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Abstract

Barge impact is a potential hazard for bridge piers located in navigation waterways. The
prediction of impact force and dynamic pier responses is important for bridge designs
against barge impact. The main objective of the dissertation is to develop simplified
models to efficiently predict the dynamic impact process with sufficient accuracy and to
use such simplified models to devise crashworthy devices for pier protection and conduct
reliability analyses of bridge piers subjected to barge impact.

In this study, the complex finite-element (FE) barge model is developed with calibrations
against one literature barge model. The full barge impact model (FBIM) using the
proposed barge model and rigid pier column is developed to study the influences of pier
shape, pier size, impact velocity and impact angle upon the barge crushing behavior.

As FE simulation requires high computational cost, a simplified mass-spring model
(MSM) is developed to replicate the complex barge model. The MSM models the barge
mass using a lumped mass and the barge bow plasticity using non-linear springs. By
coupling MSM with rigid pier column, a simplified impact model (SIM) is developed to
generate the MSM parameters by the optimization model which aims to minimize the
integration error of impact force time-histories predicted by FBIM and SIM, respectively.

In order to efficiently predict the dynamic impact process with sufficient accuracy, the
coupled multi-degree-of-freedom model (CMM) is developed by coupling MSM with the
pier column at the impact position. The CMM models the pier column using discrete
masses and beam elements. The prediction quality of CMM is thoroughly assessed for
a wide range of impact scenarios using linear elastic pier columns.

Material non-linearity of pier column members, which is influential upon the dynamic
impact process, is considered by CMM using fibre beam elements. The numerical
RC pier column model, which is developed based on the numerical RC beam model
validated by experimental impact tests, is used in FBIM. The FBIM is then used as
the benchmark model to assess the prediction quality of CMM for a wide range of
impact scenarios involving material non-linearity of pier column members.

Using the proposed simplified models, parametric studies are conducted to evaluate
the energy-dissipation capacity of pile-supported independent protective structures which
are widely used in bridge designs against barge impact. In addition, a new type of
crashworthy device comprised of a supported or floated cap connected to the bridge
pier using a series of steel beams of I-cross-section is devised and its effectiveness is
investigated using the proposed simplified models. To achieve cost-optimum design of
the proposed crashworthy device for a given impact scenario, an optimization model is
developed with constraints generated by the prescribed design requirements.

Due to the non-deterministic nature of barge impact scenario and pier resistance,
reliability analyses of RC pier column subjected to barge impact are conducted using
the proposed simplified models with existing reliability methods and sensitivity analyses
are conducted to figure out the sensitive random variables.

Keywords: Full barge impact model, Mass-spring model, Simplified impact model,
Coupled multi-degree-of-freedom model, Crashworthy device, Reliability analyses.
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Chapter 1

Introduction

1.1 Motivation for Research

A large number of bridges spanning over navigation waterways were built during the
last decade. With the rapid growth of waterway transportation volume, the bridge piers
located in navigation waterways are susceptible to vessel impact. As one of the extreme
loading scenarios which have been widely investigated in recent years [1, 2, 3, 4, 5, 6,
7], barge impact loading can often lead to catastrophic consequences including human
casualties and economic losses.

On 15 September 2001, four loaded barges crashed into the Queen Isabella Causeway in
Texas, as shown in Fig. 1.1. As a result, a 240-foot (73.2 m) section of the causeway
was knocked out and eight people lost their lives [8]. On 26 May 2002, two barges hit
the 1-40 highway bridge over the Arkansas River in Oklahoma, as shown in Fig. 1.2. A
580-foot (176.8 m) segment was sent into the river and fourteen people were killed when
the vehicles plunged into the water [9]. On 15 June 2007, a cargo vessel fully loaded
with sand crashed into one of the main pillars of Jiujiang Bridge located in Guangdong,
China, as shown in Fig. 1.3. Approximately 200 meters of the bridge fell into the river,
resulting in the loss of nine lives and great economic losses [10].

Figure 1.1: Collapse of Queen Isabella Causeway after being hit by four loaded barges
on 15 September 2001 [11].

These are several examples of catastrophic vessel collision accidents which occurred in the
past around the world. It was pointed out by Manen and Frandsen [12] and Larsen [13]
previously that at least one major vessel-bridge collision accident of serious consequences
occurred each year on average in the past. Barge collisions upon the bridge structures
were also frequently reported.
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Figure 1.2: Collapse of 1-40 highway bridge after being hit by two barges on 26 May
2002 [11].

Figure 1.3: Collapse of Jiujiang Bridge after being hit by the cargo vessel on 15 June
2007 [11].

These catastrophic vessel collision accidents have led to substantial scientific
investigations on vessel-bridge impact analyses. However, the focus of many previous
studies is on ship impact analyses. As barges and ships share fundamental differences in
shapes and inner structures, the corresponding studies pertaining to ship impact analyses
cannot be directly applied to barge impact analyses [14]. Empirical formulas based
on equivalent static method such as those provided by AASHTO Guide Specification
[15] are widely used in bridge designs against barge impact. However, barge impact
is a highly dynamic process. The equivalent static analyses ignore important dynamic
effects, i.e. inertial forces and damping forces, involved in the impact event. In order
to take such dynamic effects into account, substantial studies on barge impact analyses
were conducted in literature using experimental impact tests [16, 17, 18, 19, 20] or
finite-element simulations [4, 5, 6, 21, 22, 23, 24, 25, 26, 27, 28]. However, the dynamic
barge impact analyses using experimental impact tests or finite-element simulations often
require substantial investment of time and effort. In addition, conducting experimental
impact tests can be rather costly.

As an alternative strategy, simplified impact models are currently extensively used for
barge-pier impact analyses [29, 30, 31]. However, factors such as strain rate, material
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properties of impacted structures, etc, are often not fully considered by these existing
simplified models, thus their applications to engineering designs are often quite limited.
Several problems regarding model simplicity or prediction accuracy often exist in these
existing models [7, 14]. In addition, these simplified models are often only tested for a
limited number of impact scenarios. Many factors such as barge mass, impact velocity,
impact angle, material properties of barge structural components, strain rate, pier shape,
pier size, material properties of pier members, soil-pile interactions, etc, are influential
upon the barge impact process. However, a thorough assessment of the simplified models
including all these factors can rarely be found in literature.

Several questions remain to be answered - How to predict the time-histories of barge
impact force efficiently with sufficient accuracy for a wide range of impact scenarios?
How to predict the dynamic responses of bridge piers subjected to barge impact
efficiently with sufficient accuracy for a wide range of impact scenarios? How to protect
the bridge pier from barge impact loads? These questions form the motivations for the
studies in this dissertation.

1.2 Objective of Research

The main objective of this dissertation is to develop simplified models which can replicate
the complex full barge impact models with sufficient accuracy for a wide range of
impact scenarios. Using such simplified models to devise new crashworthy devices for
pier protection from barge impact and to conduct reliability analyses of bridge piers
subjected to barge impact serves as another objective of this dissertation.

1.3 Contribution of Research

The contribution of this research is summarized as follows:

e A thorough literature review is conducted on vessel impact analyses. The relevant
work in literature pertaining to this topic is discussed in detail.

A simplified non-linear mass-spring model (MSM) is developed to replicate the
complex barge model. An optimization model is proposed to generate the model
parameters introduced in MSM.

e A group of regression formulas is developed to calculate the MSM parameters. The
quality of these regression formulas is well assessed using correlative studies.

e The coupled multi-degree-of-freedom (MDOF) model is developed by coupling
MSM with the pier column at the impact position to predict the impact force
time-history and dynamic pier responses for a given impact scenario. The
prediction quality of the coupled MDOF model (CMM) is thoroughly assessed for
a wide range of impact scenarios using linear elastic pier columns.

e Material non-linearity of pier column members is considered by CMM using fibre
beam elements. Parametric studies are conducted using RC pier columns of
different configurations to assess the prediction quality of CMM involving material
non-linearity of pier column members.

e The simplified impact model considering soil-pile interactions and geometric
non-linearity is developed based on CMM. Using the simplified model, the
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energy-dissipation capacity of pile-supported independent protective structures is
evaluated considering several design parameters.

e A new type of crashworthy device comprised of a supported or floated cap
connected to the bridge pier using a series of steel beams of I-cross-section is
devised and its effectiveness is investigated using the proposed simplified impact
model developed based on CMM. A mathematical optimization model is developed
accordingly to achieve cost-optimum design of the proposed crashworthy device
for a given impact scenario with constraints generated by the prescribed design
requirements.

e The simplified impact model considering soil-pile interactions and pile-group effects
is developed based on CMM for dynamic analyses of RC pier column subjected to
barge impact. Using the proposed model, reliability analyses of RC pier column
subjected to barge impact are conducted with existing reliability methods and
sensitive random variables are figured out by sensitivity analyses.

1.4 Organization of Dissertation
The dissertation is organized as follows:

Chapter 2 conducts a thorough literature review of vessel impact analyses. The existing
experimental impact tests and analytical models pertaining to this topic are summarized.
A state of the art overview of the design of protective structures against vessel impact
and reliability analyses of bridge piers subjected to vessel impact are also presented.

Chapter 3 develops the complex finite-element barge model which is used for the
studies in this dissertation. The descriptions of the complex barge model, i.e. material
models, element types, contact definition, etc, and the calibration of the complex barge
model against one literature barge model are included in this chapter. The full barge
impact model (FBIM) using the proposed complex barge model and rigid pier column
is developed to study the influences of pier shape, pier size, impact velocity and impact
angle upon barge bow crushing behavior.

Chapter 4 introduces a simplified non-linear MSM which is developed to replicate the
complex barge model. The optimization model for determining the model parameters
introduced in MSM is proposed. The regression formulas in terms of pier shape, pier size,
impact velocity and impact angle are developed for calculating the model parameters.

Chapter 5 develops the CMM to efficiently predict the impact force time-history and
dynamic pier responses for a given impact scenario. The prediction quality of CMM is
thoroughly assessed in this chapter for a wide range of impact scenarios using linear
elastic pier columns of several different shapes and sizes.

Chapter 6 introduces material non-linearity of pier column members to CMM using fibre
beam elements. The concrete model used in the RC pier column model is validated by
a series of drop hammer impact tests on RC beams. The FBIM using the validated
RC pier column model is then used as the benchmark model to assess the prediction
quality of CMM involving material non-linearity of pier column members.

Chapter 7 develops the simplified impact model based on CMM considering soil-pile
interactions and geometric non-linearity. Using this simplified model, parametric studies
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are conducted to evaluate the energy-dissipation capacity of pile-supported independent
protective structures considering several design parameters.

Chapter 8 devises a new type of crashworthy device using a series of steel beams for pier
protection from barge impact and its effectiveness is investigated using the simplified
model developed based on CMM considering geometric non-linearity. A mathematical
optimization model is developed accordingly to achieve cost-optimum design of the
proposed crashworthy device for a given impact scenario with constraints generated by
the prescribed design requirements.

Chapter 9 develops the simplified impact model considering soil-pile interactions and
pile-group effects based on CMM for dynamic analyses of RC pier column subjected
to barge impact. Reliability analyses are conducted for the RC pier column subjected
to barge impact using the simplified model with existing reliability methods. Sensitivity
analyses are conducted using Response Surface Method to figure out the sensitive random
variables.

Chapter 10 provides conclusions derived from the studies in this dissertation and
recommendations for future studies are offered.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, important historical research pertaining to vessel impact analyses are
discussed in detail and the importance of simplified impact models is highlighted. A
state of the art overview of the design of protective structures against vessel impact and
reliability analyses of bridge piers subjected to vessel impact is also presented.

2.2 Strategies for Vessel Impact Analyses

Experimental impact tests and analytical models are two commonly-used strategies in
literature to conduct vessel-pier impact analyses. Empirical formulas, finite-element
simulations and simplified impact models are currently extensively used for bridge designs
against vessel impact. These strategies are summarized as shown in Fig. 2.1.

Strategies for barge-pier
impact analysis

Experimental Analytical
impact tests methods
Empirical Finite-element Simplified impact
formulas simulations models

Figure 2.1: Strategies for vessel-pier impact analyses.

2.2.1 Experimental Impact Tests

Although a large number of vessel impact accidents occurred in the past, the number of
experimental impact tests which were conducted in literature is very limited. The vessel
impact can be classified into two categories based on the vessel type, i.e. ship impact
and barge impact. The earliest ship impact tests were conducted by Minorsky in 1959
[32]. The research focused on studying the remaining vessel damage after impact. An
empirical formula was proposed to describe the relationship between the deformed steel
volume and the absorbed impact energy based on the data obtained from the twenty-six
impact tests. Woisin conducted a total of twenty-four impact tests using scaled ship
models (1:7.5 to 1:12) from 1967-1976 [33] for the sake of protecting nuclear-powered
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ships from collision against other ships. An empirical formula was developed accordingly
to quantify the equivalent impact force based on the ship size and impact velocity.

However, ship vessel and barge vessel share fundamental differences in bow shapes and
inner structures, thus the bow crushing behavior of barge vessel cannot be readily
extrapolated from ship impact tests. Meir-Dornberg once conducted dynamic loading
with a drop hammer and static loading on barge models of reduced-scale (1:4.5 to
1:6) in 1983 to quantify the barge impact loading during impact [16]. Based on the
data obtained from the impact tests, the empirical formulas were developed relating the
impact energy, barge bow crushing depth and barge impact force. It was concluded from
the impact tests that the barge bow force-deformation relationship is not strongly related
to the loading type, i.e. dynamic loading or static loading, as shown in Fig. 2.2, where
up is the barge bow crushing depth, Fp is the impact force and Wy is the hammer
impact energy.
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Figure 2.2: Relationship of hammer impact energy, barge bow crushing depth and impact
force based on the impact tests conducted by Meir-Dornberg [15].

Using impact data from scaled impact tests could introduce uncertainty errors when
applied to describe the full-scale impact event, especially when they cannot be fully
validated using data from full-scale impact tests. As the drop hammer is not
representative of a real bridge pier, Meir-Dornberg’s impact tests failed to reflect the
dynamic interactions between the barge and the bridge pier during impact. These
problems necessitate the conduction of impact tests using full-scale barge model. The US
Army Corps of Engineers once conducted a series of impact tests using full-scale barge
flotilla impacting against the lock gates [17] and the lock wall [18, 19]. Sensors were
employed to record the force, velocity and acceleration time-histories of the impacting
barge, the structural responses of the lock wall at the impact position and barge-to-barge
lashing forces during impact. However, there exist fundamental structural differences
between the bridge piers and the lock gates or lock walls, thus the data obtained from
the impact tests cannot be readily applied to bridge designs against barge impact.

In 2004, University of Florida (UF) conducted a full-scale experiment of barge impact
on the old St. George Island Causeway Bridge [20, 34, 35]. This is the first full-scale
test of barge impact on bridge piers which serves as a benchmark for illustrating the
physical phenomena involved in real barge-pier impact events. Two bridge piers, i.e.
Pier-1 and Pier-3 as shown in Fig. 2.3, were selected for conducting the impact tests.
Sensors including accelerometers, stain gages and load cells were positioned at different
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locations on the barge, the piers, the piles and the superstructure to record the impact
force time-history and dynamic pier responses. Fig. 2.4 shows the barge impact tests on
Pier-1 and Pier-3, respectively.

Pier-3

Navigation Pier-1
channel

Figure 2.3: Bridge piers selected for conducting the barge impact tests [20].

Figure 2.4: Barge impact tests on Pier-1 (top) and Pier-3 (bottom) of the old St. George
Island Causeway Bridge [36].

In total fifteen impact tests were conducted on the two piers with different barge
impact energy and pier superstructure conditions. The test results indicate that the
maximum experimentally measured dynamic impact loads follow a linear trend line up to
a transition point after which the impact loads plateau with respect to further increases
in kinetic impact energy [20]. However, the experimental plateau level of the impact
loads is lower than that predicted by AASHTO Guide Specification. Impact tests upon
Pier-3 which is of small flexibility using small barge weight and low impact velocity
were also conducted, and the corresponding results indicate that the maximum dynamic
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impact loads are typically higher than the equivalent impact force predicted by AASHTO
Guide Specification.

Experimental impact tests can provide convincing benchmarks for dynamic analyses
of vessel impact events. However, conducting such experiments is both costly and
time-consuming. It is often difficult to achieve the expected impact scenarios due
to factors such as unpredictable weather conditions, water flow, etc. The number
of experimental impact tests in literature is thus quite limited. The great operation
difficulties as well as high expenses and substantial investment of time and energy
involved in the experimental impact tests render them unpractical for many scientific
studies. The analytical methods using empirical formulas, finite-element simulations or
simplified impact models are thus extensively used.

2.2.2 Empirical Formulas

Different empirical formulas were developed in literature for calculating barge impact
forces. The formulas provided by codes such as AASHTO Guide Specification [15] and
Eurocode [37] are most extensively used.

2.2.2.1 The AASHTO Guide Specification

The empirical formulas adopted by AASHTO Guide Specification were developed based
on the data obtained from the research conducted by Meir-Dornberg in Germany in 1983.
Meir-Dornberg conducted the hammer impact tests using scaled barge models to study
the deformation force of the barge bow. Empirical formulas based on the experimental
results were developed as follows [16]:

60.0 < 0.1
Bz{ L6t > Om 2.)

6.0 + 1.6up, wup > 0.1m

where Fp is the equivalent static barge impact force [MN], w, is the barge bow crushing

depth [m] calculated by:
up = (v/1.0+ 0.13W, — 1) - 3.1 (2.2)

where W}, is the barge impact energy [MNm)].

The AASHTO Guide Specification adopted the above empirical formulas by introducing
two modification coefficients as follows:

{GO.OUbRB, up < 0.1m
B p—

2.3

up = (/1.0 + 0.13W, — 1) - (%) (2.4)

where Rp is equal to the ratio of barge width [m] to 10.6 m.

The formulas adopted by AASHTO Guide Specification are based on impact tests
conducted by Meir-Dornberg using scaled barge models, and may not accurately predict
the full-scale barge impact loading on bridge piers. Several previous studies have
indicated that the shape and size of pier column as well as impact angle are very
influential upon the impact force and barge bow crushing behavior [21, 22, 38]. However,
these effects are not included in the empirical formulas. The rigid hammer used in

9
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Meir-Dornberg’s experimental tests is not analogous to real bridge pier which also
absorbs impact energy during impact. The empirical formulas indicate that the impact
force increases monotonically with respect to barge bow crushing depth, whilst several
previous studies have indicated that the barge bow generally undergoes a plastic-yielding
session during impact [21, 22, 39]. The important dynamic effects such as inertia forces
and damping forces involved in the barge impact events are totally ignored by the
empirical formulas.

2.2.2.2 The Eurocode

The Eurocode proposed the formulas for calculating the dynamic impact force based
on the deformation energy of the vessel. For vessels traveling in inland waterways the
formulas are as follows [37]:

o (1095 Wy, Wer < 0.21MNm 2.5
W50 /TOF0.128 - Waey, Wier > 0.21MNm '

where Fy,, is the dynamic design impact force [MN]; Wy.r is the vessel deformation
energy in MNm which is equal to the total kinetic energy of the vessel W, for a
head-on impact and is calculated by the following equation for a lateral impact with
angle 1<45.0°:

Wdef = Wb(l - COS¢) (26)

If a dynamic structural analysis is required, the impact force is modeled as a
half-sine-wave pulse for Fy, < 5.0 MN (elastic impact) and a trapezoidal pulse for
Fayn > 5.0 MN (plastic impact), as shown in Fig. 2.5. The loading duration and other
details are also presented in Fig. 2.5. In Fig. 2.5, ¢, is the elastic elapsing time [s], ¢, is
the plastic impact time [s], t. is the elastic response time [s], ¢, is the equivalent impact
time [s], ts is the total impact time [s] which is equal to the summation of ¢,, t, and
te for plastic impact, Fy is the elastic-plastic limit force (5.0 MN). The values of t,, t,,
tp, te and Fp are calculated by the following equations [37]:

te =2.0-/m*/c, (2.7)

/i Jes,  Fayn < 5.0MN
tr:{ m*/co,  Fay (2.8)

Te/Up,  Fayn > 5.0MN

t,=m"-v,/Fp (2.9)
te =7/2-\/m*/c, (2.10)
Fp = (Fo + Fayn)/2.0 (2.11)

where ¢, is the elastic stiffness of the vessel (60.0 MN/m); . is the elastic deformation
(0.1 m); v, is equal to the vessel sailing speed (v,) for head-on impacts and v,-siny for

10
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lateral impacts with angle v; m* [10%kg] is equal to the total mass of vessel for head-on
impacts and (mj3+my,) for lateral impacts where m; is the mass of the directly colliding
vessel (10°%kg) and my,y is the hydraulic added mass [10%kg].
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Figure 2.5: Impact force time-history determined by Eurocode for vessels traveling in
inland waterways [37],

(left) elastic impact,

(right) plastic impact.

The Eurocode provides a simple approach for deciding the impact force time-history
considering the influences of barge impact energy and impact angle. However, similar
to the AASHTO empirical formulas, the Eurocode formulas ignore the influences of pier
shape and pier size upon the impact force. Several previous studies [4, 14] have indicated
that the stiffness and material properties of pier column have significant influences upon
the impact force. However, these factors cannot be considered by the Eurocode formulas.

2.2.3 Finite-Element Simulations

The FE simulations require numerical modeling of the vessel and the bridge pier using
an assembly of elements. The numerical solutions of such an FE model can be obtained
by commercial software such as LS-DYNA. The impact force time-history and dynamic
pier responses can be obtained accordingly. The FE simulations have been extensively
used by many research institutions around the world.

Consolazio et al. [21] used FE simulations to study the static crushing behavior of
the barge using multiple pier-shaped impactors, and it was found that the shape and
size of the impactor influence the barge bow force-deformation relationship and that the
impact force does not necessarily increase monotonically with the increase of crushing
depth. Yuan [22, 23] developed the complex FE barge model which was employed
for conducting a series of single-barge simulations and multi-barge-flotilla simulations.
The influences of impact velocity, pier stiffness, pier shape and pier size upon the
impact force time-history and barge bow crushing behavior were thoroughly studied.
It was concluded from Yuan’s studies that the impact forces are limited to the plastic
load-carrying capacity of the barge bow; the increase of pier width can result in the
increase of impact force, but the size influence of square pier column is more apparent
than that of circular pier column; the maximum impact forces are very sensitive to the
stiffness variation of weaker piers. Sha and Hao [4, 5] developed the FE barge impact
model in which the material non-linearity of the pier column members were included

11
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after calibrations using the pendulum impact tests on a scaled circular RC column. The
influence of material non-linearity of the pier column members was then studied using
the numerical model and it was concluded that the non-linear bridge pier response and
damage in the impact process significantly affect the barge-pier impact response and
should not be neglected. Sha and Hao [6] also conducted the numerical simulations
of full-scale barge impact on the carbon fibre reinforced polymer (CFRP) strengthened
pier column. It was found that the CFRP strengthening technique cannot reduce the
maximum impact force but can mitigate the damage of the pier during impact.

Compared with experimental impact tests, FE simulations can save time and cost and
can even be employed to simulate the impact scenarios that are non-testable. However,
FE simulations still suffer from several fundamental problems. Generally, a substantial
investment of time and effort is required for non-linear modeling of the vessel, the
piles, the connecting beams, and the soil. In addition, the computational demands
involved in conducting high-resolution non-linear contact/impact analyses often demand
super-computing resources and excessive computing time [29, 40]. For these reasons,
simplified models that can predict impact force time-history and dynamic pier responses
with sufficient accuracy are often required by engineering designs and scientific studies.

2.2.4 Simplified Impact Models

Several simplified impact models, i.e. the Coupled Vessel Impact Analysis (CVIA)
technique introduced by UF [29], the simplified impact model proposed by Yuan [30],
etc, were developed in literature for predicting the dynamic bridge-pier impact process.

The CVIA technique is implemented by coupling the barge mass with the pier structure
using a non-linear spring representing the barge bow crushing behavior, as shown in
Fig. 2.6. The crushing curves of barge bow corresponding to different pier shapes, pier
sizes and impact angles were studied using quasi-static crushing analyses and a simple
procedure was developed to obtain the force-deformation relationship of the non-linear
spring [38, 41]. The CVIA technique has been validated using both experimental data
and FE simulation results [42, 43]. This technique has been widely used in recent
studies [44, 45]. The barge bow crushing model was also employed by Luperi and Pinto
[46]. As an alternative to the CVIA technique, the Applied Vessel Impact Load (AVIL)
technique was developed to generate the impact force time-history based on a barge bow
force-deformation relationship of interest [36]. Yet another alternative, which consists of
a frequency-based approach to predict the maximum pier response, and makes use of
impact response spectra, was proposed in Ref. [47]. Material non-linearity of the pier
column members can be considered by the proposed strategies.

Yuan featured the barge mass as a lumped mass and the barge bow as a group of
elastoplastic-collapse elements that become active or inactive in a sequential order, as
shown in Fig. 2.7. The model allows a physical interpretation of the force-deformation
relationship of barge bow [30]. Yuan’s simplified model introduced a group of model
parameters, the values of which can be obtained by the proposed optimization models.
The bridge pier was modeled by a cantilever using two concentrated masses representing
the superstructure mass and the mass at the impact position, respectively. The
superstructure constraints were modeled by translational springs and rotational springs.
The response spectrum analyses were conducted to estimate the maximum displacements
at the impact position and the pier top for a given rectangular pulse force. Such response
spectrum analyses have also been used by previous research regarding vessel-bridge
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