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Chapter 1

Introduction

Aerodynamics has always reflected the desire of human beings to exceed their limits. As such, it
first appeared with the attempt to create flying machines with Leonardo da Vinci and with the
studies leading to the first successful flight by the Wright Brothers, as in Figure 1.1. Since then

Figure 1.1: (Left) Leonardo da Vinci, flying machine sketch (Picture courtesy of Seven Shades of
Black). (Right) Wrights brothers’ glider being tested (Credit: Public Domain via britannica.com).

it has been clear that the study of air motion would have been the chance for the man to move
forward. Nowadays, the motion of fluids, of which air is a confined subdomain, is a concern in
most engineering and natural science practices ranging from automotive to biomedical engin-
eering e.g. in [293]. In automotive, engineers study air and fluids to design performant and safe
cars ([140]) and to enhance the efficiency of thermal engines ([125, 40]), whilst in biomedical en-
gineering, engineers model and study the motion of blood in our circulatory system to forecast
problems such as thrombosis and to understand how diseases spread ([18, 287]). Among other
engineering practices, in aeronautics air notably plays the crucial role of sustaining flight, but
also undergoes a continuous development connected with e.g. drag reduction ([51, 286, 213]),
flight stability, control and maneuverability of flying machines ([181, 226]). These concerns are
also reflected in naval architecture ([5]) and extend to ocean engineering ([90]), climate studies
and meteorology e.g. in [199, 212].

Civil and wind engineering, main focus of this research work, first experienced the complexity of
flow phenomena with the spectacular yet catastrophic collapse of the Tacoma Narrows Bridge
in 1940 (cf. Figure 1.2), in which the structure collapsed due to the effects of a moderate wind.
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2 Chapter 1. Introduction

Figure 1.2: (Left) The collapsed Tacoma Bridge in 1940 (Picture of Barney Elliott; The Camera Shop).
(Right) New bridge from 2007 (Credit: Public Domain via wikipedia.org).

This event constitutes a turning point in civil engineering as it forced engineers to comprehend
and to account for the complex effect of air on structures. Since then, wind effects on civil
structures has become a major concern during the design phase of slender structures such as
bridges and practically constitutes a burden in civil engineering art work aiming to connect
distant lands and cultures, which has to be overcome.

Experimental studies such as Wind Tunnel Tests (WTT) constitute a reliable reference for
studying the underlying phenomena and effects because they allow the direct measurement of
fluid induced forces on the model and of flow properties. For this reason experimental studies
and WTT are evergreens in aerodynamics as they constitute the ultimate validation of a method
or a design in a large range of applications e.g. in [211]. Such tests are however time-consuming,
expensive and subject to Reynolds number effects. The application of numerical methods there-
fore offers an appealing alternative to support the design as they allow the straightforward test
of several configurations at substantially low times and costs. Moreover, numerical simulations
can be efficiently coupled with shape optimization algorithms, which allow the exploration of
several configurations until the optimal design solution is found.

Numerical methods studying the motion of fluids around bluff bodies with complex shapes and
structural details using Computational Fluid Dynamics (CFD) offer on the other hand a viable
alternative and are of significant interest in many of the engineering applications mentioned
above. The main advantages of numerical approach are connected with time and cost savings,
as well as the opportunity to access to the measures in the entire domain, which in Wind Tunnel
Tests require the installation of intrusive and expensive equipment.

The criticality of enhanced design of structures is inherently connected with the capacity to
predict the effect of the smaller structural details, as they might affect critically the aerodynamic
behavior thus pressure and forces. Whilst flow features of different scales are typical of bluff
body flows ([80]), bodies that exhibit different geometrical scales pose a particular challenge
to the efficient and accurate resolution of the fluid dynamic problem. The significant effect
that such small details can have on the overall aerodynamic behavior of structures has been
reported ([49, 253, 260, 302]). In [207] the effect of handrails on the aerodynamics of bridge
decks is highlighted whilst studies of small scale appendages designed to modify the flow can be
found in [206, 154, 284] for wind screens and in [128, 21, 153] for flaps. Examples of small-scale
features to reduce wind response of structures are spirals on chimneys and guide vanes in bridge
decks ([75]) as studied later in this thesis.



Among CFD methods, Vortex Particle Methods (VPM) have been found to be accurate and
comparatively efficient techniques for simulating 2D bluff body aerodynamics problems around
complex geometries. However, their popularity in CFD was limited by several objections.
Common objections to the usage of Vortex Particle Methods are

(I) lack of modeling techniques for unresolved sub-grid scales,

(IT) difficulty of adding viscous effects,
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)
(III) complexity of velocity evaluation,
)

(v

excessive” self adaptivity,

which have however been addressed. (I) Vortex Particle Methods present unachievable char-
acteristic of producing small eddies and to proliferate them to model turbulent sub-grid scales
without inherent numerical dissipation. A common approach in Vortex Methods designed for
engineering applications is the filtering of the vorticity field, thus producing sub-grid scale dis-
sipation ([111]), as in Large Eddy Simulations (LES). Moreover, Mansfield ([186]) proposed a
Smagorinsky sub-grid scale model for the filtered equations and later a dynamic eddy diffusiv-
ity LES-like model ([187]). In order to provide small scale models such as turbulence models
Guermond in [123] proposed to couple vortex methods with grid based methods. Such coupling
discretizes the fluid nearby the geometry with a grid based methods and applies appropriate
boundary layer models while the far field is represented by Lagrangian particles. This strategy
exploits the inherent ability of the velocity pressure models to resolve the boundary layer, and
the self adaptivity of vortex methods for the wake which then evolves without numerical dis-
sipation. However, such methods lead to difficult modeling techniques making them of interest
for a restricted range of applications e.g. in rotor aerodynamics ([299]). (II) The difficulty in
adding viscous effects is a consequence of their Lagrangian formulation, which results to be less
prone to discretization than grid based methods. (IIT) The complexity of velocity evaluation is
related to the resolution of the N-body problems, which requires to perform N? operations to
compute each particle velocity. More affordable scalings have been proposed with the Fast Mul-
tiple Method and Vortex In Cell method, which both reduce the problem to N log N operations.
(IV) The self adaptivity is a peculiarity which makes Vortex Method generally very appealing.
Their grid-free formulation provides a natural self-adaptivity where vortex particles tend to
cluster in regions of significant flow features ([80]). The “excessive” self adaptivity has been
questioned in many works such as [131] and [159] because of Lagrangian grid distortions and
the resulting inaccuracies as also analyzed in [82]. This led to the introduction of pseudo-grids
as presented and discussed in [221], [308] and [156]. The application of pseudo-grids allows
the re-initialization of the particle map to obtain a certain Lagrangian grid distortion in order
to guarantee sufficient particle overlaps required for vorticity support ([79], [240], [139] and
[155]). Moreover, applying pseudo-grids does not compromise the self adaptive nature of these
methods. The technique of particle reinitialization, often referred to as remeshing, is currently
used in most of the current implementations and constitutes in itself an interesting platform
for further development of adaptive techniques.

More recent implementations of remeshing improve the accuracy of the numerical solution and
its efficiency e.g. in [300]. However, information related to the immersed body geometry and
the relative geometrical scale of its components can be exploited to control the remeshing and
thus arrive at a means to actively adapt the particle map.



4 Chapter 1. Introduction

In view of more advanced design of structures to be confronted with wind, it is required to
provide adaptivity to numerical methods which depict all the relevant features to conduct a
more precise analysis of the structural response to wind actions. Therefore, the objective of
this work is to introduce an adaptive strategy for simulations of bluff body flows with Vortex
Particle Methods which adapts to whichever geometrical complexity and allows to consider the
influence of structural details in modifying the aeroelastic performance of the structure. Such
requirement is translated in the following points to be developed:

e to provide means to balance accuracy and computational efficiency in resolving flows
dominated by features of different scales, specifically arising from complex geometries,

e to retain versatility of classical VPM, as it does not require large pre-processing effort,
which would be required instead for grid based methods,

e to identify margins of improvement of the existing surface discretization technique in
order to enable high resolution nearby the boundaries.

This is achieved through a spatial adaptivity facilitated by a staggered remeshing and a tem-
poral adaptivity linked to it. The proposed method employs the geometrical properties of the
immersed body to independently guide the adjustment of particle spacing through remeshing
and time step length through a substepping scheme. Both components are linked to a fully
adaptive method through a zonation of the solution domain and the inherent link between
spatial and temporal discretization.

After a thorough validation, the capabilities of the adaptive strategy are demonstrated on
several applications to demonstrate their versatility in dealing with different problems and
structures. Among the applications considered, the study of the vortex shedding from the
two arches of the Alcénetar bridge is relevant to show the influence of small structural details
on the bridge response. In fact, the Vortex-Induced Vibrations which occurred during the
erection of the arches had been effectively suppressed by welding deflector-type guide vanes.
The resolution of the complex flow physics in an efficient manner represents the numerical
challenge. It is reported how the proposed adaptive strategy allows the accurate prediction of
the influence of wind deflectors at a fifth of the time spent when using the equivalent classical
VPM implementation.

This thesis is organized as follows. An introduction to aerodynamic and aeroelastic problems
is presented in Chapter 2, with emphasis on the performance of slender bridges facing wind
being the major motivation and the current application of this work. Afterwards, Chapter 3
reviews and compares methods for the analysis of aerodynamic and aeroelastic phenomena on
slender structures performed by numerical, experimental and analytical methods. Moreover, the
comparison extends to specific aspects of numerical modeling including adaptive strategies built
on other numerical methods, i.e. Finite Volumes Methods (FVM), Finite Element Methods
(FEM) and Vortex Methods (VM). The review proceeds in Chapter 4 with the mathematical
formulation of the Vortex Particle Method (VPM), the numerical method characterizing the
resolution of the aerodynamic problem herein treated. The classical formulation of the VPM is
augmented with known considerations and results about performance and resolution. Chapter 5
contains the core of the present research work, the contribution of which is mainly twofold:

e it introduces variable temporal and spatial discretization techniques. These are used to
resolve the smaller scales of the fluids in “relevant zones” of the fluid volume,





