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Abstract

Development of an efficient adaptivity methodology for analysis of three-dimensional

elastoplasticity problem in order to achieve an accurate solution of a quantity of interest

is highly demanded. 3D simulation of elastoplastic material is an important engineering

tool which plays a significant role in the analysis and design of numerous engineering

applications, e.g. prediction of ductile failure. Since it is a nonlinear problem, its com-

putational cost is notably increased by uniformly refining the mesh when very accurate

result is required. Accordingly, mesh adaptation based on a reliable error estimation

method would be a profitable tool.

The conventional error estimation approaches estimate the energy error norms while

accuracy of some quantities, such as point displacement or average stresses in a specific

domain are of most interest. Goal-oriented error estimation methodology has been

developed based on this fact to be able to estimate the solution error according to the

quantity of interest.

For this purpose, the dual-weighted residual error estimation, which is a robust goal-

oriented error estimation, is used. It is a dual-based scheme which requires an adjoint

problem defined according to the quantity of interest. Afterwards, estimated element-

wise errors are exploited for performing goal-oriented mesh adaptivity procedure. By

applying tetrahedron and hexahedron elements for the FEM analysis in 2D and 3D

cases, respectively, hanging nodes are introduced in the refinement process. They are

constrained in order to preserve their compatibility with the adjacent nodes.

In this contribution, the elastoplasticity analysis is performed in both cases of load

and displacement based control. Error in quantity of interest is computed at each

load/displacement increment and mesh adaptation based on coarsening and refinement

is considered when the error norm reaches a specified value. The nodal solutions and

history variables at Gauss points are transferred and projected to the new mesh after

each mesh adaptation.

This goal-oriented mesh adaptivity method is applied in several 2D/3D, elastic/elasto-

plastic numerical examples considering different quantities of interest. The results are

verified by available analytical solutions and validated by existing experimental data.

Effect of material heterogeneity in the error distribution has also been investigated in

several examples. Different quantities of interest result in various error distributions of

that quantity and subsequently lead to different mesh configurations. The results have

been compared with those obtained by other conventional mesh adaptivity procedures.

The developed methodology leads to higher convergence rate and lower computational

effort.



In conclusion, the proposed goal-oriented mesh adaptivity is a promising approach for

obtaining highly accurate solution of a quantity of interest in a 3D elastoplasticity prob-

lem with optimal mesh configuration and minimal computational effort. Thus, this

approach is highly recommended to be used for failure analysis of ductile material.

Keywords: Finite element method; Goal-oriented error estimation; Mesh adaptivity;

Dual-weighted residual; Elastoplasticity; Von-Mises stress



Zusammenfassung

Die Entwicklung einer effizienten Adaptivitätsmethode für die Analyse von dreidimen-

sionalen Elasto-Plastizitäts-Problemen mit dem Ziel der genauen Lösung einer inter-

essierenden Zielgröße wird zunehmend gefordert. Die dreidimensionale Simulation eines

elastoplastischen Materials ist ein bedeutendes Werkzeug im Ingenieurwesen und spielt

eine wichtige Rolle in der Analyse und im Design von zahlreichen Anwendungen, zum

Beispiel bei der Vorhersage von duktilem Versagen. Im Falle von nichtlinearen Prob-

lemen wird jedoch die Berechnungsdauer durch die einheitliche Verfeinerung des Net-

zes deutlich erhöht, besonders wenn sehr genaue Lösungen erforderlich sind. Demzu-

folge stellt eine Netzadaptivität, die auf einer zuverlässigen Fehlerabschätzungsmethode

basiert, ein profitables Werkzeug dar.

Konventionelle Fehlerabschätzungsmethoden verwenden für die Genauigkeit bestimmter

Größen, wie zum Beispiel Punktverschiebungen oder mittlere Spannungen in einem spez-

ifischen Bereich, Energiefehlernormen. Zielorientierte Fehlerabschätzungsmethoden auf

Basis dieser Normen sind in der Lage, den Lösungsfehler bezüglich der interessierenden

Zielgröße abzuschätzen.

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung eines neuartigen Netzadap-

tivitätverfahrens (unter Verwendung von Verfeinerung und Vergröberung) auf Basis einer

zielorientierten Fehlerabschätzung für zweidimensionale Elastizitätsprobleme mit homo-

genen und heterogenen Materialien. Dieses Verfahren wurde zudem zum ersten Mal auf

dreidimensionale Elastizitäts- und Elasto-Plastizitäts-Probleme erweitert.

Zu diesem Zweck wurden dual-gewichtete Residuen-Fehlerschätzungen, bei denen es

sich um eine robuste zielorientierte Fehlerschätzung handelt, verwendet. Das ist ein

dual-basiertes Verfahren, welches ein adjungiertes Problem mit der Definition einer

Zielgröße erfordert. Nachfolgend werden elementweise geschätzte Fehler verwendet, um

ein zielorierentiertes Netzadaptivitätsverfahren durchzuführen. Durch die Verwendung

von Tetraeder- und Hexaeder-Elementen im Rahmen einer FEM-Analyse für zwei- und

dreidimensionale Fälle werden hängende Knoten im Verfeinerungsprozess eingeführt.

Diese sind eingeschränkt, um ihre Kompatibilität mit benachbarten Knoten zu gewähr-

leisten.

Im vorliegenden Beitrag wird die Elasto-Plastizitäts-Analyse in beiden Fällen auf Basis

einer Kraft- beziehungsweise Verformungskontrolle durchgeführt. Fehler in den Zielgrößen

werden in jedem Kraft-Verformungs-Inkrement berechnet. Die Netzadaptivität auf Ba-

sis von Netzverfeinerung und -vergröberung wird berücksichtigt, wenn die Fehlernorm

einen bestimmten Wert erreicht. Die Lösungen in den Knoten sowie die Zeitvariablen



an Gauss-Punkten werden übertragen und auf ein neues Netz nach jeder Netzadaption

projektiert.

Dieses zielorientierte Netzadaptivitätsverfahren wird in verschiedenen zwei- und drei-

dimensionalen elastischen sowie elasto-plastischen numerischen Beispielen mit unter-

schiedlichen Zielgrößen angewendet. Die Ergebnisse werden verifiziert durch verfügbare

analytische Lösungen und durch vorhandene experimentelle Daten validiert. Auswirkun-

gen auf die Materialheterogenität in der Fehlerverteilung wurden ebenfalls an verschiede-

nen Beispielen untersucht. Unterschiedliche Zielgrößen in den jeweiligen Fehlerverteilun-

gen der Zielgröße führen zu unterschiedlichen Netzkonfigurationen. Die Ergebnisse wer-

den mit anderen Resultaten, die durch andere konventionelle Netzadaptivitätsverfahren

erhalten wurden, verglichen. Die entwickelte Methode führt zu einer höheren Konver-

genzrate und zu einem geringeren Berechnungsaufwand.

Zusammenfassend kann die vorgeschlagene zielorientierte Netzadaptivität als vielver-

sprechendes Verfahren für die Gewinnung von sehr genauen Lösungen von Zielgrößen in

dreidimensionalen Elasto-Plastizitätsproblemen unter Berücksichtigung einer optimalen

Netzkonfiguration und minimalem Berechnungsaufwand verstanden werden. Demzu-

folge wird die Methode für die Verwendung bei der Versagensanalyse von duktilem Ma-

terialien empfohlen.

Schlagworte: Finite Elemente Methode; zielorientierte Fehlerabschätzung; Netzadap-

tivität; dual-gewichtete Residuen; Elastoplastizität; Von-Mises-Spannung
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Chapter 1

Introduction

Nowadays, many challenging engineering problems are solved by numerical simulations.

The Finite Element Method (FEM) [1, 2] is one of the most popular numerical approach.

Although, many other computational approaches such as meshfree methods [3–6], isoge-

ometric analysis method and its extensions [7–10] have been presented and successfully

applied to a variety of problems, FEM is still most widely used in analysis and design

of various stuctures in different fields like civil engineering and mechanical engineering.

For solving a problem, a mathematical model, Partial Differential Equation (PDE),

should be chosen to represent the physical phenomenon and then FEM is utilized to

solve it by discretizing the domain in finite dimensional spaces. Therefore, two main

error types: model and discretization errors are incorporated into the final solution. In

this contribution, approximating the discretization error is the major concern.

In the FEM, mesh discretization highly affects the solution accuracy and obviously the

computational effort. Since simulation of complicated problems, especially nonlinear

ones in three dimensions are computationally expensive, it is of great importance to

be able to minimize the computational effort while the expected solution accuracy is

gained.

1
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Adaptivity methods are the keys to achieve this goal. Adaptive methods can be cat-

egorized into three different classes: h-, r- and p-adaptivity. In h-adaptivity the dis-

cretization is refined while p-adaptivity refers to locally increasing the polynomial order

of the shape functions. R-adaptivity aims to find the optimal mesh topology for a given

discretization. P-adaptivity is not well suited for problems involving localized deforma-

tion and plasticity since high gradients and localized deformation cannot be captured

well with higher order. In this contribution, we consider h-adaptivity where the mesh is

refined and coarsened based on the estimated element-wise errors.

A good error estimator plays a very important role to implement an efficient refinement

procedure in numerical methods. An error estimate should be performed to locate the

situations of error distribution in the problem domain. The error estimation methods

based on classical energy norm are categorized into two broad classes namely residuals-

based [11] and the recovery-based [12] error estimations. In the residual-based error

estimations, which have a strong mathematical basis, the residuals of a governing differ-

ential equation and its boundary conditions are considered as an error criteria. On the

other hand, in the recovery-based methods [13, 14] it is assumed that smoothed gradient

of solution represent more realistic solution and the error is computed by taking their

differences.

The conventional error estimation methods approximate errors in the energy norm.

However, in many engineering applications other quantities are of major interest, e.g.

the displacement at a point, mean stress in a region, load-deflection curve etc. One of

the most important developments in error estimation in recent years is the discovery

of methods entitled Goal-Oriented Error Estimation (GOEE) [15–23] for obtaining es-

timates of error in local quantity of interest. It results in quantifying the effect of local

errors on the accuracy of the solution with respect to the specific quantities. There-

fore, this methodology is so beneficial for adaptivity schemes and quality assessment in

engineering applications.

Rannacher and Suttmeier have developed and applied the Dual-Weighted Residual

(DWR) error estimation, which is a GOEE, to two dimensional linear elasticity and
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elastic perfect plasticity problems [24–26]. Suttmeier extended his work later to plastic-

ity with hardening and solved a 2d test example [27].

In many applications such as those in soil mechanics engineering, the material is not

absolutely homogeneous, but rather heterogeneous. In such cases, the material prop-

erties can be regarded as random fields. This variety of material properties leads to

non-uniform distributions of the solution gradients, e.g. stresses. Therefore, it is vital

to apply a reliable error estimation approach in order to perform the mesh-adaptivity

procedure efficiently with regard to varying material parameters with pre-defined corre-

lation lengths.

Three-dimensional simulation of elastoplastic material is another important engineerng

tool which plays a significant role in the analysis and design of numerous engineering

applications, e.g. prediction of ductile failure. Since it is a nonlinear problem, its

computational cost is notably increased by uniformly refining the mesh when highly

accurate result is demanded. Accordingly, mesh adaptation based on a reliable error

estimation method would be a profitable tool.

In this contribution, the Dual-Weighted Residual (DWR) error estimation is utilized as a

guidance for mesh adaptivity process containing local refinement and coarsening. In the

elastoplasticity problem an automatic continuous goal-oriented mesh adaptivity process

is proposed by transferring and projecting the solution from an old mesh to a new mesh.

For this purpose, the DWR error estimation, which was limited to 2d, is extended to

3d problems for both elasticity and elastoplasticity problems. The goal-oriented mesh

adaptivity controls the local errors in terms of the prescribed quantity. Moreover, in

this work the conventional residual-based error estimation and a recovery-based error

estimation developed by Kelly et al. [28] have been implemented for the comparison

purposes.

The proposed goal-oriented mesh adaptivity process has been applied to 2d elasticity

problems with heterogeneous material distribution [29] and 3d homogeneous elasticity
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[30] and elastoplasticity problems [31]. The 3d elastoplasticity FEM simulation accom-

panying the goal-oriented mesh adaptivity has been written in the C++ programming

language within the framework of the deal.II library [32, 33] and is available online as

an opensource code. It smooths the way for its application and further development.

Several numerical simulations are performed and the results are compared with available

analytical solutions, existing experimental data and the results of mesh adaptivity based

on other typical error estimation methods.

The remainder of the thesis is structured as follows: Chapter 2 describes the finite ele-

ment method (FEM) formulations for solving an elasticity and elastoplasticity problems.

Two conventional error estimation methods applied in this work are presented in Chap-

ter 3. It is followed by introducing and describing the goal-oriented error estimation

(GOEE) in Chapter 4. Afterwards, Chapter 5 depicts the mesh adaptivity procedure.

Subsequently, by investigating the proposed approach in several numerical examples in

Chapter 6, concluding remarks are given in Chapter 7.



Chapter 2

Finite Element Method

Physical phenomena in engineering applications are modeled as mathematical models

including partial differential equations in space and time. In general, analytical solutions

of these equations do not exist, hence numerical methods are employed. The finite

element method is one of the most powerful numerical techniques available for finding

approximate solutions to boundary value problems for partial differential equations. It

uses subdivision of a whole problem domain into simpler parts, called finite elements, and

variational methods from the calculus of variations to solve the problem by minimizing an

associated error function. Analogous to the idea that connecting many tiny straight lines

can approximate a larger circle, FEM encompasses methods for connecting many simple

element equations over many small subdomains, named finite elements, to approximate

a more complex equation over a larger domain.

In the following the FEM procedure for solving elasticity and elastoplasticty problems

are described.

2.1 Linear elasticity

Linear elasticity is a mathematical model for representing the material behavior (defor-

mation and internal stresses) with the following assumptions:

5
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• The material deforms reversibly: The solid returns to its original shape by remov-

ing the loads.

• The strain in the solid object is infinitesimal: Deformations are too small compared

to the body dimensions.

• The strain depends only on the applied loads and not on the rate or history of

loading.

• The stress is a linear function of strain.

Linear elasticity is only applicable for stress states that do not result in yielding.

2.1.1 Governing equations

Let us consider the following equilibrium equation in the elasticity problem:

−∇ · σ = f in Ω , (2.1)

in a domain Ω ⊂ Rd (d denotes the dimension size). f represents the external force

vector. Stress tensor σ is defined as

σ = Ce : ε(u) , (2.2)

where Ce is the fourth-order material property tensor which can be written as a function

of shear modulus µ and bulk modulus κ in the following form:

Ce = 2µ(I− I⊗ I) + κI⊗ I , (2.3)
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where I is the rank-2 unit symmetric tensor and I is the rank-4 identity tensor. The

shear modulus µ and bulk modulus κ can be written in the form of elasticity modulus

E and Poisson’s ratio ν

µ =
E

2(1 + ν)
, (2.4)

κ =
E

3(1− 2ν)
. (2.5)

Strain tensor ε in Eq. (2.2) is calculated by taking the symmetric gradient of the

displacement vector u,

ε(u) =
1

2

(
∇u + (∇u)T

)
. (2.6)

The Dirichlet and Neumann boundary conditions can be written as

u = ū on Γu , (2.7)

σ · n = t̄ on Γn . (2.8)

where ū and t̄ are prescribed displacement and traction imposed on the boundaries Γu

and Γn, respecively.

2.1.2 Variational form

By multiplying Eq. (2.1) by a test function and integrating by parts, the following

weak/variational formulation is obtained
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a(u,v) = f(v), u ∈ V,∀v ∈ V0 , (2.9)

where

V = {u ∈
[
H1(Ω)

]d} . (2.10)

The bilinear form is written as

a(u,v) = (Ce : ε(u), ε(v)) , (2.11)

and

f(v) = (f ,v) + (̄t,v)Γn
, (2.12)

is a bounded linear functional in the space

V0 = {v ∈
[
H1(Ω)

]d
: v = 0 on Γd} . (2.13)

2.1.3 Discretization

In order to compute the Eq. (2.9) numerically, the problem domain is descretized into

Th meshes. Subsequently, by considering the subspace Vh
0 ⊂ V0, the following Galerkin

equation is solved to calculate the finite element solution uh,

a(uh,vh) = f(vh) ∀vh ∈ Vh
0 . (2.14)
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2.2 Elastoplasticity

Elastoplastic problems are commonly presented as partial differential equations with an

inequality as a result of the material plasticity.

2.2.1 Governing equations

The governing equations for calculating the displacement field u ∈ V := {v ∈
[
H1(Ω)

]d},
stress tensor σ and plastic strain tensor εp in a domain Ω ⊂ Rd (d denotes the dimension

which can be 2 or 3 in our computations) are described.

• Equilibrium equation:

−∇ · σ = f , in Ω . (2.15)

• Relationship between strain ε(u) = 1
2

(
∇u + (∇u)T

)
and stress σ:

σ = Ce : (ε(u)− εp) , (2.16)

where Ce is the fourth-order material property tensor in the elastic case.

• Complementarity condition:

εp : (τ − σ) ≥ 0 , ∀τ with z(τ , σy) ≤ 0 . (2.17)

where τ is in the admissible stress space; σy denotes the yield stress. Note that

εp = 0 if z(σ, σy) < 0 and εp may be a nonzero tensor if and only if z(σ, σy) = 0.

The above complementarity condition can be reformulated as equality using the

Chen-Mangasarian replacement functions [34–36].
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• Essential boundary condition:

u = ū , on Γu . (2.18)

• Natural (Neumann) boundary condition:

σ · n = t̄ , on Γn . (2.19)

where ū and t̄ are prescribed displacement and traction imposed on the boundaries

Γu and Γn, respecively.

2.2.2 Flow function

The internal stresses σ(x) are restricted to some maximal stress, i.e. that fulfilles an

inequality z(σ, σy) ≤ 0 at every point x. A sample of such a function is the von Mises

flow function z(σ, σy) = σv − σy where

σv =
√

3J2 =

√
3

2

∣∣σD∣∣ , (2.20)

is the von Mises stress; J2 is the second deviotoric stress invariant,

J2 =
1

2

d∑
i,j=1

(
σDij
)2
, (2.21)

and σD = σ− 1
3 tr(σ)I is the deviatoric part of stress tensor; |σD| denotes the Frobenius

norm of deviatoric stress,

|σD| =

 d∑
i,j=1

(
σDij
)21/2

. (2.22)
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If the von Mises stress, σv, tends to σy, the material stops behaving elastically and

plastic yielding occurs. A popular flow rule for such material, e.g. Aluminium, is von

Mises flow function considering linear isotropic hardening law,

σy = σ0 + γiso |εp| , (2.23)

where γiso > 0 is the isotropic hardening parameter.

2.2.3 Constitutive law

By applying a projector onto the set of admissible stresses, a primal problem can be

formulated [27]. For the case of isotropic media with linear isotropic hardening, the 4th

order material property tensor is defined as [37]

C = C(ε(u)) =


Cµ + Cκ , σv ≤ σ0 ,

Cµ[γ + (1− γ)σ0σv ] + Cκ , σv > σ0 ,

(2.24)

where

Cµ = 2µ(I− I⊗ I), Cκ = κI⊗ I . (2.25)

I is the rank-2 unit symmetric tensor and I is the rank-4 identity tensor; µ and κ are

the shear modulus and bulk modulus, respectively.

By applying Eq. (2.24), the stress tensor can be calculated as

σ = C(ε(u)) : ε(u) . (2.26)
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For computing σv in Eq. (2.24), the elasticity formulation is assumed, Ce = Cµ + Cκ.

2.2.4 Variational form

For the elastoplasticity problem, the primal variational formulation has the following

nonlinear form

a(u)(v) = f(v) , u ∈ V,∀v ∈ V0 , (2.27)

with

a(u)(v) = (C : ε(u), ε(v)) , (2.28)

f(v) = (f ,v) + (̄t,v)Γn
, (2.29)

in the space

V0 = {v ∈
[
H1(Ω)

]d
: v = 0 on Γd} (2.30)

2.2.5 Newton linearization

In order to solve the primal formulation (2.27), a damped Newton method is applied.

Firstly, linearization should be performed and a method similar to the frequently used

radial-return mapping algorithm [37, 38] is adopted.

In Newton scheme, solution is updated at each iteration, ∆Uk+1
n+1 = ∆Uk+1

n +αn+1δU
k+1
n+1.

αn+1 is called step length and can be calculated when the δUk+1
n+1 is known. As a
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result, we derive the equations for δUk+1
n+1 supposing that αn+1 = 1. Consequently,

δUk+1
n+1 = ∆Ũk+1

n+1 −∆Uk+1
n can be calculated.

By Applying the full Newton method, the following equation needs to be solved at each

load/displacement increment k and Newton iteration n:

(
Clin(εk+1

n )∆ε(∆ũk+1
n+1), ε(v)

)
=

(
fk+1,v

)
−
(
σk+1
n , ε(v)

)
(2.31)

+
(
Clin(εk+1

n )∆εk+1
n , ε(v)

)
,

where Clin(ε) denotes the linearization of the material property tensor (Eq. (2.24))

around εD(uk+1
n ) [37],

Clin = Clin(ε(u)) =



Cµ + Cκ , σv ≤ σ0 ,

Cµ[γ + (1− γ)σ0σv ] + Cκ

−2µ(1− γ)σ0σv ( σ
D

|σD| ⊗
σD

|σD|) , σv > σ0 .

(2.32)

The initial solution field is considered zero,

U0 = 0, ∆Uk+1
0 = 0 , (2.33)

and the initial history stress and strain field, which are stored at the Gauss points, are

defined as

σ0 = 0, ε0 = 0, σk+1
0 = σk .
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By applying Eq. (2.31) and using line search method (Sec. 2.2.6), ∆Uk+1
n+1 is computed.

Then, ∆εk+1
n+1 can be calculated by taking its symmetric gradient,

∆εk+1
n+1 = ∇sym(∆uk+1

n+1) . (2.34)

yielding subsequently

εk+1
n+1 = εk + ∆εk+1

n+1 , (2.35)

σk+1
n+1 = C(εk+1

n+1)εk+1
n+1 . (2.36)

Then, we can start the next iteration if the convergence criterion is not satisfied, oth-

erwise the solution field, Uk+1, and history fields, σk+1, εk+1, are updated and we can

start the next increment procedure.

Uk+1 = Uk + ∆Uk+1
n+1 . (2.37)

2.2.6 Line search

In order to make the Newton method more robust, we globalize it by a damping param-

eter applying the line search method [39].

After computing ∆Ũk+1
n+1 by using Eq. (2.31), line search is applied to determine ∆Uk+1

n+1

for the next Newton iteration. We apply the backtracking line search [40] to find the

first step length αn+1 ∈ {1, 2−1, 2−2, . . .} so that

∥∥∥R(Uk + ∆Uα)
∥∥∥
l2
<
∥∥∥R(Uk + ∆Uk+1

n )
∥∥∥
l2
, (2.38)
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where ∆Uα = (1− αn+1)∆Uk+1
n + αn+1∆Ũk+1

n+1.

R(u) denotes the nonlinear residual,

R(u) = a(u)(v)− f(v) . (2.39)

Fig. 2.1 demonstrates the general algorithm of the applied damped Newton procedure

at the (k + 1)th load/displacement increment.

Figure 2.1: General algorithm of damped Newton process at the load/displacement
increment k + 1.



Chapter 3

Error Estimation

The finite element method involves different sources of numerical errors [41]. The focus

of this thesis is only on the discretization error which is due to the finite element (poly-

nomial) approximation of the solution. Hence, we assume that an appropriate mathe-

matical model has been chosen and, even for this case, we are only concerned with one

specific error, namely the discretization error arising in the finite element solution of

this model.

There exist different types of discretization error estimates, including residuals-based

[11] and the recovery-based [12, 28] error estimations. While a residual-based error

estimator, applies the residuals of a governing differential equation and its boundary

conditions as an error criteria, recovery-based methods [13, 14] utilize the gradient of

solutions. For detailed reviews of the existing error estimations and their classifications,

interested readers are referred to [42, 43].

In this contribution, a recovery-based error estimation developed by Kelly et al. [28]

and a residual-based error estimation (based on edge and element residuals) are applied

to be able to compare the results of goal-oriented error estimation (see Chapter 4) with

those obtained by applying conventional error estimations. These are described in the

following sections.

16
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3.1 Kelly error estimation

This error indicator [28] tries to approximate the error per element by integration of the

jump of the gradient of the solution along the faces of each element. It can be understood

as a gradient recovery estimator; see the survey [42] for a complete discussion.

It is noted that in spite of the name, this is not truly an a posteriori error estimator. It

gives good hints for mesh refinement, but the estimate is not to be trusted. For higher

order trial spaces the integrals computed here tend to zero faster than the error itself,

thus ruling out the values as error estimators.

The error estimator really only estimates the error for the generalized Poisson’s equation

−∇ · a(x)∇u = f with either Dirichlet boundary conditions or generalized Neumann

boundary conditions involving the conormal derivative a∂u∂n = g.

At each element K, the error is calculated as follow

η2
K =

h

24

∫
∂K

[
∂uh

∂n

]2

ds , (3.1)

where [·] denotes the jump of the argument at the element face. h is taken to be the

greatest length of the diagonals of the element. For more or less uniform elements

without deformed angles, this coincides with the diameter of the cell. In the paper [42],

h is divided by 24, but this factor is a bit esoteric, stemming from interpolation estimates

and stability constants which may hold for the Poisson’s problem, but may not hold for

more general situations. In the implementation, this factor is considered, but may lead

to wrong results and scaling appropriately the vector afterwards may be needed.

This approach has been applied since it is fast and straightforward to implement and

practically useful for mesh adaptation process.
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3.2 Residual-based error estimation

The applied residual-based error estimator is an explicit a posteriori one which involves

a direct computation of the interior element residuals and the jumps at the element

boundaries to find an estimate for the error in the energy norm, see [11]. By discretizing

the domain into Th meshes and calculating the FEM solution uh, the starting point

racalling the Eq. (2.9) is the error representation

a(eh,v) = f(v)− a(uh,v), ∀v ∈ V0 . (3.2)

If the domain integral is split into the contributions from each element, Eq. (3.2) can

be rewritten for the elasticity problem as

a(eh,v) =
∑
K∈Th

{(f ,v)K + (̄t,v)∂K∩Γn
− (Ce : ε(uh), ε(v))K} , (3.3)

where K denotes the volume of an element in Th and ∂K denotes its boundary. Applying

integration by parts to the last term in Eq. (3.3) and rearranging terms leads to

a(eh,v) =
∑
K∈Th

{(Rh,v)K + (rh,v)Γ} , (3.4)

where Rh is the interior element residual

Rh|k = f +∇ · σ = f +∇ · (C(ε(uh)) ε(uh)) . (3.5)

and rh is the jump of the gradient across the element edge Γ
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rh|Γ =



1
2n · [C(ε(uh))ε(uh)] , if Γ ⊂ ∂K \ ∂Ω ,

t̄− n · C(ε(uh))ε(uh) , if Γ ⊂ Γn ,

0 , if Γ ⊂ ∂Ω \ Γn .

(3.6)

By utilizing the Galerkin orthogonality condition and Cauchy-Schwarz inequality, the

following a posteriori error estimate is deriven:

‖e‖E ≤ C

 ∑
K∈Th

{h2
K‖Rh‖2L2(K) + hK‖rh‖2L2(∂K)}

1/2

, (3.7)

where ‖ · ‖E denotes the energy norm for the model problem ‖v‖2E = a(v,v). Apart

from the constant C, all of the quantities on the right-hand can be computed explicitly

from the data and the finite element approximation; hK is the diameter of the element

K. The purpose in doing so is that defining the local error indicator by ηK on element

K by

η2
K = h2

K‖Rh‖2L2(K) + hK‖rh‖2L2(∂K) , (3.8)

allows one to identify contributions from each of the elements. It is then assumed that

each of these quantities is a measure of the local discretization error over each element.

In this way one can use ηK as a basis for guiding local mesh refinements.

The edge residual, rh|Γ, in Eq. (3.6) is obtained by exchanging half of the edge integral

of element K with the neighbor element K ′ and considering the opposite sign of their

normal vectors. It can be rewritten in the index form using the Einstein notation as

follow
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rhi |∂K=



1
2

(
Cijklεkl(u

h) |K −Cijklεkl(uh) |K′
)
nj , if Γ ⊂ ∂K \ ∂Ω ,

t̄i −
(
Cijklεkl(u

h)
)
nj , if Γ ⊂ Γn ,

0 , if Γ ⊂ Γd .

(3.9)

where i, j, k, l = 1, . . . , d with the dimension size d. Correspondingly, the Eq. (3.5), can

be rewritten in the following form

Rhi |k = fi + ∂xjσij ,

= fi + ∂xj

(
Cijklεkl(uh)

)
,

= fi + ∂xjCijkl εkl(u
h) + Cijkl ∂xjεkl(u

h) . (3.10)

According to the definition of the strain, the last term of the above equation can be

written as

∂xjεkl(u
h) =

1

2
∂xj

(
∂lu

h
k + ∂ku

h
l

)
, (3.11)

=
1

2

(
∂xj∂lu

h
k + ∂xj∂ku

h
l

)
.

We can derive the ∂xjC in Eq. (3.10), considering the Eq. (2.24):

∂xjC =


0 , σv ≤ σ0 ,

Cµ(1− γ)σ0∂xj

(
1√

3
2
|σD|

)
, σv > σ0 .

(3.12)

For deriving the ∂xj

(
1
|σD|

)
, let us recall some known equations:
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|σD| is the Frobenius norm of the deviatoric part of the stress in elastic case,

σ = Cµε(uh) + Cκε(uh)

= 2µεD(uh) + κtr(ε(uh))I (3.13)

= 2µ

(
ε(uh)− 1

d
tr(ε(uh))I

)
+ κtr(ε(uh))I ,

Therefore,

tr(σ) = 0 + d κ tr(ε(uh)) , (3.14)

σD = σ − 1

d
tr(σ)I = 2µ

(
ε(uh)− 1

d
tr(ε(uh))I

)
, (3.15)

|σD| = 2µ

 d∑
i,j=1

(
εij(u

h)− 1

d
tr(ε(uh))δij

)2
1/2

= 2µ|εD(uh)| . (3.16)

By applying the Eq. (3.16), we have



Chapter 3. Error Estimation 22

∂xj

(
1

|σD|

)
= ∂xj

(
1

2µ|εD(uh)|

)

=
1

2µ
∂xj

 d∑
k,l=1

(
εDkl(u

h)
)2

−1/2

=
1

2µ
· −1

2

 d∑
k,l=1

(
εDkl(u

h)
)2

−3/2
d∑

k,l=1

(
2εDkl(u

h)∂xjε
D
kl(u

h)
)

=
−1

2µ

1

|εD(uh)|3
d∑

k,l=1

(
εDkl(u

h)∂xjε
D
kl(u

h)
)
, (3.17)

where

∂xjε
D
kl(u

h) = ∂xj

(
εkl(u

h)− 1

d
tr(ε(uh))δkl

)
= ∂xjεkl(u

h)− 1

d

d∑
i=1

{∂xjεii(uh)}δkl . (3.18)

Then, by applying the Eq. (3.17), Eq. (3.12) can be rewritten as follows:

∂xjC =


0 , σv ≤ σ0 ,

−Cµ(1−γ)σ0√
3
2

2µ|εD(uh)|3

∑d
k,l=1

(
εDkl(u

h)∂xjε
D
kl(u

h)
)
, σv > σ0 .

(3.19)

and finally, the element residuals, Eq. (3.10), can be calculated.
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Goal-Oriented Error Estimation

In engineering applications the entire solution of the problem may not be interested, but

rather some certain aspects of it. For example, in an elasticity problem one might want

to know about values of the stress at certain points to predict whether maximal load

values of joints are safe.

Goal-oriented error estimation (GOEE) methods have been developed to estimate the

error in a quantity of interest [15–23], e.g. displacement at a point or the average

stress over a region. In GOEE besides the main (primal) problem, the solution of a

dual/auxiliary problem is required.

4.1 Primal problem

The primal problem is the main problem defined in Eq. (2.27). By discretizing the

domain into finite elements, the following variational formulation is obtained

a(uh)(vh) = f(vh) ∀vh ∈ Vh
0 . (4.1)

with subspaces Vh
0 ⊂ V0.

23
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4.2 Dual problem

The Quantity of Interest (QoI) can be described as a continuous linear functional, J(u),

on the space of admissible functions. If the QoI functional is non-linear, it may be

linearized and then be used [21, 44]. Sometimes the functional may not be continuous, for

instance, when we seek the solution error at a particular point in the domain. Therefore,

the evaluation of a QoI functional, J(u), is of interest rather than the solution values,

u, in the entire domain. The GOEE approximates the error in the QoI, J(e) = J(u)−

J(uh).

In the following, the main formulations are firstly given for the elasticity problem, then

the corresponding equations are extracted for the elastoplasticity problem.

4.2.1 Elasticity problem

The dual problem for the elasticity problem is written in the form [24, 30]

a(v, z) = J(v) ∀v ∈ V0 , (4.2)

where a(·, ·) is the bi-linear form associated with the elasticity problem (so-called energy

form)

a(., .) = (C : ε(.), ε(.)), (4.3)

and z denotes the solution. Then, by considering v = e = u− uh as the error, we have

J(e) = a(e, z) , (4.4)

which it can be rewritten in the following form by applying the Galerkin orthogonality,
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J(e) = a(e, z− zh) = a
(
e, eQ

)
, (4.5)

where zh ∈ Vh is an approximation of z which is considered here as point interpolation

of the dual solution, zh = Ihz. Splitting the global integration over Ω into subdomains

accounting for the contribution of the elements K ∈ Th and integrating by parts element-

wise yields

J(e) =
∑
K∈Th

{(
−∇ · [C : ε(e)], eQ

)
K

+
(
n · [C : ε(e)], eQ

)
∂K

}
(4.6)

Knowing that −∇· [C : ε(u)] = f and with the traction continuity of n · [C : ε(u)] across

inter element edges, the error is represented as

J(e) =
∑
K∈Th

{(
Rh, eQ

)
K

+
(
rh, eQ

)
∂K

}
(4.7)

where K and ∂K denote an element and its boundary, respectively. The edge residual

rh and element residual Rh are given in Eqs. (3.6) and (3.5), respectively.

4.2.2 Elastoplasticity problem

Considering that in the variational form of elastoplastic problem (Eq. (2.27)) the semi-

linear form a(·)(·) is not differentiable, the formal approach developed for the elasticity

problem [24, 30] explained in Sec. 4.2.1 cannot be used directly. However, we can

apply it heuristically for deriving weighted a posteriori error estimators in the FEM

approximation [17]. Afterwards, it needs to be verified by numerical investigations. Its

success can be explained by theoretical justification that the non-differentiability of the

function C occurs solely in the elastic-plastic transition zone which is expected to be

lower-dimensional [17]. Consider the following approximate dual problem
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(
Clin(ε(uh)) : ε(v), ε(z)

)
= J(v) , ∀v ∈ V0 . (4.8)

where Clin(·) is defined in Eq. (2.32). It is noted that the dual problem is formed based

on the converged solution of the primal problem and is linear. The following error in

the QoI can be obtained by applying the formal procedure of the DWR error estimation

in the elasticity problem [17] and disretizing the domain into meshes Th.

J(e) =
∑
K∈Th

{(
Rh, z− zh

)
K

+
(
rh, z− zh

)
∂K

}
+ Rh(2) , zh ∈ Vh . (4.9)

where K and ∂K denote an element and its boundary, respectively. The remainder term

Rh(2) is quadratic in the error e in regions where the function C is twice differentiable.

The elasto-plastic transition zone is the questionable region, since regularity fails. This

term is neglected. The edge and element residuals in Eq. (4.9) are according to the Eqs.

(3.6) and (3.5), respectively.

The edge residual, rh|Γ, is obtained by exchanging half of the edge integral of the element

K with its neighbor element K ′ and considering the opposite sign of their normal vectors.

The final form of (4.9) can be obtained by setting the discrete function zh, which is

arbitrary, to the point interpolation of the dual solution, zh = Ihz,

J(e) =
∑
K∈Th

{(
Rh, z− Ihz

)
K

+
(
rh, z− Ihz

)
∂K

}
. (4.10)

Eq. (4.10) represents the error of the finite element discretization with respect to the

functional J(·). The Dual Weighted Residual (DWR) is a weighted form of the residual

error estimator, where z − Ihz are weights indicating the importance of the element-

wise residuals for the evaluation of the given functional. Since it is an element-wise

quantity, it can be applied as a mesh adaptation criterion. However, the DWR requires
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the dual solution z, which conveys the information about the quantity of interest. For

this purpose, we compute the dual solution numerically, and approximate z by some

numerically obtained z̃. It is noted that we cannot apply the same method as used for

solving the primal solution uh, otherwise z − Ihz = 0, and the overall error estimate

would be zero. Rather, the approximation z̃ has to be from a larger space than the

primal finite element space. There are various ways to obtain such an approximation.

In this contribution, we compute it in one higher order finite element space.

4.3 Quantity of interest functional

The dual problem, Eq. (4.8), is defined by a functional corresponding to the quantity

of interest. In this contribution three quantities including the point displacement and

average value of stress on a specific surface and in a region are of interest. If the QoI

functional is non-linear, it can be linearized and then be used [21, 44]. Such a treatment

is performed where average stress over a region is of interest.

4.3.1 Displacement at a point

Firstly, consider the displacement u(x0) at a point x0 as the quantity of interest. By

using the definition of the Dirac delta function, δ, the corresponding functional is defined

as

J(v) = v(x0) =

∫
Ω

vδ(x− x0)dΩ . (4.11)

4.3.2 Average stress on a surface

As a second quantity of interest, consider the mean value of a stress component σavij |S (i, j =

x, y (, z)) on a specified edge S in 2d or area S in 3d. The quantity of interest functional

can be written as
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J(v) =
1

|ΓS |

∫
ΓS

σij(v)dΓ, i, j = x, y, z . (4.12)

where |ΓS | is the length of the edge S in 2d or the area of the surface S in 3d. Although,

this QoI is a nonlinear functional for the elastoplastic problem, we do not linearize

it since it is computed on the (element) boundary and its linearized form needs 2nd

derivative of the solution and we would rather apply linearization where an (element)

domain is considered and a dual problem of 2nd order or higher is defined.

4.3.3 Average stress in a region

The other quantity of interest which is investigated in this study is the mean value of

a stress component σavij |Ω0 (i, j = x, y, z) in a region Ω0. Consequently, the following

functional is introduced

J(v) =
1

|Ω0|

∫
Ω0

σij(v)dΩ, i, j = x, y, z , (4.13)

where |Ω0| is the volume of the region Ω0 in the 3d case. Since the stress is a nonlinear

function of displacement u, Eq. (4.13) is a nonlinear functional.

In such a case, we need to firstly linearize the functional to apply the goal-oriented error

estimation methodology. For this purpose, we utilize the Taylor expansion,

J(u) = J(uh) +∇J(uh) · (u− uh) + · · ·

= J(uh) +∇J(uh) · e + · · · , (4.14)

J(u)− J(uh) ∼= ∇J(uh) · e , (4.15)
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J lin(e) = ∇J(uh) · e . (4.16)

Subsequently, we can apply the aforementioned goal-oriented error estimation by replac-

ing the QoI functional J(v) in the dual problem, Eq. (4.2) for elasticity problem and

Eq. (4.8) for elastoplasticity problem, with the linearized QoI functional

J lin(v) = ∇J(uh) · v . (4.17)

where it is defined according to the approximated solution of the primal problem uh.

Correspondingly, the QoI functional (4.13) is linearized as follows

J lin(v) =
1

|Ω0|

∫
Ω0

∇σij(uh) · vdΩ, i, j = x, y, z . (4.18)
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Mesh adaptivity

In the FEM, mesh discretization highly affects the solution accuracy and obviously the

computational effort. Since simulation of complicated problems, especially nonlinear

ones in three dimensions are computationally expensive, it is of great importance to

be able to minimize the computational effort while the expected solution accuracy is

gained.

Adaptivity methods are the keys to achieve this goal. Adaptive methods can be cat-

egorized into three different classes: h-, r- and p-adaptivity. In h-adaptivity the dis-

cretization is refined while p-adaptivity refers to locally increasing the polynomial order

of the shape functions. R-adaptivity aims to find the optimal mesh topology for a given

discretization. P-adaptivity is not well suited for problems involving localized deforma-

tion and plasticity since high gradients and localized deformation cannot be captured

well with higher order. In this contribution, we consider h-adaptivity where the mesh is

refined and coarsened based on the estimated element-wise errors.

5.1 Adaptivity criterion

Different criteria can be adopted in the mesh adaptivity procedure. In this work, global

refinement indicator is computed based on the element-wise errors. For example in the

30
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goal-oriented error estimation, the local refinement indicators are computed according

to Eq. (4.10),

ηK =
∥∥∥(Rh, z− Ihz

)
K

+
(
rh, z− Ihz

)
∂K

∥∥∥
L2

K ∈ Th , (5.1)

which are used to steer the mesh adaptation. Subsequently, the global refinement indi-

cator is derived as

η =

 ∑
K∈Th

η2
K

1/2

. (5.2)

By specifying a permissible value ηmax, the mesh adaptivity is automatically performed

whenever η > ηmax.

5.2 Mesh Adaptivity

Mesh adaptation can be categorized into two classes: (a) Remeshing and (b) Local

refinement. Fig. 5.1 demonstrates these techniques schematically. In the remeshing

process mesh configuration in the whole domain is reconstructed while in the local

refinement, a range of elements are locally refined.
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(a)

(b)

Figure 5.1: Mesh adaptivity strategies: (a) Remeshing, (b) Local refinement.

In order to perform a continuous analysis, solution variables need to be transferred from

the previous mesh to the new mesh after each mesh adaptation. In the remeshing case,

this process introduce more errors. Therefore, in this work hierarchical mesh refinement

and also coarsening is performed in order to increase the efficiency.

The applied mesh adaptivity procedure is demonstrated in Fig. 5.2.

Figure 5.2: Mesh adaptivity procedure by using local refinement.
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Mesh adaptation is carried out with the knowledge of element-wise errors/refinement

indicators. Calculated errors are firstly sorted. The 30 percent of the elements with the

highest errors are selected to be refined and the 3 percent of those with the lowest errors

are chosen to be coarsened. Based on an algorithm restriction, each face of an element

is divided at most once. Therefore, some additional elements are required to be refined.

Afterwards, the selected elements are refined by defining new nodes at the middle of

each element edge (and element face in 3d case). Therefore, the mesh structure remains

simple.

In the case of curved boundaries, the new inserted nodes should be moved to its projected

point on the boundary. Fig. 5.3 demonstrates the refinement procedure along a curved

boundary in 2d.

Figure 5.3: Two mesh adaptivity steps by using local refinement.

Since, quadrilateral and hexahedral elements are applied in this work, refinement intro-

duces hanging nodes. The hanging nodes should be constrained to be compatible with

adjacent nodes, so that the function has no jump at the boundary of small and large

elements. Fig. 5.4 illustrates the hanging nodes in refined quadrilateral and hexahe-

dral elements and their corresponding constraint formulations. The hanging nodes are
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not counted as unknown degrees of freedom. They are utilized to modify the global

stiffness matrix. After solving the algebraic equations, the hanging nodes’ solutions are

calculated based on the solution of unknown degrees of freedom and the constraints

demonstrated in Fig. 5.4.

Figure 5.4: Hanging nodes introduced by refining the quarilateral and hexahedral
elements and their corresponding constraints.

The nodal solutions and solution variables at Gauss points are transferred and projected

to the new mesh after each mesh adaptivity procedure.

5.3 General Algorithm

In the following, schematic algorithms for goal-oriented mesh adaptivity in elasticity and

elastoplasticity problems are demonstrated.

5.3.1 Goal-oriented mesh adaptivity in elasticity problems

Fig. 5.5 illustrates the schematic algorithm for goal-oriented mesh adaptivity in elasticity

problems. Firstly, the primal problem is solved. Afterwards, by solving the dual problem,

error in QoI and consequently the global refinement indicator, η, (Eq. (5.2)) is calculated
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and it is compared with the prescribed permissible value ηmax and if η > ηmax, mesh

adaptivity is performed and the same procedure is repeated until η ≤ ηmax.

Figure 5.5: Genral algorithm for goal-oriented mesh adaptivity in elasticity problem.

5.3.2 Mesh adaptivity in elastoplasticity problems

In the elastoplasticity case, error estimation is carried out at the end of each load/dis-

placement increment after convergence satisfaction of the iteration process. If the global

refinement indicator (calculated according to the element-wise errors) is higher than the

prescribed permissible value, mesh adaptation is performed and the solution variables

are projected into the new mesh. Except for the first load/displacement increment, mesh

adaptation is allowed only once. The whole schematic procedure is depicted in Fig. 5.6.
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Figure 5.6: Genral algorithm for error estimation and mesh adaptivity in elastoplas-
ticity problem.



Chapter 6

Numerical Examples

In spite of the goal-oriented mesh adaptivity process, mesh adaptivity based on global

refinement and conventional recovery- and residual-based error estimations are also per-

formed to be able to compare the results. In the global refinement process, all elements

are subdivided by 4 and 8 elements at each refinement step in 2d and 3d, respectively.

In order to do h-adaptivity, a recovery-based error estimation developed by Kelly et al.

[28] and the residual-based error estimation (see Chapter 3) and goal-oriented error es-

timation scheme (see Chapter 4) have been applied. The elements are sorted according

to the error magnitude. The elements which belong to the 30% of the elements with

higher errors are selected for refinement and the elements which are within the 3% of the

elements with lowest errors are coarsened in the next adaptive step, i.e. 4 and 8 refined

elements are replaced by a 4- and 8-times bigger element in 2d and 3d, respectively. It

is noted that coarsening only occurs if all the refined elements (children) belonging to a

bigger element in one higher refinement level (mother) are selected to be coarsened.

37
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6.1 Linear Elasticity Problems

6.1.1 Plate with a hole under far-field uni-directional tension [29]

In order to verify the proposed approach and compare it with other introduced tech-

niques, we consider firstly a plate with a centered circular hole of radius a subjected to

far-field uni-directional tension, σ∞, along the x-direction (see Fig. 6.1). The analytical

solution of stress is given by,

σxx(r, θ) = σ∞

[
1− a2

r2

(
3

2
cos 2θ + cos 4θ

)
+

3

2

a4

r4
cos 4θ

]
σyy(r, θ) = σ∞

[
−a

2

r2

(
1

2
cos 2θ − cos 4θ

)
− 3

2

a4

r4
cos 4θ

]
(6.1)

σxy(r, θ) = σ∞

[
−a

2

r2

(
1

2
sin 2θ + sin 4θ

)
+

3

2

a4

r4
sin 4θ

]

where r and θ are the usual polar coordinates centered at the center of the hole.

σ
∞

σ
∞

Figure 6.1: The plate with hole subjected to far-field uni-directional tension.

Regarding the problem symmetry, just a quarter of the plate with finite dimensions, as

illustrated in Fig. 6.2, is modeled where the top and right edges are subjected to the

tractions obtained from analytical stresses, as follow

t̄ = σ · n (6.2)

where σ is the stress tensor and n is the unit vector normal to the corresponding surface.
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Figure 6.2: Geometry and boundary conditions of the plate with hole subjected to
tension.

The following parameters are considered for modeling the problem with steel material:

Far-field stress σ∞ = 100 MPa, Young’s modulus E = 200 GPa and Poisson’s ratio

ν = 0.3.

The average value of stress σxx on the surface S which is 1/8 of the curved surface (see

Fig. 6.2), σavxx|S , is considered as the quantity of interest. The analytical solution is

σavxx|S = 291.19 MPa.

Firstly, 32 elements are used for discretization (see Fig. 6.3). Different strategies includ-

ing global refinement and adaptivity based on estimated errors by using Kelly, residual

and goal-oriented error estimation have been applied and investigated. Each method-

ology leads to different element errors and therefore, the resulting meshes are different.

Fig. 6.4 illustrates the resulting meshes at the 4-th adaptivity step of different schemes.

It is seen that in the goal-oriented adaptivity mesh concentration is around the surface

S where the quantity of interest has been defined.

Figure 6.3: Initial descritization of the plate with hole subjected to tension.
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(a) (b) (c)

Figure 6.4: Meshes at the 4-th adaptivity step of the plate with hole subjected to
tension by applying: (a) Kelly refinement, (b) residual-based adaptivity and (c) DWR

adaptivity.

The relative errors of the σavxx|S are depicted in Fig. 6.5. It is seen that the goal-oriented

error estimation leads to an adaptivity process with much better convergence rate.

Figure 6.5: Exact relative errors (%) of σavxx|S versus degrees of freedom for the plate
with hole subjected to tension.

Since for applying the GOEE, an auxiliary/dual problem needs to be solved, for the same

degrees of freedom, more computational effort is required especially that for the current

case dual problem is solved by adopting one higher order finite elements. In order to

evaluate the efficiency of the proposed goal-oriented adaptivity process, Fig. 6.6 depicts

the exact relative error (%) of σavxx|S versus the consumed computational time (sec). It is

shown that for achieving very precise solution, the goal-oriented adaptivity is the most

efficient method.
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Figure 6.6: Exact relative errors (%) of σavxx|S versus computational times (sec) for
the plate with hole subjected to tension.

6.1.2 Point displacement evaluation of a square-shape sample under

pressure and shear [29]

Consider a plane strain problem with the loading and boundary conditions shown in

Fig. 6.7 and the average material properties of clay:

Modulus of elasticity Eav = 30 MPa, Poisson’s ratio νav = 0.2.

It is assumed that the material remains elastic under the imposed loading. The uniform

distributed 21×21 nodes are considered as the initial discretization. Displacement at

the Point A is the quantity of interest.

1 m

1 m

100 KPa

10 KPa

A

Figure 6.7: Geometry and boundary conditions of the square-shape problem.
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In the following, the goal-oriented mesh adaptivity procedure is applied to homogeneous,

2-materials layered and heterogeneous cases to investigate the effect of material change

and heterogeneity on the mesh adaptivity process and the resulted meshes.

Since the analytical solutions are not available, the quantity of interest value calculated

in the finest mesh obtained in the goal-oriented mesh adaptivity (by using GOEE) is

considered as the reference solution and is applied for estimating the error of other

simulations.

6.1.2.1 Homogeneous case

Firstly, the material is assumed homogeneous. Displacement at the Point A in the finest

mesh obtained in the goal-oriented mesh adaptivity with 532,572 DoFs is considered

as the reference solution (uA = 2.99199 mm) and is applied for estimating the error of

quantity of interest in other simulations.

Fig. 6.8 shows the first six mesh configurations obtained in the Goal-oriented adaptive

process. Fig. 6.9 demonstrates the mesh configuration at the 4-th adaptivity step of

different strategies. It is seen that the meshes resulted by the estimated errors are so

different. The GOEE-based adaptivity leads to more mesh concentration around the

Point A whose displacement is of interest.

Relative errors (in percentage) of Point A displacement for global refinement and dif-

ferent mesh adaptivity strategies are illustrated in Fig. 6.10. Superiority of the Goal-

oriented mesh adaptivity is shown compared to the other conventional mesh-adaptivity

schemes.

6.1.2.2 2-materials layered case

In this section, for better demonstrating the effect of material change on the mesh-

adaptivity procedure, the two-material layered as shown in Fig. 6.11 is investigated.
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: DWR-based mesh adaptivity of the square-shape sample under pressure
and shear in homogeneous case: (a) Step 1 with 1694 DoFs, (b)Step 2 with 3,274 DoFs,
(c) Step 3 with 6,162 DoFs, (d) Step 4 with 11,712 DoFs, (e) Step 5 with 21,984 DoFs,

(f) Step 6 with 41,606 DoFs.

(a) (b) (c)

Figure 6.9: Meshes at the 4-th adaptivity step of the square-shape sample under
pressure and shear in homogeneous case by applying: (a) Kelly refinement, (b) residual-

based adaptivity and (c) goal-oriented adaptivity.

Mesh configurations of the first six adaptive steps obtained by applying DWR error

estimation are shown in Fig. 6.12 and Fig. 6.13 depicts the resulted meshes of 4-th

adaptivity step of different strategies. It is seen that dense elements are formed along

the material change line and the adaptivity procedures capture it well. Among the

applied methodologies, goal-oriented adaptivity results in mesh concentration around

the Point A, too.

The reference uA = 3.47691 mm is taken from the finest solution of the GOEE-based

adaptivity with 414,656 degrees of freedom. The relative errors are plotted in Fig. 6.14.
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Figure 6.10: Relative errors (%) of uA in homogeneous case.
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0.6 m

E1=0.7E
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0.4 m
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ν1=0.7νav

E2=1.3E
av

ν2=1.3νav

Figure 6.11: Geometry and boundary conditions of the 2-material layered problem.

6.1.2.3 Heterogeneous case

In this section, a heterogeneous material is considered. The material heterogeneity is

modeled by producing a random field consisting of 101×101 uniformly distributed points

by the correlation variables 0.95 and 0.01 in x and y directions, respectively and scaling

them to [0.7, 1.3] (see Appendix A). Random variable inside the intervals (squares) are

obtained by averaging the random variables at the square vertices. Therefore, at each

arbitrary point, a random value is defined. The resulting random field is shown in Fig.

6.15. The material properties, Eav and νav, are multiplied by this random field.
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(a) (b) (c)

(d) (e) (f)

Figure 6.12: GOEE-based mesh adaptivity of the square-shape sample under pressure
and shear in 2-material layered case: (a) Step 1 with 1,742 DoFs, (b)Step 2 with 3,444
DoFs, (c) Step 3 with 6,916 DoFs, (d) Step 4 with 13,642 DoFs, (e) Step 5 with 27,204

DoFs, (f) Step 6 with 53,592 DoFs.

(a) (b) (c)

Figure 6.13: Meshes at the 4-th adaptivity step of the square-shape sample under
pressure and shear in 2-material layered case by applying: (a) Kelly refinement, (b)

residual-based adaptivity and (c) DWR adaptivity.

The reference uA = 3.16901 mm is taken from the fine mesh, with 681,284 DoFs, ob-

tained in the 10-th adaptivity step by using the GOEE. Mesh configurations of different

GOEE-based adaptivity steps are illustrated in Fig. 6.16. Fig. 6.17 presents the resulted

meshes in the 4-th adaptivity step of the applied methodologies. It is seen that mesh

obtained from the residual-based adaptivity captures the highly material changes more

in comparison with the goal-oriented adaptivity. Because the local effect of the elements

around the point A on the error of the QoI is dominant in this problem.

The resulting relative errors are depicted in Fig. 6.18. It shows the superiority of
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Figure 6.14: Relative errors (%) of uA in 2-material layered case.
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Figure 6.15: Random field in the range [0.7,1.3] for the square-shape problem.

the proposed adaptivity approach over other conventional approaches when a specific

quantity is of interest.

6.1.3 Mean stress evaluation on a surface in a square-shape sample

with a hole under pressure [29]

Consider a plane strain problem with the geometry and boundary conditions shown in

Fig. 6.19 made out of concrete with the following material properties.

Modulus of elasticity Eav = 14 GPa, Poisson’s ratio νav = 0.15, pressure P = 3 MPa

and density ρ = 2400 kg/m3.
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(a) (b) (c)

(d) (e) (f)

Figure 6.16: GOEE-based mesh adaptivity of the square-shape sample under pressure
and shear in heterogeneous case: (a) Step 1 with 1722 DoFs, (b)Step 2 with 3,374 DoFs,
(c) Step 3 with 6,472 DoFs, (d) Step 4 with 12,488 DoFs, (e) Step 5 with 23,766 DoFs,

(f) Step 6 with 45,612 DoFs.

(a) (b) (c)

Figure 6.17: Meshes at the 4-th adaptivity step of the square-shape sample under
pressure and shear in heterogeneous case by applying: (a) Kelly refinement, (b) residual-

based adaptivity and (c) DWR adaptivity.

The material remains in linear elastic state under the imposed loading. The average

stress on the curved surface S, σavyy |S , is of interest. Fig. 6.20 illustrates the initial

discretization.

Like the previous example, Section 6.1.2, the goal-oriented mesh adaptivity is performed

for both homogeneous and heterogeneous material to study the heterogeneity effect on

the refined meshes.
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Figure 6.18: Relative errors (%) of uA in heterogeneous case.

1 m

1 m

3 MPa

45°

45°

S

Figure 6.19: Geometry and boundary conditions of concrete under pressure.

6.1.3.1 Homogeneous case

Firstly, the concrete material is assumed homogeneous. The average stress on the curved

face S, σavyy |S = −8, 730, 730 Pa, at the finest mesh (with 232,038 degrees of freedom)

obtained by goal-oriented adaptivity is considered as reference solution and is used for

approximating the error of σavyy |S in other simulations. Discretization of the first six

adaptivity steps applied in the goal-oriented adaptivtiy are shown in Fig. 6.21. It is

seen that mesh concentration is more around the surface S.

The resulting relative error (in percentage) of σavyy |S for all the simulations are plotted

in Fig. 6.22. The average convergence rate of global refinement and mesh adaptivities
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Figure 6.20: Initial mesh considered for the problem of concrete under pressure.

(a) (b) (c)

(d) (e) (f)

Figure 6.21: GOEE-based mesh configuration based adaptivity of the sample with a
hole under pressure in homogeneous case: (a) Step 1 with 654 DoFs, (b)Step 2 with
1,312 DoFs, (c) Step 3 with 2,556 DoFs, (d) Step 4 with 4,854 DoFs, (e) Step 5 with

9,390 DoFs, (f) Step 6 with 17,758 DoFs.

based on Kelly-, residual-based and goal-oriented error estimations are 0.36, 0.40, 0.50

and 1.05, respectively. It is shown that the convergence rate of goal-oriented adaptivity

is much higher than other applied methods.

6.1.3.2 Heterogeneous case

Since the concrete is not fully homogeneous, its heterogeneity is assumed by two random

fields in the range [0.7,1.3] (see Fig. 6.23) which is multiplied by Eav and νav considered
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Figure 6.22: Relative errors (%) of σavyy |S in homogeneous concrete under pressure.

in the homogeneous case. The random fields are produced by applying uniformly dis-

tributed points with the horizontal and vertical 1
110 m distances by applying the Gauss

correlation variables [0.03, 0.01] and [0.05, 0.04], respectively (see Appendix A). At each

arbitrary points, the random variable is considered as the average value of those on the

square vertices surrounding it.
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(a) (b)

Figure 6.23: Random field in the range [0.7,1.3] produced by the Gauss correlation
variables: (a) [0.03, 0.01] and (b) [0.05, 0.04].

Like before, the reference solution is obtained by calculating the average of stress on

the surface S at the finest mesh obtained by the goal-oriented adaptivity. The reference

solutions for random fields 1 and 2 are σavyy |S = −8, 597, 010 and σavyy |S = −9, 137, 850,

obtained by applying 236,466 and 236,200 degrees of freedom, respectively.

The relative errors of σavyy |S for all the simulations are depicted in Figs. 6.24 and 6.25 for
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random fields 1 and 2, respectively. The convergence rate of adaptivity based on GOEE

tends is the highest among other conventional approaches.

Figure 6.24: Relative errors (%) of σavyy |S in heterogeneous concrete (produced by
random field 1) under pressure.

Figure 6.25: Relative errors (%) of σavyy |S in heterogeneous concrete (produced by
random field 2) under pressure.

In order to demonstrate the effect of different heterogeneities on the produced meshes

applying different adaptivity approaches, mesh discretization of the fourth adaptivity

step of all the simulations are presented in Fig. 6.26.
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Case 1: Homogeneous

(a) (b) (c)
Case 2: Heterogeneous (random field 1)

(a) (b) (c)
Case 3: Heterogeneous (random field 2)

(a) (b) (c)

Figure 6.26: Meshes at the 4-th adaptivity step of the sample with a hole under
pressure in homogeneous and heterogeneous cases by applying: (a) Kelly refinement,

(b) residual-based adaptivity and (c) goal-oriented adaptivity.

6.1.4 3d elasticity problem [30]

In this section, a three-dimentional linear elasticity problem is considered. A solid with

a cylindrical hole is subjected to a uniaxial traction P , as shown in Fig. 6.27(a). Due to

symmetry, only a quarter of the solid is modeled (See Fig. 6.27(b)). The edge lengths of

the solid are 2a and its thickness is a, where a is the radius of the cylindrical hole. The

following constant values are considered: modulus of elasticity E = 200 GPa, Poissons

ratio ν = 0.3 and P = 100 MPa.
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(a) (b)

Figure 6.27: (a) A three-dimentional infinite plate with a circular hole, (b) Quarter
of 3D plate and surfaces for QoIs.

6.1.4.1 Global mesh adaptivity

Initial and refined mesh configurations with 675, 4131, 28611 and 212355 number of

degrees of freedoms (DoFs) with 3 DoFs per node (ux, uy, uz) are shown in Fig. 6.28.

In this refinement procedure, in each step, an element is uniformly devided to 8 new

elements.

(a) (b)

(c) (d)

Figure 6.28: Global mesh adaptivity: (a) Initial mesh with 675 DoFs, (b) Refined
mesh (1st step) with 4131 DoFs, c) Refined mesh (2nd step) with 28611 DoFs, d)

Refined mesh (3rd step) with 212355 DoFs.
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6.1.4.2 Mesh adaptivity based on Kelly error indicator

Initial and refined mesh configurations with 675, 2094, 5667, 16902, 51285 and 145527

Dofs are shown in Fig. 6.29. The meshes are refined based on the kelly error indicator

[28].

(a) (b) (c)

(d) (e) (f)

Figure 6.29: Mesh adaptivity based on Kelly error indicator, (a) Initial mesh with
675 DoFs, (b) Refined mesh (1st step) with 2094 DoFs, c) Refined mesh (2nd step)
with 5667 DoFs, d) Refined mesh (3rd step) with 16902 DoFs, e) Refined mesh (4th

step) with 51285 DoFs, f) Refined mesh (5th step) with 145527 DoFs.

6.1.4.3 Mesh adaptivity based on residual-based error estimation

Initial and refined nodal configurations with 675, 2178, 6786, 21567, 69081 and 229275

Dofs are shown in Fig. 6.30. The meshes are refined based on the residual-based error

estimator described in Section 3.2.

6.1.4.4 Goal-oriented mesh adaptivity for mean σxx on ΓD

The mean stress σxx on the curved surface ΓD (see Fig. 6.27(b)) is considered as quantity

of interest for the solution. The propsoed Goal-Oriented Error Estimation, GOEE, is
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(a) (b) (c)

(d) (e) (f)

Figure 6.30: Mesh adaptivity based on residual-based error estimation, (a) Initial
mesh with 675 DoFs, (b) Refined mesh (1st step) with 2178 DoFs, c) Refined mesh
(2nd step) with 6786 DoFs, d) Refined mesh (3rd step) with 21567 DoFs, e) Refined

mesh (4th step) with 69081 DoFs, f) Refined mesh (5th step) with 229275 DoFs.

applied for mesh adaptivity. Initial and refined mesh configurations with 675, 2292,

6771, 18282 and 58323 Dofs are shown in Fig. 6.31.

6.1.4.5 Comparison of convergence rates

The mean σxx on ΓD in the finest solution of the Goal-Oriented Mesh Adaptivity

(GOMA) procedure is considered as the approximation of the exact QoI. Consider-

ing that, the approximated errors of QoI for different mesh configurations obtained

by appling different mesh adaptivity procedures are illustrated in Fig. 6.32(a). The

corresponding convergence rates are also plotted in Fig. 6.32(b). While the obtained

convegence rate of the GOMA procedure is 0.65, other refinement procedures based on

residual error estimator, Kelly error indicator and global refinement results in the con-

vergence rates 0.45, 0.37 and 0.33, respectively. The results clearly show the superiority

of the GOEE in mesh adaptation over other conventional error estimation approaches

where a specified quantity is of interest.
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(a) (b) (c)

(d) (e)

Figure 6.31: Goal-oriented mesh adaptivity considering mean σxx on ΓD as QoI: (a)
Initial mesh with 675 DoFs, (b) Refined mesh (1st step) with 2292 DoFs, c) Refined
mesh (2nd step) with 6771 DoFs, d) Refined mesh (3rd step) with 18282 DoFs, e)

Refined mesh (4th step) with 58323 DoFs.

(a) (b)

Figure 6.32: Approximated errors of the QoI, mean σxx on ΓD: (a) Convergence
curve and (b) Convergence rate.

6.2 Elastoplasticity Problems

6.2.1 Thick tube subjected to internal pressure [31]

In order to verify the proposed approach in elastoplasticity, an example with available

analytical solution is considered. Consider an elastic perfectly plastic thick tube in the
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plane strain state subjected to uniform internal pressure. As a result of the geometry

and loading symmetries, one quarter is only modeled (see Fig. 6.33).

x

y 

b

a
P r

θ

Figure 6.33: Geometry and boundary conditions of the thick tube subjected to uni-
form internal pressure.

The following geometry and material parameters are considered: Inner radius a = 100

mm, outer radius b = 200 mm, yield strength σy = 240 MPa, Young’s modulus E = 210

GPa and Poisson’s ratio ν = 0.3.

If the imposed internal pressure, P , is sufficiently small, the entire tube remains elastic.

However, when P becomes large enough, the tube begins to yield from the inner surface

r = a. With the continuous increase of P the yielded region will expand outwards. From

symmetry it follows that the elasto-plastic interface is also a cylindrical surface for any

value of P that produces a plastic region. Let rc be the radius of this elasto-plastic

interface, and Pc be the associated pressure acting on the interface under P (a generic

value). Then, the material in the region a ≤ r ≤ rc is in the plastic state, whereas the

material in the region rc ≤ r ≤ b remains elastic under P .

The radius of elasto-plastic interface, rc, can be calculated by solving the following

equation [45],

P =
σy√

3

[
1− r2

c

b2
+ 2 ln

rc
a

]
, (6.3)
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where σy is the yield strength of the material; a and b are the inner and outer radii of

the model, respectively.

The analytical stress and displacement solutions in the polar coordinates for the plastic

and elastic regions, are as follows:

- Plastic region (a ≤ r ≤ rc):

σrr =
σy√

3

[
−1 +

r2
c

b2
− 2 ln

rc
r

]
, σθθ =

σy√
3

[
1 +

r2
c

b2
− 2 ln

rc
r

]
(6.4)

ur =

√
3

2

σy
E

r2
c

r
. (6.5)

- Elastic region (rc ≤ r ≤ b):

σrr =
Pcr

2
c

b2 − r2
c

(
1− b2

r2

)
, σθθ =

Pcr
2
c

b2 − r2
c

(
1 +

b2

r2

)
, (6.6)

ur =
1 + ν

E

Pcr
2
c

b2 − r2
c

(
1− 2ν +

b2

r2

)
r (6.7)

where Pc is the pressure on the elasto-plastic interface, r = rc, which can be calculated

from Eq. (6.4),

Pc = −σrr|r=rc = − σy√
3

[
−1 +

r2
c

b2

]
. (6.8)

The initial discretization (192 elements) is shown in Fig. 6.34. Several simulations with

constant load increments, ∆P = 1, 6, 24, 192 MPa, are performed.
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Figure 6.34: Initial discretization for modeling the thick tube.

Fig. 6.35 demonstrates the variation of load factor P/σy with the non-dimensionalized

displacement 4µua/(σya) at the inner radius for different load increment steps besides

the theoretical solution [45], obtained by using Eqs. (6.3), (6.7) and (6.5). µ is shear

modulus and ua is the radial displacement at the inner radius r = a. A slight discontiuity

is observed in the analytical solution when the inner radius enters the plasticity, rc = 0.1

and P/σy = 0.433013, since the plastic deformation formulations were derived with

the assumption of incompressibility. It is seen that the numerical results are in good

agreement with analytical solutions. Elements of the first layer of the model, with

incremental load ∆P = 1 MPa, enters into plasticity when P = 113 MPa. Then, as

the load increases, the elastic elements enters into plastic zone gradually and the whole

model becomes plastic when P = 194 MPa.

Figure 6.35: Non-dimensional load-displacement curve in the thick tube model.

Table 6.1 presents the non-dimensionalized load and displacement values as well as their

corresponding exact error (%) for the case ∆P = 6 MPa.

Fig. 6.36 illustrates the distribution of radial and hoop stresses along the radius for
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Table 6.1: Non-dimensionalized load and displacement values and their errors ( %)
for the case ∆P = 6 MPa

Load step P
σy

4µua
σya
|simulation

4µua
σya
|analytical Exact error (%)

1 0.1 0.2926 0.293333 0.25
2 0.2 0.5852 0.586667 0.25
3 0.3 0.8778 0.88 0.25
4 0.4 1.1703 1.173333 0.26
5 0.5 1.4822 1.562204 5.12
6 0.6 1.9657 2.026866 3.02
7 0.7 2.7618 2.771664 0.36
8 0.8 5.0289 5.138994 2.14

P/σy = 0.6. The presented stresses are the nodal stresses computed from nodal avarag-

ing technique. For their computation, firstly the stresses on the Gauss points are trans-

formed to the polar coordinates, then they are extrapolated to the nodes. Since at each

node different values may be obtained from the adjacent elements, the average value is

computed. The results agree well with the analytical solutions. The errors at the inner

radius, r = a, are maximum and it is expected that more refinement near the inner

radius, leads to higher accuracy.

Figure 6.36: Distribution of σrr and σθθ (MPa) along radial direction for P/σy = 0.6.

Now, suppose that we intend to increase the accuracy in the numerically calculated

stresses on the inner curve S when P/σy = 0.6. The corresponding functional, which is

substituted in the right-hand side of Eq. (4.8), can be defined as

J(v) =
1

|ΓS |

∫
ΓS

∑
i,j

σij(v)dΓ, i, j = x, y , (6.9)
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where |ΓS | is the arc length S with radius, r = 0.1.

Incremental load ∆P = 24 MPs is imposed. As a starting point of the adaptivity

process, 48 elements (130 DoFs) are applied for the discretization (see Fig. 6.37 (a)).

Different strategies including global refinement and adaptivity based on estimated errors

by using Kelly, residual and goal-oriented error estimation, GOEE, have been tested.

Each methodology leads to different element errors and therefore, the resulting meshes

are different. Figs. 6.37 (b-d) illustrate the sample resulting meshes of different schemes.

Fig. 6.37 (c) shows a non-uniform distribution of elements, probably due to the kinks

along the element boundaries at the angles θ = 30 ◦ and θ = 60 ◦. The GOEE-based

adaptivity leads to mesh concentration around the surface S where the quantity of

interest has been defined.

(a) (b)

(c) (d)

Figure 6.37: Discretizations of the thick tube model: (a) Initial mesh; meshes resulted
in adaptivity process applying (b) Kelly error estimation with 630 elements, (c) Residual

error estimation with 684 elements and (c) GOEE with 618 elements.

The relative errors in the σavrr |S are depicted in Fig. 6.38. The goal-oriented error

estimation results in an adaptivity process with better convergence rate. Very similar

results are obtained for the σavθθ |S .



Chapter 6. Numerical Examples 62

Figure 6.38: Exact relative errors (%) of σavrr |S versus degrees of freedom for the thick
wall subjected to internal pressure.

Fig. 6.39 illustrates the exact relative error (%) of σavrr |S versus the consumed compu-

tational time (sec). It is shown that for achieving a precise solution of the quantity of

interest, the proposed goal-oriented adaptivity is the most efficient method.

Figure 6.39: Exact relative errors (%) of σavrr |S versus computational times (sec) for
the thick wall subjected to internal pressure.

6.2.2 Round perforated strip under enforced displacement [31]

Consider the perforated strip of strain-hardening material, which was studied experi-

mentally by Theocaris and Marketos [46]. Due to the symmetry only a quarter of the

strip is modeled (see Fig. 6.40), with length L = 180 mm, width W = 100 mm, perfora-

tion radius R = 50 mm and thickness T = 4 mm. The material used was an aluminium
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alloy 57S with a yield stress in pure tension σy = 243 MPa. Other material param-

eters are: Elastic modulus E = 70 GPa, Poisson’s ratio ν = 0.3 and plastic modulus

γiso = 2µ γ
1−γ = 2.25 GPa which leads to γ = 0.0401097.

R

W

L

T

u

y

z

x A B

Figure 6.40: Geometry and loading of a perforated strip subjected to imposed dis-
placement.

The mean stress component σyy on the bottom surface S, where y = 0, is considered as

the quantity of interest:

J(v) =
1

|ΓS |

∫
ΓS

σyy(v)dΓ , (6.10)

where |ΓS | is the area of the surface S.

A displacement uy = 0.55 mm as shown in Fig. 6.40 is imposed at the top surface

incrementally in 22 steps. The initial mesh consisting of 192 elements and the goal-

oriented refined mesh composed of 1830 elements are shown in Fig. 6.41.

Fig. 6.42 illustrates the relation between the non-dimensional average stress on the

bottom surface, σavyy/σy, and the non-dimensional strain at the point A, EεAyy/σy. Fig.

6.42 also includes the experimental results which were extracted by reading the values

from the plots provided in [46].

The computed strain is larger than the experimentally observed strain. Other invisti-

gators reported similar discrepancies. A possible explanation is that in the case of the
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(a) (b)

Figure 6.41: Discretization of the perforated strip subjected to imposed displacement:
(a) Initial mesh (192 elements); (b) Refined mesh applying Goal-oriented adaptivity

(1830 elements).

Figure 6.42: Non-dimensional relation between σavyy and εyy at Point A.

numerical simulation the strain is reported with an infinitesimal gauge length whereas

experimentally determined strains invariably involve some gauge length of finite size.

Fig. 6.43 depicts the distribution of normalized stress σyy/σy along AB (y = z = 0)

at step 19 where the imposed displacement is uy = 0.475 mm. The results are in good

agreement with experimental data [46]. The σyy stress distribution at the same step is

also illustrated in Fig. 6.44 for the whole domain.
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Figure 6.43: Distribution of non-dimensional tensile stress σyy along AB at step 19
where the imposed displacement is uy = 0.475 mm.

Figure 6.44: Distribution of stress component σyy at step 19 where the imposed
displacement is uy = 0.475 mm.

6.2.3 Cantiliver beam under surface pressure [31]

Consider a rectangular tube made of aluminium alloy 57S, which is clamped at one end

and subjected to surface pressure. The material is the same as in the previous example.

The geometry and loading is shown in Fig. 6.45 with Length, L = 70 cm, width, W = 8

cm, height, H = 20 cm, web and flange thicknesses, tw = tf = 1 cm and surface pressure,

P = 6 MPa.

In this example two different quantities of interest, QoI, are considered separately for

the goal-oriented mesh adaptivity.
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Figure 6.45: Geometry and loading of a cantiliver beam subjected to pressure on the
top surface.

The first QoI is the displacement at Point A, uA, located in x = 0, y = H/2, z = L

(see Fig. 6.45). Accurate prediction of this QoI leads to a more precise load deflection

curve which is important in materials design. By using the definition of the Dirac delta

function, δ, the corresponding functional is defined as

J(v) = v(xA) =

∫
Ω

vδ(x− xA)dΩ . (6.11)

Now, consider that we want to calculate the maximum von-Mises stress in the beam

which is important to predict the failure load accurately. Knowing that the maximum

von Mises stress occurs at the flanges close to the clamped area, we define the QoI

functional as the average value of all stress components in the domain, ΩV , which consists

of the first row of elements (in initial mesh) in top and bottom flanges closed to the fixed

area, −W/2 ≤ x ≤W/2, H/2− tf ≤ y ≤ H/2, −H/2 ≤ y ≤ −H/2 + tf , 0 ≤ z ≤ 2tf ,

J(v) =
1

|Ω0|

∫
Ω0

∑
i,j

σij(v)dΩ, i, j = x, y, z , (6.12)

and its corresponding linearized form is defined as

J lin(v) =
1

|Ω0|

∫
Ω0

∑
i,j

∇σij(uh) · vdΩ, i, j = x, y, z . (6.13)
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The surface pressure P is applied in 10 loading steps. The mesh discretization consisting

of 1820 elements shown in Fig. 6.46(a) is considered as the initial mesh. Global refine-

ment and local refinement based on elementwise errors computed by applying Kelly,

residual-based and goal-oriented error estimations are performed in 1-2 levels.

Fig. 6.46 shows the initial mesh and two-level adapted meshes resulted of applying

different error estimations. In all cases except for the GOEE-based refinement, the

refinement is performed in the first step and the computed errors in the rest steps

remained below the specified value. In the GOEE-based refinement case based on the

first QoI, |uAy |, the specified maximum relative error, 4.4e-5, leads to a refinemnt level

in the first step and the second refinment level in the seventh step (see Fig. 6.46(d)).

It is noted that the unsymmetrical meshes in Fig. 6.46(d) with respect to y-axis is

the result of the unsymmetric dual problem, which determines the elementwise weights

which affect the quality assessment of the |uAy |.

Fig. 6.47 illustrates the load-deflection curve for initial mesh and global refinement

cases. The number of degrees of freedom are 11 232, 66 456 and 439 920, respectively, for

uniform refinements. It is observed that the results converges with increasing refinement.

The results of |uAy | for all load steps and refinement strategies are given in Table 6.2. If

we consider the computed |uAy | in the global refinement 2, as the most accurate result

which can be achieved in two refinement levels, it is observed that the Goal-oriented

mesh adaptivity procedure results in more accurate result in comparison with other

applied refinement methodologies.

The GOEE-based mesh adaptivity is also performed considering the second QoI and a

prescribed maximum permissible error. Accordingly, refinement has been performed in

the 6th and 8th steps. The mesh discretization in the 8th is depicted in Fig. 6.46(e).

Fig. 6.48 demonstrates the von-Mises stress distribution and the plastic zones at the 8th

loading step where the imposed pressure is P = 4.8 MPa.

If we consider the maximum von-Mises stress computed in the two-level global refinement

as the reference solution, we can compare the accuracy of GOEE results with those
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(a) (b) (c)

x

y
z

(d) (e)

Figure 6.46: Discretization of the cantiliver beam of rectangular tube: (a) Initial mesh
(1 820 elements); Two-level refined meshes applying (b) Kelly error estimation(17 486
elements), (c) residual-based error estimation (17 500 elements), (d) GOEE (17 472
elements in step 8) considering the first QoI and (e) GOEE (17 486 elements in step 8)

considering the second QoI.

obtained by applying Kelly and residual-based error estimations. The corresponding

relative errors of each model at loading steps 8-10 are given in Table 6.3. Comparison

of results highlights the superiority of the proposed approach compared to the other

conventional mesh refinement procedures.
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Figure 6.47: Relation between pressure, P , and absolute value of displacement at
point A in y direction, |uAy | for different global refinement.

Table 6.2: Resulted |uAy | (mm) for different loading steps by applying several refine-
ment strategies

IM GR 1 GR 2 KR 1 KR 2 RR 1 RR 2 GOEE
Elements 1820 14560 116480 5642 17486 5642 17500 5642,

17472
LS

1 1 *1 **1 *1 **1 *1 **1 *1
2 2 2 2 2 2 2 2 2
3 2.9 3 3 3 3 3 3 3
4 3.9 4 4 4 4 4 4 4
5 4.9 5 5 4.9 5 4.9 5 4.9
6 5.9 6.1 6.2 6.1 6.1 6.1 6.1 6.1
7 7.7 8.1 8.4 8.1 8.2 8 8.3 **8.3
8 11.4 12.9 13.8 12.7 13.2 12.5 13.4 13.6
9 18.7 21.7 23.4 21.4 22.4 21.1 22.8 23
10 28.5 32.8 35.1 32.4 33.7 32.1 34.3 34.6

LS: Load step, IM: Initial mesh, GR: Global refinement,
KR: Kelly-based refinement, RR: Residual-based refinement,

*: First refinement step, **: Second refinement step

(a) (b)

Figure 6.48: (a) Von-Mises stress distribution and (b) Plastic zones: at 8th step
computed by applying the goal-oriented mesh adaptivity. Displacements have been

magnified by 3.
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Table 6.3: Relative error of maximum von-Mises stress (%) at loading steps 8-10
considering the solution in two-level global refined case as the reference solution.

KR 2 RR 2 GOEE
Elements 17 486 17 500 17 486
Load step

8 3.42 1.36 0.19
9 4.82 1.66 0.20
10 5.61 1.61 0.14

KR: Kelly-based refinement, RR: Residual-based refinement



Chapter 7

Conclusion

In the finite element method, mesh discretization highly affects the solution accuracy and

obviously the computational effort. An error estimation method should be performed

to locate the error distribution in the problem domain. A mesh adaptivity procedure is

a key to achieve high accuracy result with minimum computational cost. It applies the

local estimated errors to achieve an optimal mesh configuration.

In this thesis, a goal-oriented error estimation approach has been applied to 2d elas-

ticity problems with heterogeneous material and further extended to 3d elasticity and

elastoplasticity problems for estimating element-wise errors in a quantity of interest.

Consequently, an automatic mesh adaptivity procedure, including hierarchical refine-

ment and coarsening has been utilized to control the local errors in the quantity of

interest. In order to show the advantages of goal-oriented error estimation, two conven-

tional recovery-based and residual-based error estimations, which estimates the errors

in energy norms, have also been performed.

The applied goal-oriented error estimation approach is called dual-weighted residual,

which is the weighted form of the residual-based error estimation. The weighted factors

are computed according to the solution of a dual problem which is defined based on the

quantity of interest.
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Definition of the dual problem is different in elasticity and elastoplasticity problems. In

the elasticity problem, the dual problem is defined independent of the primal problem,

therefore they can be solved in parallel. In the elastoplasticity problem, the dual problem

is constructed according to the primal solution, but is defined as a linear problem. So,

it amounts only to a small fraction of the total cost within the Newton iteration for

the nonlinear primal problem. In order to do the goal-oriented mesh adaptivity in

elastoplasticity problem, the error is computed at each load/displacement increment and

when it is greater than the prescribed maximum error, mesh adaptivity is performed

and the solution is projected from the old mesh to the new mesh.

In order to do the mesh adaptivity, local refinement and coarsening utilizing tetrahedral

and hexahedral elements in 2d and 3d problems, respectively, have been applied. Corre-

spondingly, hanging nodes are introduced which are constrained to be compatible with

the adjacent nodes.

The proposed automatic continuous goal-oriented mesh adaptivity has been applied in

several 2d and 3d numerical examples with elastic and elastoplastic material consider-

ing different quantities of interest. Its accuracy, efficiency and performance have been

investigated by comparing the results with available analytical solutions, existing exper-

imental data and the results of mesh adaptivity based on other typical error estimation

methods.

It is seen that different error estimations present dissimilar local error distributions and

therefore, application of mesh adaptivity results in different mesh configurations.

It is observed that when a specific quantity is of interest rather than the solution in the

whole domain, application of the proposed goal-oriented mesh adaptivtiy leads to high

accuracy with less elements/degrees of freedom (higher convergence rate).

The corresponding code has been written in C++ programming language within the

framework of the deal.II library [32, 33] and is available online as an open source code.

Therefore, the readers will be able to apply the proposed approach and it’s further

application and developments will be more convenient. One important application would
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be analysis and design of composite materials consisting of elastoplastic components.

Further development of the approach for model error estimation and model adaptation

is worthwhile for verification and validation purposes.



Appendix A

Random Fields

It has become state of the art to model the spatial variability of a material by random

fields. The generated fields have in common that indeed the material properties at any

point are random, however a certain correlation between neighboring points is accounted

for to avoid naturally non realistic rapid changes. There are different strategies to

generate random fields, e.g. for their use in Finite Element Modeling, see [47]. The

technique applied in this work bases on realizations of Gaussian random fields depending

on a prescribed correlation structure. We are assuming stationary Gaussian fields with

given mean µ and standard deviation σ. For modeling the variability of the field, we are

using a covariance matrix approach including a Gaussian model. For a two dimensional

situation the correlation function is linked to the covariance matrix Cov(X,X′) by

ρ(τ1, τ2) =
Cov(X,X′)

σXσX′

where σX and σX′ are the standard deviations of at the points X and X ′, which obtain,

however, the same value due to the assumption of stationarity. According to a Gaussian

model, the correlation function is given by

ρ(τ1, τ2) = exp

(
−2|τ1|

θ1

)(
−2|τ2|

θ2

)
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which shares the Markovian assumption in each spatial direction. The parameters θ1

and θ2 are the correlation lengths and decide about the variability of the field. The

computation of the field is achieved by a Choleski Decomposition of the covariance

matrix. If Cov is a positive definite covariance matrix generated from a correlation

function for any discretized field, then a zero mean field F can be computed by

F = LU

where L stems from an Choleski decomposition of Cov, i.e.

Cov = LLT

and U is a vector of independent zero mean normally distributed random variables with

standard deviation of one. F is then an autocorrelated realization of the random field

at a discrete set of points with covariance matrix Cov. An appropriate Matlab Package

is written by [48] extending the work of [49] which was used to generate the fields as

sketched in Figures 6.15 and 6.23.
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