi-integral concrete bridge with pier height
H1 = 5 m in serviceability limit state (SLS) and ultimate limit state (ULS), 7 model classes
considered, foundation stiffness additionally modelled

Limit Model Class Integrative Sensitivity Index S
M,Y
Ti ,Xi

for several
state Structural Response Values Y

u w σc1 σc2 σp σs1 σs2

SLS

cracking tension superstructure 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cracking tension piers 0.00 0.00 0.01 0.02 0.00 0.00 0.00
creep 0.18 0.07 0.16 0.27 0.21 0.17 0.20
shrinkage 0.74 0.17 0.80 0.65 0.79 0.83 0.80
geometric kinematic 0.00 0.00 0.00 0.00 0.00 0.00 0.00
thermal action 0.08 0.00 0.04 0.08 0.00 0.00 0.00
foundation stiffness 0.00 0.75 0.02 0.03 0.00 0.00 0.00

ULS

cracking tension superstructure 0.01 0.28 0.20 0.29 0.10 0.01 0.06
cracking tension piers 0.00 0.00 0.00 0.01 0.00 0.00 0.00
creep 0.18 0.07 0.13 0.12 0.21 0.17 0.18
shrinkage 0.76 0.10 0.56 0.29 0.72 0.82 0.76
geometric kinematic 0.00 0.00 0.00 0.00 0.00 0.00 0.00
thermal action 0.05 0.01 0.16 0.32 0.01 0.00 0.01
foundation stiffness 0.00 0.58 0.03 0.05 0.00 0.01 0.00
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C.2. Semi-integral concrete bridges neglecting foundation stiffness

Table C.2: Integrative sensitivity indices S
M,Y
Ti ,Xi

for semi-integral concrete bridge with pier height
H2 = 10 m in serviceability limit state (SLS) and ultimate limit state (ULS), 7 model classes
considered, foundation stiffness additionally modelled

Limit Model Class Integrative Sensitivity Index S
M,Y
Ti ,Xi

for several
state Structural Response Values Y

u w σc1 σc2 σp σs1 σs2

SLS

cracking tension superstructure 0.00 0.00 0.01 0.01 0.00 0.00 0.00
cracking tension piers 0.00 0.00 0.01 0.02 0.00 0.00 0.00
creep 0.16 0.13 0.15 0.32 0.20 0.15 0.18
shrinkage 0.75 0.30 0.75 0.54 0.80 0.84 0.81
geometric kinematic 0.00 0.00 0.00 0.00 0.00 0.00 0.00
thermal action 0.08 0.00 0.10 0.14 0.00 0.00 0.00
foundation stiffness 0.01 0.57 0.03 0.05 0.00 0.00 0.00

ULS

cracking tension superstructure 0.00 0.10 0.10 0.10 0.05 0.00 0.03
cracking tension piers 0.00 0.01 0.03 0.06 0.01 0.00 0.00
creep 0.17 0.09 0.10 0.13 0.20 0.15 0.17
shrinkage 0.76 0.14 0.47 0.26 0.76 0.84 0.79
geometric kinematic 0.00 0.00 0.00 0.00 0.00 0.00 0.00
thermal action 0.05 0.02 0.36 0.52 0.01 0.01 0.02
foundation stiffness 0.02 0.69 0.07 0.10 0.00 0.01 0.01

C.2 Semi-integral concrete bridges neglecting foundation stiffness
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C. Appendix - integrative sensitivity analysis

Table C.3: Integrative sensitivity indices S
M,Y
Ti ,Xi

for semi-integral concrete bridge with pier height
H1 = 5 m in serviceability limit state (SLS) and ultimate limit state (ULS), 6 model classes
considered, foundation stiffness neglected

Limit Model Class Integrative Sensitivity Index S
M,Y
Ti ,Xi

for several
state Structural Response Values Y

u w σc1 σc2 σp σs1 σs2

SLS

cracking tension superstructure 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cracking tension piers 0.01 0.04 0.01 0.03 0.01 0.01 0.01
creep 0.16 0.79 0.14 0.31 0.19 0.15 0.18
shrinkage 0.77 0.21 0.83 0.64 0.81 0.85 0.82
geometric kinematic 0.01 0.04 0.00 0.01 0.01 0.01 0.01
thermal action 0.07 0.05 0.04 0.08 0.01 0.01 0.01

ULS

cracking tension superstructure 0.01 0.51 0.20 0.28 0.10 0.01 0.06
cracking tension piers 0.00 0.00 0.01 0.01 0.00 0.00 0.00
creep 0.17 0.19 0.12 0.14 0.19 0.16 0.17
shrinkage 0.78 0.37 0.60 0.31 0.74 0.84 0.78
geometric kinematic 0.00 0.00 0.00 0.00 0.00 0.00 0.00
thermal action 0.04 0.02 0.16 0.34 0.01 0.01 0.01

Table C.4: Integrative sensitivity indices S
M,Y
Ti ,Xi

for semi-integral concrete bridge with pier height
H2 = 10 m in serviceability limit state (SLS) and ultimate limit state (ULS), 6 model classes
considered, foundation stiffness neglected

Limit Model Class Integrative Sensitivity Index S
M,Y
Ti ,Xi

for several
state Structural Response Values Y

u w σc1 σc2 σp σs1 σs2

SLS

cracking tension superstructure 0.00 0.00 0.00 0.00 0.00 0.00 0.00
cracking tension piers 0.00 0.01 0.01 0.03 0.00 0.00 0.00
creep 0.17 0.31 0.16 0.35 0.20 0.15 0.19
shrinkage 0.75 0.69 0.81 0.59 0.80 0.85 0.81
geometric kinematic 0.00 0.00 0.00 0.00 0.00 0.00 0.00
thermal action 0.08 0.00 0.04 0.08 0.00 0.00 0.00

ULS

cracking tension superstructure 0.00 0.19 0.08 0.09 0.05 0.00 0.03
cracking tension piers 0.00 0.00 0.01 0.01 0.00 0.00 0.00
creep 0.17 0.31 0.14 0.21 0.21 0.15 0.18
shrinkage 0.78 0.58 0.64 0.39 0.77 0.85 0.80
geometric kinematic 0.00 0.00 0.00 0.00 0.00 0.00 0.00
thermal action 0.05 0.02 0.20 0.39 0.01 0.00 0.01
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C.3. Concrete girder bridge

C.3 Concrete girder bridge

Table C.5: Integrative sensitivity indices S
M,Y
Ti ,Xi

for concrete girder bridge in serviceability limit state
(SLS) and ultimate limit state (ULS)

Limit Model Class Integrative Sensitivity Index S
M,Y
Ti ,Xi

for several
state Structural Response Values Y

u w σc1 σc2 σp σs1 σs2

SLS

cracking tension superstructure 0.00 0.00 0.00 0.00 0.00 0.00 0.00
creep 0.17 0.82 0.14 0.31 0.21 0.18 0.21
shrinkage 0.75 0.16 0.84 0.62 0.79 0.82 0.79
geometric kinematic 0.00 0.00 0.00 0.00 0.00 0.00 0.00
thermal action 0.08 0.02 0.03 0.10 0.00 0.00 0.00

ULS

cracking tension superstructure 0.00 0.68 0.24 0.35 0.11 0.01 0.07
creep 0.17 0.21 0.09 0.09 0.20 0.17 0.19
shrinkage 0.75 0.17 0.57 0.21 0.71 0.82 0.76
geometric kinematic 0.00 0.00 0.00 0.00 0.00 0.00 0.00
thermal action 0.08 0.03 0.16 0.40 0.00 0.00 0.01
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