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Abstract

Wind-induced vibrations often represent a major design criterion for long-span bridges. This
work deals with the assessment and development of models for aerodynamic and aeroelastic
analyses of long-span bridges.

Computational Fluid Dynamics (CFD) and semi-analytical aerodynamic models are employed
to compute the bridge response due to both turbulent and laminar free-stream. For the as-
sessment of these models, a comparative methodology is developed that consists of two steps,
a qualitative and a quantitative one. The first, qualitative, step involves an extension of an
existing approach based on Category Theory and its application to the field of bridge aerody-
namics. Initially, the approach is extended to consider model comparability and completeness.
Then, the complexity of the CFD and twelve semi-analytical models are evaluated based on
their mathematical constructions, yielding a diagrammatic representation of model quality.

In the second, quantitative, step of the comparative methodology, the discrepancy of a sys-
tem response quantity for time-dependent aerodynamic models is quantified using comparison
metrics for time-histories. Nine metrics are established on a uniform basis to quantify the
discrepancies in local and global signal features that are of interest in bridge aerodynamics.
These signal features involve quantities such as phase, time-varying frequency and magnitude
content, probability density, non-stationarity, and nonlinearity.

The two-dimensional (2D) Vortex Particle Method is used for the discretization of the Navier-
Stokes equations including a Pseudo-three dimensional (Pseudo-3D) extension within an ex-
isting CFD solver. The Pseudo-3D Vortex Method considers the 3D structural behavior for
aeroelastic analyses by positioning 2D fluid strips along a line-like structure. A novel turbu-
lent Pseudo-3D Vortex Method is developed by combining the laminar Pseudo-3D VPM and a
previously developed 2D method for the generation of free-stream turbulence. Using analytical
derivations, it is shown that the fluid velocity correlation is maintained between the CFD strips.

Furthermore, a new method is presented for the determination of the complex aerodynamic
admittance under deterministic sinusoidal gusts using the Vortex Particle Method. The sinus-
oidal gusts are simulated by modeling the wakes of flapping airfoils in the CFD domain with
inflow vortex particles. Positioning a section downstream yields sinusoidal forces that are used
for determining all six components of the complex aerodynamic admittance. A closed-form
analytical relation is derived, based on an existing analytical model. With this relation, the
inflow particles’ strength can be related with the target gust amplitudes a priori.

The developed methodologies are combined in a synergistic framework, which is applied to both
fundamental examples and practical case studies. Where possible, the results are verified and
validated. The outcome of this work is intended to shed some light on the complex wind–bridge
interaction and suggest appropriate modeling strategies for an enhanced design.
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Chapter 1

Introduction

1.1 Motivation and scope
Long-span bridges are unequivocally one of the most remarkable types of structures. Their
size, slenderness, and architecture make the design of such structures a challenging engineering
task. Apart from the engineering aspect, bridges certainly represent lifelines to society when
it comes to commute and logistics of products for basic human needs. Thus, the safety of such
structures is of imperial importance, not only for the immediate disastrous effect in the event
of their collapse but for the aftermath as well.

The lean design of bridges, such as the Great Belt Bridge (cf. Fig. 1.1), is also their curse as
it makes them susceptible to wind-induced vibrations. Having low structural damping, these
structures can exhibit high oscillations and potential aeroelastic instabilities that can lead
to collapse. Although several bridges have collapsed prior, the unfortunate Tacoma Narrows
incident was the real eyeopener for the bridge engineering community that wind action should be
considered as a dynamic loading rather than by the pseudo-static approaches used previously.
Today, wind-induced vibrations commonly represent the main design criterion for long-span
bridges.

Figure 1.1: Great Belt Bridge - Artistic impression (picture courtesy of COWI, from www.cowi.com).
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CHAPTER 1. INTRODUCTION

All this makes the accurate representation of the aerodynamic forces essential for a safe, yet
reasonable design. Still today in the modern era of computers, experimental wind tunnel testing
is the standard for the design of major bridges, providing design forces and assuring structural
safety in terms of aerodynamic instabilities. In addition to wind tunnel tests, computer model-
ing of the aerodynamic forces has proven to be useful as it can be performed on a standard PC,
offering higher flexibility in terms of an iterative design and cost reduction. Thus, it becomes
an integral part of the common design practice.

Mathematical modeling of the aerodynamic forces is approached either by semi-analytical or
Computational Fluid Dynamics (CFD) models. The semi-analytical models directly model
the aerodynamic forces using mathematical constructions (e.g. equations) supplemented by
experimental or CFD aerodynamic coefficients that account for the fluid-structure interaction.
On the contrary, the CFD models discretize the equations of fluid mechanics in a numerical
fashion. Thus, this makes the semi-analytical models an intermediate development between
the experimental and CFD models. From a modeling perspective, both the semi-analytical and
CFD models are mathematical models. As no mathematical model is a perfect representation of
the reality, both of these models have questionable reliability in terms of simplifying assumptions
and numerical uncertainty.

Traditionally, the semi-analytical models based on experimental aerodynamic coefficients have
been used to compute the bridge response, and consequently, the design internal forces. A
multitude of semi-analytical models has been proposed over the years. The principal differences
in these types of models originate from their underlying physical assumptions. Naturally, the
huge variety of semi-analytical models poses the question on their quality and the effect of their
underlying assumptions on the structural response for the design wind.

In the past two decades, the application of CFD in bridge aerodynamics has gained consid-
erable momentum, offering substantial insight into the physics of fluid-structure interaction.
Commonly, the CFD models are used to determine the aerodynamic coefficients that serve as
an input in the semi-analytical models. These models are rather rarely employed to directly
compute the bridge response, especially when there is free-stream turbulence involved. This
is attributed to the high computational demand and numerical uncertainty, making the CFD
models not readily available for three-dimensional (3D) fully coupled aeroelastic analysis.

To address the issues of high computational demand and numerical uncertainty many CFD
methods and strategies have emerged. In particular, the two-dimensional (2D) Vortex Particle
Method (VPM) has shown a positive outcome for modeling the wind-bridge interaction with
sufficient accuracy at an acceptable computational cost. Moreover, the recent extension of the
VPM to consider random free-stream turbulence has made this method directly applicable to
2D aeroelastic analyses. On the front of three-dimensionality, the laminar Pseudo-3D VPM has
found reasonable successes for accounting the 3D structural behavior by positioning 2D CFD
strips along a 3D line-like structure.

In light of the previous points, room for improvement can be identified in terms of aerodynamic
model assessment and advancement of the VPM from the aspect of free-stream turbulence.
When the initial idea of this work was conceived, the main purpose was to introduce a meth-
odology for comparison and assessment of aerodynamic models. Such a methodology should
enable comparison on two levels, qualitatively and quantitative.
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As the work progressed over the years, the extensive use of the VPM inspired some advance-
ments of this method. Particularly, a research topic emerged in extending the Pseudo-3D
method to consider free-stream turbulence, which would effectively extend this method to per-
form aeroelastic analyses in turbulent wind conditions. Further, when using the time-domain
aerodynamic models a need presented itself for determining the transfer function between the
free-stream wind fluctuations and aerodynamic forces, known as the aerodynamic admittance.
To tackle this challenge using CFD, a method to simulate deterministic free-stream turbulence
was necessary to be developed. Ultimately, the goal of the dissertation is to present all the
developments in a coherent and synergistic framework for aerodynamic and aeroelastic analyses
of bridges.

1.2 Contribution and dissemination
Several novel methods and methodologies constitute this work. The way this dissertation is
written is to follow the necessary steps of the logical order of analysis in terms of firstly in-
troducing all models, methods or methodologies, and then proceeding with their verification,
validation or application. In such a way, the novel contribution might not be clearly distin-
guished from the state of the art, based on the dissertation structure. Thus, the purpose of
this and the next section is to delineate the contributions of the work by the author and guide
the reader as to where it can be found. Moreover, the idea of writing a monograph is to show
how the presented methods connect to one another in the global scope of bridge aerodynam-
ics. In other words, the dissertation presents a synergistic framework for analyses and model
assessment in bridge aerodynamics and aeroelasticity. It is noted that for a reader without an
extended background in the subject matter, the specific contributions will become clear as this
work progresses.

The proposed synergistic framework is presented in Fig. 1.2. Depending on a target output, the
framework is to be used to select a model combination required for specific aerodynamic and
aeroelastic analysis (cf. Tab. 1.1). With this, analyses due to turbulent or laminar free-stream
can be conducted and the response in terms of time-dependent forces or displacements can be
compared for different models.

Keeping in mind the synergistic framework, the following new methods and methodology are
introduced:

• A comparative methodology for an assessment of aerodynamic models.

This methodology is constituted of two steps, allowing both qualitative and quantitative
comparison. The first step involves evaluation of models based on their mathematical
constructions (e.g. equations). This is done by means of a previously developed model-
ing approach based on Category Theory. First, an extension of the categorical modeling
approach is proposed to consider model comparability and completeness. Then, the com-
plexity of semi-analytical and CFD aerodynamic models is evaluated. In the second,
quantitative, step the time-dependent forces or response for the aerodynamic models are
quantified for the identical input employing comparison metrics for time-histories. Nine
metrics are utilized, all constructed on a uniform basis. Seven of these metrics are adapted
from former studies, including peak, root-mean-square (RMS), phase, magnitude, probab-
ility density function (PDF), wavelet and normalized-wavelet metrics. Additionally, two
new metrics are introduced to quantify discrepancy in the potential non-stationary and
nonlinear signal features by testing stationarity using surrogates and wavelet bispectrum.
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• A Turbulent Pseudo-3D Vortex Particle Method.

This method is established by combining two previously developed methods for velocity-
based free-stream turbulence generation and the laminar Pseudo-3D method. With this,
multimode buffeting analysis can be performed using CFD in a Pseudo-3D manner. Us-
ing analytical derivations, it is shown that the span-wise correlation of the velocity is
maintained within the CFD domain between the strips.

• A method for determination of the complex aerodynamic admittance using the VPM.

Deterministic free-stream sinusoidal gusts are simulated by modeling the wakes of rotating
airfoils in the CFD domain with inflow vortex particles. Positioning a section downstream
yields sinusoidal forces and thus all six components of the complex aerodynamic admit-
tance can be determined. A closed-form analytical relation is derived to relate the inflow
particles’ circulation to the target gust amplitudes, based on an existing analytical model.

• A simple method for computation of the unsteady buffeting forces.

Based on the Fast Fourier Transform (FFT) and the principle of stable linear systems due
to periodic inputs, this method allows simple inclusion of the aerodynamic admittance in
the buffeting forces and thus avoiding rational approximation.

Where these novel methods and methodology can be found within the dissertation is noted in
the next section (Sec. 1.3). Additionally, the sections that contain these methods are identified
by the symbol (*).

Apart from methods and methodologies, several analyses in terms of comparison, verification,
and validation are performed that further add to the contribution. Particularly, a complete
verification of aerodynamic and aeroelastic analyses of a flat plate is performed for the VPM,
using the well-established analytical solution. The author is not aware of such analysis, in-
cluding verification of the aeroelastic response due to free-stream turbulence, published in the
literature.

Moreover, the similarities and discrepancies between a CFD model, taken as a reference, and
six semi-analytical models are studied from a perspective of the effect of the model assumptions
on the aerodynamic forces/response. The special aspect of this analysis is that the CFD model
is used for both flutter and buffeting analysis.

Further, Pseudo-3D analyses are performed that are of high spatial resolution in terms of the
number of CFD strips with as many as fifty. This allows consideration of a significant number
of modes.

Finally, a validation of the CFD aerodynamic admittance is performed using experimental tests
for the first time in terms of both real and imaginary parts.
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Figure 1.2: Synergistic framework for analyses and assessment of models in bridge aerodynamics
and aeroelasticity.
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Model

CFD Semi-analytical
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Analysis type
(Target output)

Fluid
Fluid

&
Static

boundary

Fluid
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Moving
boundary

Coupled
Structural

&
Fluid

Aerodynamic
force

Coupled
Aerodynamic

force
&

Structural

Static analysis
+ laminar free-stream

(Static wind coefficients)
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free-stream
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Aerodyn. admittance)

Static analysis
+ deterministic turbulent

free-stream
(Aerodyn. admittance)
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+ laminar free-stream
(Flutter derivatives)

Dynamic analysis
+ laminar free-stream
(Aerostatic response,

Flutter velocity)

Dynamic analysis
+ random turbulent

free-stream
(Buffeting response:
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Table 1.1: Models for aerodynamic and aeroelastic analyses within the synergistic framework based
on target quantities. Empty circle indicates analysis only in 2D; filled circle indicates analysis
in both 2D and Pseudo-3D. Some of the target outputs require more than one type of analysis and
hence, more than one model.
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Publications directly related to the dissertation

Most of the methods and methodologies, that are considered as a contribution of this work, are
published/submitted for publication within several scientific articles. Although the author is
the main contributor in these articles, it is important to specify and acknowledge the particular
contribution of the rest of the authors as per ethical scientific standards. The considered
articles, published/submitted before submission of this dissertation, are listed below:

• Kavrakov, I., Kareem, A. and Morgenthal, G.
"Comparison metrics for time-histories: Application to bridge aerodynamics."
Under review (Feb. 2019).

• Kavrakov, I., Argentini, T., Omarini, S., Rocchi, D. and Morgenthal, G.
"Determination of complex aerodynamic admittance of bridge decks under deterministic
gusts using the Vortex Particle Method."
Published (2019): Journal of Wind Engineering and Industrial Aerodynamics [165].

• Kavrakov, I., Legatiuk, D., Gürlebeck, K. and Morgenthal, G.
"A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge
decks."
Published (2019): Royal Society Open Science [166].

• Kavrakov, I. and Morgenthal, G.
"Aeroelastic analyses of bridges using a Pseudo-3D Vortex Method and velocity-based
synthetic turbulence generation."
Published (2018): Engineering Structures [168].

• Kavrakov, I. and Morgenthal, G.
"A synergistic study of a CFD and semi-analytical models for aeroelastic analysis of
bridges in turbulent wind conditions."
Published (2018): Journal of Fluids and Structures [169].

• Kavrakov, I. and Morgenthal, G.
"A comparative assessment of aerodynamic models for buffeting and flutter of long-span
bridges."
Published (2017): Engineering [167].

Throughout this project, Guido Morgenthal has played an essential supervisory and advisory
roles for all concepts and methods developed herein. Dmitrii Legatiuk and Klaus Gürlebeck
provided mathematical rigor to the category-theory related parts, with particular emphasis on
the formulation of the new categorical definitions. Tommaso Argentini, Daniele Rocchi and Si-
mone Omarini contribution are related to the validation of the method for determination of the
complex aerodynamic admittance. They and their team from Politecnico di Milano, prepared
and conducted the experiments that were used for validation of the CFD method for determ-
ination of aerodynamic admittance. The author was present during the model building and
instrumentation and engaged in extensive discussions. Ahsan Kareem supplied ideas and had
a contribution in a supervisory and advisory manner for the comparison metrics, particularly
to the wavelet, non-stationary and bispectrum related aspects.
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Publications indirectly related to the dissertation

Apart from the articles that directly constitute this work, the author has also contributed to
articles as a co-author during the period of this project. In contrast to the directly related
publications, these are not explicitly considered in this work and they include the following:

• Diana, G., Stoyanoff, S. [and 18 others, including Kavrakov, I.]
"IABSE Task Group 3.1 benchmark results. Part 2: Numerical analysis of 2-degree-of-
freedom bridge deck section based on experimental aerodynamics."
In press (2019): Structural Engineering International [87].

• Diana, G., Stoyanoff, S. [and 18 others, including Kavrakov, I.]
"IABSE Task Group 3.1 benchmark results. Part 1: Numerical analysis of 2-degree-of-
freedom bridge deck section based on analytical aerodynamics."
In press (2019): Structural Engineering International [88].

• Camara, A., Kavrakov, I., Nguyen, K. and Morgenthal, G.
"Complete framework of wind-vehicle-bridge interaction with random road surfaces."
Published (2019): Journal of Sound and Vibration [43].

• Abbas, T., Kavrakov, I., and Morgenthal, G.
"Methods for flutter stability analysis of long-span bridges: A review."
Published (2017): Proceedings of the ICE - Bridge Engineering [3].

As a part of the Task Group 3.1 "Super Long Span Bridge Aerodynamics" of the International
Association for Bridge and Structural Engineering (IABSE), a benchmark for code verification
for aeroelastic analyses of bridges is being developed. For this particular task, the author
supplied results for blind comparison along with participants from universities and consulting
companies worldwide. The results are included in the first two publications above. For the
framework of wind-vehicle-bridge interaction, the main code for aeroelastic analyses of bridges,
developed for this dissertation, was extended by the author to account for the vehicle-bridge
interaction. A contribution was made in the section of semi-analytical models in the review.

Developed software

Three main matlab-based codes are developed for the purpose of this work, including:

• An integrated platform for structural dynamics and aeroelastic analyses using semi-
analytical aerodynamic models;

• A module of VXflow for the generation of deterministic/random free-stream turbulence;

• A tool for comparison of time-histories.

Used software

Two software packages were used, including:

• SOFiSTiK: A commercial structural Finite Element analysis solver;

• VXflow: An in-house CFD solver based on Vortex Particle Method.

SOFiSTiK was used to obtain the dynamic characteristics in terms of mode shapes and fre-
quencies. All CFD analyses are performed using VXflow, which was supplied and modified by
Guido Morgenthal to include the inflow particles for the free-stream turbulence.
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1.3 Structure
The work is structured in seven chapters:

Chapter 2 introduces the fundamentals of bridge aerodynamics and aeroelastic phenomena.
Main developments in the field of aerodynamic force modeling are reviewed and referenced.

Chapter 3 provides the mathematical formulation and numerical discretization of the struc-
tural and aerodynamic models, as well as the modeling and simulation of random free-stream
turbulence. As a part of this chapter, two extensions of the VPM are included in terms of
the new Turbulent Pseudo-3D VPM and a method for generation of the complex aerodynamic
admittance under deterministic gusts.

The comparative methodology is presented in Chapter 4 in two parts, quantitative and qualit-
ative part. In the first part, the categorical modeling approach is revisited, then extended and
finally applied to the aerodynamic models formulated in Chapter 3. The adapted comparison
metrics for time-histories are presented in the second part.

Chapter 5 is devoted to verification and the fundamental applications of the distinctive parts
of the synergistic framework. The behavior of the comparison metrics is firstly studied on
generic signals, followed by a verification of both deterministic and random (including Pseudo-
3D verification of span-wise coherence) free-stream turbulence. Ultimately, a complete set of
aerodynamic and aeroelastic analyses of a flat plate is performed.

As a part of Chapter 6, the synergistic framework is applied for aerodynamic and aeroelastic
analyses of three long-span bridges. The purpose is to demonstrate the applicability of the
presented methods and methodology. Where possible, validation with experimental results is
provided as well.

Chapter 7 offers a summary of the work presented, along with critical remarks, conclusions,
and recommendations for further research.
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Chapter 2

Wind and Bridges: Synthesis

2.1 Historical perspective
While bridges build with ropes and planks date back to ancient China, the concept of the
modern suspension bridges is arguably attributed to the work of Fausto Veranzio published in
Machinae Novae, 1616. He envisioned a solution for a crossing that involves two parallel metal
girders, connected by wooden planks and supported on parallel chains that are mounted on
two towers. His solution resembles on what today is considered a suspension bridge. However,
it was not until the 1800s when the construction of cable-supported bridges started to gather
momentum with the ascent of the steel industry.

Unfortunately, the progress in bridge aerodynamics is predicated on devastating collapses.
Several bridges collapsed during severe storms in the 19th century, including e.g., Dryburgh
Abbey, UK (1818), Nassau, Germany (1834), Brighton Chain Pier, UK (1836), Menai Strait,
UK (1839), Tay Bridge, UK (1879), and Niagara Clifton, USA (1889). An early report by
Russel [270] back in 1839 describes the second failure of the Brighton chain-pier (cf. Fig. 2.1)

Figure 2.1: Brighton chain-pier collapse: sketch by Leut.-Col. Reid, in an article by Russel [270],
1839 (courtesy of Edinburgh New Philosophical Journal).
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in the Edinburgh New Philosophical Journal. He reported the testimony by Leut.-Col. Reid,
who was present on the spot when the collapse occurred, including the following excerpt:

The same span of the Brighton chain-pier (the third from the shore), has now twice
given away in a storm. The first time it happened in a dark night, and the storm
was accompanied by much thunder and lightning: the general opinion of those who
do not inquire into the causes of such matter was, that it was destroyed by lightning;
but the persons employed about the pier, and whose business was to repair it, were
satisfied that the first fracture was neither caused by lightning nor waters, but by the
wind.

The fracture this year was similar to the former, and cause evidently the same. This
time, it gave away half hour after mid-day, on 30th of November 1836, and a great
number of persons were there to see it.

Reid then proceeds to describe an event of a typical bridge failure including deck undulation
and breaking of hangers. Thus, even back then the engineers were aware of the ruinous effects
of the wind. In fact, early attempts to model wind as forces date back to 1759, by the engineer
John Smeaton who described the wind forces due to mean wind in the Table of Wind Force for
the Royal Society of London [315]. However, it was difficult to describe the forces due to the
gust wind speed; hence, the engineers attempted to provide remedies by ingenious solutions
such as stiffening of towers and various bracing systems.

At the beginning of the twentieth century, the bridge construction began to prosper remarkably
as a result of the inception of Deflection Theory and the advancements in metallurgy. George
Washington Bridge and Golden State Bridge broke the one-kilometer milestone in the 1930s,

Figure 2.2: Tacoma Narrows Bridge collapse (picture courtesy of Wikimedia Commons contributors,
commons.wikimedia.org).
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Figure 2.3: Alan G. Davenport Wind Loading Chain, after Isyumov [146].

promising even longer spans. However, the design and construction of cable-supported bridges
was hindered by the momentous Tacoma Narrows incident (cf. Fig. 2.2), which unfortunately
represent a pivotal point for the birth of modern bridge aerodynamics and aeroelasticity.

After just nineteen months of construction, the Tacoma Narrows Bridge opened to traffic in
July 1940. It was considered to be stunningly slender, which elicited much comment at that
time [291]. At operational wind speeds, the bridge would oscillate in such a way that vehicles
would appear and disappear as one passed the bridge, and thus, it earned the name "Galloping
Gertie" [291]. While no wind tunnel tests were performed prior to the design and construc-
tion, the violent oscillations in service led the authorities to subsequently request a dynamic
structural model and a section model for wind tunnel tests. Before the collapse, Farquhar-
son [104, 105] performed both tests on a small-scale dynamic model and wind tunnel tests on
a sectional model. Although a torsional instability did not occur during the test [291], he did
warn that the drastic advancements in bridge slenderness "render predictions exceedingly pre-
cautions and necessitate greatly extended theoretical investigations" [105]. Only three months
after completion in November 1940, the bridge collapsed due to a relatively low wind speed of
19 m/s (cf. Fig. 2.2). The collapse was documented with motion pictures, which showed signs
of torsional instability.

In the aftermath of the Tacoma incident, a task group, comprised of the renowned engineers
and scientists, O. H. Amman, T. von Kármán and G. B. Woodruff, was assigned to determine
the reason of the collapse [8]. A part of the task group’s conclusions included the following:
"At higher wind velocities torsional oscillations, when once induced, had the tendency to in-
crease their amplitude." This indicated the occurrence of the aeroelastic phenomenon torsional
flutter induced by high vertical vibrations that may have been a consequence of vortex-induced
vibrations. Describing such phenomena was intractable by the pseudo-static analyses, and the
need for new theoretical approaches became apparent.

Pioneering developments were made by Davenport [72, 73, 74] in the 1960s, who laid out the
foundation of modern bridge aerodynamics and aeroelasticity and the field of wind engineering
in general. He introduced the famous Alan G. Davenport Wind Loading Chain (cf. Fig. 2.3)
that indicates all components involved in the design of wind-resistant structures. Following
preliminary attempts that relate bridge flutter to airfoil by Bleich [26], Selberg [295] and Klöp-
per [176], Scanlan and his collaborators [280, 281, 288, 290] described the aerodynamic forces
induced by motion that can replicate coupled flutter in bridge aerodynamics. With these
research works, the field of bridge aerodynamics started to emerge and gain considerable at-
tention.

Further information on the historical perspectives of bridge aerodynamics and long-span bridges
can be found in the excellent book by Scott [291], including the works by Myata [225], Paxton
and Mun [253], Rutz and Rens [271] and more recently Larsen and Larose [191].
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2.2 Atmospheric wind
The first two links of Davenport’s Wind Loading Chain (cf. Fig. 2.3) are related to the earth
atmosphere and local terrain properties. In this section, a brief background of the fundamental
statistical concepts of atmospheric wind and turbulence is given from a perspective to be utilized
for the modeling of aerodynamic forces. The goal is by no means to provide a complete overview
on the subject matter.

Wind, or the motion of air w.r.t. the surface of the earth, is fundamentally caused by vari-
able solar heating of the earth’s atmosphere [301]. A solar variation between poles yields to
pressure and temperature differences, which together with the earth rotation and friction cause
movement of air according to the principles of thermodynamics. Four forces play the main
role for the air motion including the pressure, centrifugal, Coriolis (i.e. deviating force from a
straight line due to earth’s rotation) and friction forces. For a point sufficiently far away from
the earth’s surface, the friction forces are negligible and the mean wind velocity governed by
the first three forces is referred to as gradient wind velocity Ugr (cf. Fig. 2.4, left).

Close to the surface, the friction effects are not negligible and the influence of the terrain (second
link in Davenport’s chain) is prominent, resulting in strong wind shears and high turbulence.
This region of high retarding shear force and turbulent mixing is referred to atmospheric bound-
ary layer and can extend from a few hundred meters to several kilometers [369]. Of particular
interest in wind engineering are the lower 10 % of the atmospheric boundary layer, referred to
as the surface boundary layer [248]. The thickness of the atmospheric boundary layer depends
on the wind velocity, latitude angle, and terrain. For wind over flat surfaces, the atmospheric
boundary layer is significantly thinner than for wind over residential areas (cf. Fig. 2.4, left).

To study the wind and atmospheric turbulence, Panofsky and Dutton [248] offer two perspect-
ives. The first one is based on the fluid equations in terms of modeling the flow dynamics
in space and time. Somewhat more heuristic, the second perspective is based on observation
and measurements in terms of turbulent statistics. Herein, the statistical descriptors of turbu-
lence are discussed in terms of their physical significance, while the modeling and generation
of free-stream turbulence are discussed in Sec. 3.3.

Typically, the fluctuating velocity field is assumed as a stationary Gaussian field when the
aerodynamic forces acting on bridges are in question [368], providing significant simplifications
for description and simulation of the atmospheric turbulence. These simplifications are briefly
discussed later. Looking at the wind velocity u = u(x; t) as a stationary random process in R
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Figure 2.4: Boundary layer over flat and residential areas (left). Energy spectrum in the atmospheric
boundary layer (right) (reproduced from Kaimal and Finnigan [158]).
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domain with Cartesian coordinate system x = (x, y, z) and time t, it can be separated as

u(x; t) = u∞(x) + u∗(x; t), (2.1)

where
u∞(x) = 〈u(x; t)〉 = (U(x), 0, 0) (2.2)

is the mean wind speed for 〈·〉 denoting the time-average operation and

u∗(x; t) = (u(x; t), v(x; t), w(x; t)), (2.3)

is the fluctuating component. Typically, the coordinate system is selected such that the co-
ordinates x, y, z correspond to the fluctuating velocities u, v, w in the longitudinal, lateral and
vertical direction, respectively, while the mean wind speed U is taken to be along the x co-
ordinate (longitudinal direction).

Depending on the convention, the mean wind speed corresponds to an averaging interval of 10
minutes [145] or 1 hour [100]. Several models describe the wind profile for the boundary layer
(cf. [301, 315] for an overview). A commonly used mathematical model to describe the mean
wind profile U = U(z) in a thermally neutral atmosphere is the logarithmic law:

U = ufr

k0
ln
(

z

z0

)
, (2.4)

where k0 ≈ 0.4 is the von Kárman constant, z0 is the surface length that depends on the terrain,
and ufr is the friction or shear velocity that represents the wind stresses on the ground. The
logarithmic law in (2.4) is valid for the surface layer [248], which is of main interest in Wind
Engineering.

The simplest statistical descriptor of turbulence is the turbulence intensity TI, which is defined
for each fluctuating component as

TIu = σu

U
, TIv = σv

U
, TIw = σw

U
, (2.5)

where σa is the standard deviation of a for a ∈ {u, v, w}. Typically, turbulence intensities are
highly influenced by the terrain. In the case of Gaussian turbulence, the extreme velocity peak
corresponding to a certain probability of exceedance can be related to the turbulence intensity.

If one thinks of the atmospheric turbulence as a superposition of swirls or "eddies" with a
certain length, then a measure for the average size of an eddy is described by the turbulence
length scales [301]. Since the averaged eddy length can be measured in three directions for
three fluctuating components, there are a total of nine turbulent spatial length scales.

For e.g., the spatial length scales for points along x direction are obtained as

Lax = 1
σ2

a

∫ ∞

0
Ra(Δx)dΔx, (2.6)

where a ∈ {u, v, w} and Ra = Ra(Δx) is the spatial cross-covariance function obtained as
follows:

Rax = Rax(Δx) = 〈a(x; t)a(x + Δx; t)〉 , (2.7)
where Δx is a separation distance along the longitudinal (mean wind) coordinate x. It follows
from (2.6) that if the length scales are small, Rax is rapidly decaying and vice-versa.
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Sir Taylor [319] posed a hypothesis stating that the turbulent eddies are simply convected by
the mean wind velocity U , i.e. the turbulence is "frozen". This simply means that

a(x; t + tδ) = a(x + Utδ; t) = a(x + Δx; t), (2.8)

where tδ is a time increment and a ∈ {u, v, w}. The length scales in the longitudinal direction
can be obtained based on the autocovariance function Ra = Ra(tδ) for a time increment tδ as

Lat = U

σ2
a

∫ ∞

0
Ra(tδ)dtδ, (2.9)

which are referred to as temporal length scales from here on. Assuming Taylor’s hypothesis is
valid, then the temporal and spatial length scale in the longitudinal direction are identical, i.e.
Lat = Lax. The product Lat/U is a time scale that corresponds to the average period of the
eddies [369].

Looking at eddies as traveling waves, each eddy can be viewed as a periodic fluctuation with a
frequency f that corresponds to an eddy wavelength of U/f . The energy contained for a single
point in space is described by the power spectral density (PSD) [211], which can be obtained
from the Wiener–Khinchin based on autocorrelation function as

S∗
aa(ω) =

∫ ∞

−∞
Raa(tδ)e−iωtdtδ, (2.10)

where S∗
aa = S∗

aa(ω) is the double-sided PSD, ω = 2πf is the circular frequency and i is the
imaginary unit for a ∈ {u, v, w}. The PSD describes the energy distribution of the turbulence.
Three regions are distinguished in the PSD [158]: (i) energy-containing range, where most of
the energy is produced by shear and buoyancy; (ii) inertial subrange, where the energy cascade
occurs, i.e. transfer of kinetic energy from larger to smaller eddies; and, (iii) dissipation range,
in which small, high-frequency eddies are dissipated due to viscosity (cf. Fig. 2.4, right). Thus,
the integral of the PSD is directly related to the square of the standard deviation as

σ2
a =

∫ ∞

−∞
S∗

a(ω)dω, (2.11)

which is a measure of the kinetic energy.

The cross-spectra S∗
ab for a = a(xj; t), b = b(xk; t) and a, b ∈ {u, v, w} describes the correlation

between two points j, k in space (space cross-spectra) and between fluctuating components of
a single point (point cross-spectra) in a similar fashion as in (2.10). Based on the spectra and
cross-spectra, the complete velocity field can be described in terms of a single-sided spectral
matrix S = S(ω) as follows:

S =

⎛
⎜⎝Suu Suv Suw

Svu Svv Svw

Swu Swv Sww

⎞
⎟⎠ , (2.12)

where the off-diagonal terms are the cross-spectra.

The mean wind speed, turbulence intensity, and spectral matrix are typical turbulent measures
that are obtained from experiments on sites. Models based on both principles of fluid mechanics
and empirical observations are then utilized to describe the atmospheric wind, such as, e.g., the
logarithmic wind profile (cf. (2.4)). Several models have been developed to describe the PSD,
such as the ones being by von Kármán [336] and Kaimal [157] (cf. Solari [302] and Solari and
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Piccardo [305] for an excellent overview). The PSD models are briefly reviewed and discussed
in Sec. 3.3.

The three assumptions that may be used in some cases to idealize turbulence are the stationarity,
homogeneity and isotropy. Stationary turbulence means that the turbulent characteristics
do not change over time, i.e. they are time-invariant. Homogeneity is related to the space
invariance of the turbulence statistics. This may be true to some extend for wind tunnel
studies; however, it is an oversimplification for the atmospheric wind as its characteristics are
highly dependent on height. Lastly, isotropy assumes that there is a directional symmetry
of the turbulence characteristics. Kaimal and Finnigan [158] and Batchelor [19] give detailed
explanation of these assumptions. None of these assumptions hold for atmospheric turbulence;
however, they provide useful simplifications for analysis. Throughout this work, the turbulence
is assumed to be stationarity homogeneous and in some noted cases, isotropic.

When computing the response of a structure in the frequency domain, the spectral definition
of the wind field is sufficient. However, in case of solution in the time domain, the wind field
is required to be described as correlated time-histories. One approach of obtaining correlated
wind time-histories is by the methods for generation of multivariate stationary Gaussian random
processes [159]. These methods include the digital-filtering-based schemes in terms of Auto-
Regressive (AR) and Auto-Regressive Moving Average (ARMA) (cf. e.g. [203, 224]) or the
spectral-based schemes in terms of wave superposition (cf. e.g. [46, 79, 298]). The latter method
is of particular interest for this work and is discussed in detail in Sec. 3.3. Another approach of
obtaining wind time-histories, which is of use as inflow conditions for Large Eddy Simulation
within the CFD-based methods, is by their simulation as 2D or 3D random processes that
comply with the Navier-Stokes equations [178, 365]. The two approaches are briefly discussed
in Secs. 3.3 and 3.6.2.

The recent advances in modeling of the wind field are focused on the non-stationary and non-
Gaussian storms such as thunderstorms and typhoons. The simulation methods have advanced
significantly in the past few decades and their usage is mainly focused on applications, such as
low rise buildings, when the effects of aerodynamic damping are not as complex as for bridges in
terms of aerodynamic coupling and fluid memory (cf. e.g. Solari and De Gaetano [304], Tamura
and Kareem [315] and Tao et al. [317] for excellent summaries). While few studies exist that
apply non-stationary winds for aeroelastic analyses of bridges (cf. e.g. [54, 55]), these methods
are not well adopted yet as the description of the unsteady aerodynamic forces is based on a
stationary aerodynamic coefficients.

2.3 Bluff body aerodynamics
The fields of bluff body aerodynamics and aeroelasticity are wide; thus, this and the next section
highlight some basic concepts that are of use for the coming chapters, while comprehensive
information can be found in the excellent references [9, 27, 91, 301, 315]. Further specific
references are also provided during the discussion of some particular results. The place of these
two fields is descriptively incorporated in wind engineering through the third and fourth links
in the Davenport’s chain (cf. Fig. 2.3).

Unlike airplane wings, civil structures have irregular shapes, yielding complex fluid-structure
interaction. Bridge cross sections are typically considered as bluff bodies that involve sharp
edges, leading to adverse pressure gradients enabling transitions from laminar to turbulent
boundary layer and large circulation regions. Hunt [141] separates three regions that have
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distinct flow features, including the (i) free-stream (laminar or turbulent), (ii) near-body region
where local (signature) turbulence effect occur, and (iii) the wake. These regions are interrelated
and are governed by flow and body characteristics such as turbulent properties, viscous effects
and body shape.

The ratio between the inertial and viscous effects of the flow is of cardinal importance for the
flow features and wake behind bluff bodies. This ratio is expressed by the Reynolds number:

Re = UB

ν
, (2.13)

where ν is the kinematic viscosity, while B is a reference length, typically taken to be the width
of the body. At high Reynolds number, the inertial effects of the flow are dominant, leading
to laminar to a turbulent transition of the boundary layer. This occurs even for streamlined
bodies when there is no separation due to an abrupt change in the geometry.

In case of bluff bodies, separation occurs at moderately low Reynolds number, leading to
formation of large eddies in the wake. Increasing the Reynolds number, the flow becomes
unstable and thus, the eddies start to alternate leading to the famous von Kármán street, first
reported by Bénard in 1908, and then studied in depth by von Kármán in 1911. The frequency
of the alternating eddies is linked to the body geometry; thus, the regularity of vortex shedding
can be non-dimensiolized by the Strouhal number as

St = fshedHD

U
, (2.14)

where fshed is the vortex shedding frequency, while HD is a reference length, typically taken to
be the depth of the body. E.g., fundamental studies on circular cylinders (cf. e.g. Rohsko [266]
and Goldburg et al. [120]) indicate Strouhal number of approximately 0.2. Beyond the range
of Reynolds number in which the von Kármán street occurs, turbulent mixing prevails in the
boundary layer that helps the fluid to be transported with higher momentum [301], yielding
narrower wake (i.e. delayed separation) that entails small vortices.

When the free-stream turbulence is additionally involved, the situation is significantly more
complex. The effect of the free-stream turbulence on bluff bodies is perplexing and still not
well understood. Free-stream turbulence induces fluctuating pressures due to the instantaneous
change of direction of the wind speed (angle of incidence), which affects the local turbulence
effects by altering the separation points, and influences the wake [234]. These effects are
rather complicated and are a topic of extensive research since the 1930s from the seminal
works by Dryden [92] and Taylor [318] and is still of a field of major interest (cf. e.g. [141,
297, 366]). Generally, the free-stream turbulence can affect the transition from a laminar to a
turbulent boundary layer, particularly for length scales of the same size as the boundary layer
thickness [141]. The flow in this region is predominantly three-dimensional with propagating
disturbances and instabilities in the lateral direction occur such as the Klebanoff modes [175],
puffs and elongated structures [366].

All the above-mentioned effects contribute to the forces felt by an immersed body. Due to the
compliance of boundary conditions between the fluid and body, normal and tangential local
forces stem on the body surface. Integrated for the whole body, these local forces result in total
drag D (horizontal), lift L (vertical) and moment M (torsional) forces. Depending on the body
geometry and fluid density ρ, the aerodynamic forces can be non-dimensionalized by means of
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the static wind coefficients of drag CD, lift CL and moment CM as follows:

CD = D
1
2ρU2B

,

CL = L
1
2ρU2B

,

CM = M
1
2ρU2B2 ,

(2.15)

In light of the previously described physical processes, three types of aerodynamic forces can
be identified for a stationary bluff body, including: (i) vortex-shedding forces, (ii) forces due
to free-stream turbulence (buffeting forces) and (iii) forces due to laminar free-stream (static
forces). For an oscillating body under laminar or turbulent free-stream, an additional forcing
source is the motion that yields the (iv) self-excited forces (i.e. motion-induced forces). The
motion of the body initiates a separation of circulation-carrying eddies that are convected by
the free-stream wind. Conserving the momentum of the system, self-excited forces arise to
counter the total rotation contained in the motion-induced eddies. Describing these forces that
act on a bridge deck is one of the main goals in bride aerodynamics.

2.4 Aeroelastic phenomena
Aeroelasticity is a branch of engineering that is devoted to the studying of interactions between
the "AEI" trinity of forces, including the Aerodynamic, Elastic and Inertial forces. Arthur
R. Collar [68] conceptualized the AEI trinity in terms of a triangle such that all aeroelastic
phenomena can be described by the interaction of the AEI forces. Wind engineers often focus
on the aerodynamic forces, while using simple structural dynamics for the structure under the
linear assumption. Thus, as in this work, the terms bridge aerodynamics and aeroelasticity are
used interchangeably.

Figure 2.5 schematically depicts the structural response w.r.t. the wind speed for both laminar
and turbulent free-stream. At moderate wind-speeds for laminar free-stream, the abrupt peaks
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Figure 2.5: Aeroelastic phenomena: structural response against wind speed.
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indicate the vortex-induced vibrations as a resonant aeroelastic phenomenon. Increasing wind
aeroelastic instability occurs at a certain threshold, resulting in violent amplitudes. Beyond
this threshold, oscillations with high, but limiting amplitudes may be observed, commonly
termed as limit cycle oscillations. The structural (buffeting) response is significantly larger
for turbulent compared to laminar free-stream throughout the whole wind speed range, except
at the wind speeds where aeroelastic resonance and instability occurs. For these cases, the
influence of free-stream turbulence on the vortex-induced vibrations and aeroelastic instability
is still not well understood as it may increase or decrease the severity of the response. In
what follows, the aeroelastic phenomena, including the vortex-induced vibrations, aeroelastic
instabilities with the post-critical range, and buffeting response are briefly discussed.

Vortex-induced vibration is an aerodynamically nonlinear resonant phenomenon that involves
synchronization of the vortex-shedding and the structural vertical vibrations in a particular
narrow wind speed range. In this sense, the principal vortex-shedding frequency is close to the
structural frequency. Although the shedding frequency is linearly dependent on the velocity
(cf. (2.14)), in this narrow wind range, commonly known as lock-in, the vortex-shedding process
is controlled by the structural oscillations in terms of the amplitude and phase, leading the
principal vortex-shedding frequency to be similar to a structural across-wind frequency. The
oscillations are self-limiting due to the nonlinear aerodynamic forces leading to a constant
oscillation amplitude in the lock-in range. Specifically, the prediction of oscillation amplitude
is the major topic of research as the physical processes that are responsible for the vortex-
induced vibrations are not well understood in general for bluff bodies.

Fundamental investigations were initially conducted on circular cylinders that offer substantial
insight into the underlying physics of the phenomenon. An excellent overview can be found in
the works by Sarpkaya [278], Griffin and Koopmann [122], and Williamson and Govardhan [348].
Bluff bridge decks resemble rectangular cylinders; thus, a correlation can be found in their
behavior during vortex-induced vibrations. In terms of bridge design, vortex-induced vibrations
are an in-service issue. Thus, the prediction of the resonant amplitude is of importance in order
to satisfy a criterion such as comfort or fatigue. Vortex-induced vibrations have occurred for
several bridges including, for e.g., the Great Belt Bridge [191], Trans-Tokyo Bay Highway
Crossing [110] and Volgograd bridge. Wu and Kareem [357] provide comprehensive summary
on vortex-induced vibrations for bridge decks.

The self-excited forces play a minor role compared to the vortex-shedding forces in case of
vortex-induced vibrations. However, for the case of aeroelastic instabilities, it is exactly the
self-excited forces that are responsible for the violent oscillations of the structure. At high
wind speeds, the structural oscillations yield a distinct fluid-structure interaction in a self-
feeding manner, leading to diverging amplitudes. The total damping of the system, which is
comprised of an aerodynamic and a mechanical part, is incapable of dissipating the induced
energy by the flow, resulting in negative damping that causes the oscillations of the body to
increase with each cycle. Depending on the motion, three types of aeroelastic instabilities are
distinguished including galloping, torsional flutter, and coupled or "classical" flutter. The first
type is associated with instability in the vertical direction, the second is a rotational instability,
while the third type involves a coupled motion of both vertical and rotational oscillations.
Sections that are deep are more prone to galloping and torsional flutter, while the coupled
flutter occurs for shallow, streamlined sections that resemble an airfoil. Apart from the shape,
other factors that contributes to which type of instability would occur are the vertical and
torsional frequencies and their separation for the coupled flutter.
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Early investigations on the galloping were done by Den Hartog [78], followed by investiga-
tions on square-like sections by, for e.g., Novak [240], Parkinson and Brooks [252] and Mukho-
padhuau [231]. A preliminary identifier for galloping is the negative slope of the lift coefficient
as is related to the negative aerodynamic damping. Once this negative aerodynamic damping
surpasses the structural damping in magnitude, instability occurs. This is also known as the
Den Hartog criterion. Typically, D-type sections are prone to flutter. Thus, galloping is more
critical for cables and transmission lines rather than bridge decks. A recent literature review
on galloping is given by Piccardo et al. [256].

On several occasions, Nakamura and his coworkers [233, 235] studied on several occasions the
occurrence of a torsional flutter from a phenomenological point of view, while Washizu [345, 346]
highlighted the effect of the aspect ratio. Matsumoto et al. [216] investigated the driving
mechanisms of torsional flutter for rectangular and H-type sections, such as the Tacoma Narrows
section, which are prone to torsional flutter. In Matsumoto et al. [218], the interaction of
torsional flutter with vortex-induced vibration was highlighted, it is believed to be the case of
Tacoma Narrows failure.

As a phenomenon, coupled flutter for bridge decks finds its roots in the airfoil theory in the
fundamental works by Theodorsen [323] and Wagner [339]. For this type of aeroelastic instabil-
ity, the torsional and rotational frequency coincide, yielding coupled oscillation with an energy
transfer between modes. Studies on coupled airplane flutter go as early as in 1916, as noted
in the interesting historical perspective provided by Fung [112]. Matsumoto [216] studied the
range of width-to-depth ratio where a transition from torsional to coupled flutter occurs. They
concluded that for rectangular prisms with a width-to-depth ratio larger than 10, the instability
translates to a coupled flutter. Further general works describing the influence of parameters
on flutter can be found by Abbas and Morgenthal [4], while Larsen and Larose [191] give a
fundamental perspective on flutter of bridges. An extended literature review on the topic of
aeroelastic instabilities is provided by Abbas et al [3].

In the design procedure of bridges, it is ensured that aeroelastic instability is avoided. Beyond
the instability threshold and regardless of the type of instability, the self-feeding oscillation
ultimately exhibits high nonlinearities on both structural and aerodynamic sides leading to a
stable oscillation range, known as limit cycle oscillation. The amplitude is significantly higher
compared to vortex-induced vibrations. This phenomenon has been studied for wings and
fundamental cases (cf. e.g. Tang and Dowel [316], Dowel et al. [91] and Amandolese et al. [7]).
The design of bridges for the limit-cycle-oscillation amplitudes is still only conceptual as a
design is not feasible for such high amplitudes.

Buffeting is defined in a broad sense as the unsteady loading of a structure by velocity fluc-
tuations in the oncoming flow [301]. This is not a distinct phenomenon as the aeroelastic
resonance and instability. The sources of the buffeting forces were discussed in the previous
section. If, additionally, the structure is elastic, the total aerodynamic forces can be seen as a
nonlinear composition of the buffeting and self-excited forces. As for coupled flutter, the fun-
damentals of the buffeting originate from the airfoil theory (cf. e.g. [91, 112]), from the seminal
works by Sears [293] and Liepmann [205]. The concepts of application in wind engineering were
laid out by Davenport [72, 73]. It is also noted that the influence of free-stream turbulence on
the aeroelastic resonance and instability of bridges is still not well understood, as some studies
indicate both stabilizing and destabilizing effects for (cf. e.g. [18, 344]).

In addition to the discussed aeroelastic phenomena, other phenomena may occur such as tor-
sional divergence, i.e. aerostatic instability due to negative aerodynamic stiffness, wake buf-
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feting and rain wind-induced vibrations [301]. These are not of major concern for this work.

Apart from the comprehensive works given at the beginning of the previous section, excellent
references that cover the broad topic of wind engineering in terms of bluff body aerodynamics
and aeroelasticity are given by Solari [303], Iriwin [144], Kareem and Wu [161], Fujino and
Siringoringo [110], and Larsen and Larose [191].

2.5 Aerodynamic models
The main task of aerodynamic modeling is to describe the wind forces acting on the bridge deck.
In bridge aerodynamics and aeroelasticity, generally, three types of models can be distinguished
including experimental, semi-analytical and CFD models. Experimental models are small-scale
models of a part of the whole structures that are tested in a wind tunnel facility. As noted in the
previous chapter, the CFD and semi-analytical models are mathematical models. The former
discretizes the fluid governing equations to model the fluid-structure interaction, while the
latter accounts for this interaction by introducing aerodynamic coefficients. These aerodynamic
coefficients are obtained either experimentally or from CFD analyses. Figure 2.6 schematically
depicts the components of fluid structure-interaction for all types of models.

In what follows, a brief literature review is conducted for the mathematical models, while the
experimental models are touched upon briefly for the sake of consistency.
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2.5.1 Experimental models
Experimental wind tunnel testing is still an integral part of the design of bridges. The structural
and flow properties are scaled based on non-dimensional numbers such as the Reynolds number,
Froude number, and Strouhal number [301]. Depending on the type of tests, three types of
models can be distinguished:

i) Section model;

ii) Taut strip model;

iii) Full aeroelastic model.

The first type of model represents the strip assumption and is used to obtain the aerodynamic
coefficients such as static wind coefficients, flutter derivatives, and aerodynamic admittance.
Moreover, if the model is suspended on springs, the critical wind speeds for vortex-induced
vibrations and flutter can be obtained for an idealized 2D situation.

Taut strip models represent the deck of the bridge, without any additional structural ele-
ments [187]. It can be suspended in the two setups, static or elastic. Typically, the vertical and
torsional frequencies are targeted for the elastic setup. The advantage is that is less expensive
than the full aeroelastic models while taking several modes into account and the 3D structure
of turbulence.

Full aeroelastic models are typically used in boundary layer wind tunnels and they represent
a scaled replica of the bridge on site. Their main purpose is to obtain the bridge response
in terms of smooth and turbulent free-stream. They have been used to identify aerodynamic
coefficients in some instances as well [369].

2.5.2 Semi-analytical models
The semi-analytical models are generally phenomenological types of models as they attempt to
model either one or multiple aeroelastic phenomena. Following this, in bridge aerodynamics, the
models can be grouped as models for flutter and buffeting analyses, vortex-induced vibrations
and single-degree-of-freedom instabilities (torsional flutter and galloping). While the purpose
of the models can overlap to a certain extent, often they cannot offer a complete description of
multiple phenomena simultaneously. The models for buffeting and flutter analyses are the main
interest herein; thus, they are studied and reviewed in depth. These models revolve around two
pivotal assumptions: quasi-steady and linear unsteady assumptions.

The quasi-steady assumption is the starting point in bridge aerodynamics for modeling the
buffeting and self-excited forces. The models based on this assumption trace back to galloping of
circular cylinders (cf. [252]) and quasi-steady flat-plate theory (cf. e.g. [112]). The unsteadiness
or the so-called fluid memory is neglected in the case of quasi-steady theory. However, due to
the nonlinear relationship between the effective angle of attack and static wind coefficients, the
mathematical model of the system results in a coupled nonlinear equations of motion. The
application of the quasi-steady theory in time domain is rather straightforward, which resulted
in its extensive use over the years (cf. e.g. [179, 255]).

In order to take into account the fluid memory of the aerodynamic forces up to a certain degree,
Diana et al. [80] introduced the corrected quasi-steady model, in which the slope of static wind
coefficients is modified to account for the fluid memory at a certain reduced frequency by a
correction coefficient. This was later extended to the band superposition scheme, by splitting
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the wind frequency spectrum in bands for which different correction coefficient was applied [82].
Borri and Costa [33] extended this by approximating the static wind coefficient up to the third
order of Taylor’s expansion. A similar approach was used by Su et al. [313] where the unsteady
information contained in the flutter derivatives was used for a single reduced frequency near the
first mode yielding in a frequency-independent scheme. The effect of the aerodynamic damping
resulting from the torsional motion, described by the aerodynamic center, is neglected in some
studies (cf. e.g. [1, 312]).

The linear unsteady assumption takes into account the fluid memory in the aerodynamic forces
by frequency-dependent aerodynamic coefficients. Davenport [72, 73] adopted the concept of
linear aerodynamic admittance for line-like structures from the airfoil theory [205, 293] to
represent the unsteadiness of the buffeting forces. For the motion-induced forces, Scanlan and
his coworkers (cf. e.g. [280, 281, 283]) introduced linear frequency-dependent coefficients, i.e.
Scanlan’s flutter derivatives, which correspond to Theodorsen’s [323] analytical expression for
an airfoil. The concept of aerodynamic admittance for bridge decks is similar as for an airfoil: it
represents a transfer function between incoming wind fluctuations and forces. After establishing
the linear unsteady theory for bridge decks, many frameworks were developed for multimode
coupled buffeting and flutter analyses in the frequency domain (cf. e.g. [147, 163, 208, 368]),
supported by the fact that the flutter derivatives, wind spectra, and aerodynamic admittances
are all described in the frequency domain [284]. However, the main advantage of the time
domain is the potential for consideration of structural and aerodynamic nonlinearities. The
inherent linear unsteady behavior of the buffeting and motion-induced forces in time domain is
modeled by a linear superposition of elementary response functions. These functions in bridge
aerodynamics are conventionally termed as indicial (unit-step) or unit-impulse functions.

Scanlan et al. [288] introduced the indicial functions for bluff bodies which are the time-domain
counterpart of the aerodynamic derivatives and admittance, which for flat plate correspond
to the analytical Wagner [339] and Küssner [184] functions, respectively. The experimental
identification is cumbersome since it is difficult to simulate a step function; therefore, the
extraction of the unsteady information is convenient from the flutter derivatives (cf. e.g. [45, 69])
by means of rational approximation. Recently, Miranda et al. [76] developed a formulation based
on indicial functions that explicitly separates the inertial and circulatory contribution leading
to a consistent approach based on Wagner’s function for an airfoil.

Pointing out the redundancy in the indicial function formulation, Bucher and Lin [41] proposed
a formulation based on the impulse functions. As for the indicial function, a rational approxim-
ation is also applicable for the impulse functions [347]. Wu and Kareem [361] did a comparative
study between these two formulations and concluded generally there is no superiority between
these two kernels for the description of linear aerodynamic forces.

Boonyapinyo et al. [31] conducted one of the first comprehensive buffeting and flutter analyses
in time domain utilizing a state-space approach. Almost concurrently, Chen and Kareem [61]
formulated a framework based on impulse function, extending for aerodynamic admittance.
The latter two studies focused on computing the response using impulse functions. Based on
the indicial function formulation, several studies introduced frameworks for aeroelastic analyses
including the ones by Costa and Borri [69] and Zhang [375].

To account for the ambiguity of the aerodynamic center in the quasi-steady based model,
Øiseth et al. [244] introduced the modified quasi-steady model that interpolates the flutter
derivatives at a certain frequency using linear least-squares fit. The contribution of the unsteady
forces is crucial for the low reduced velocities, while the aerodynamic nonlinearity governs the
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low reduced velocity part. Utilizing this logic, Chen and Kareem [59] developed a hybrid
nonlinear model by utilizing the quasi-steady model for the low-frequency component of the
wind spectrum based on which response, the high-frequency component of the wind is linearized.
Diana et al. [85] validated this premise for a similar model with experiments.

Recent developments in the semi-analytical models attempt to describe nonlinear aerodynamic
behavior. One group involve models approximating the of dynamic hysteretic wind coefficients
using rheological and polynomial models (cf. e.g. [84, 86]) or neural networks (cf. [356]), while
the other is based on nonlinear convolution with fading memory scheme using Volterra series
(cf. [362, 364]). From the recent development, the Volterra series is the closest model to describe
the underlying physics of bridge aerodynamics.

Apart from the models for buffeting and flutter analyses, semi-analytical models in bridge
aerodynamics are developed with a special purpose to determine vortex-induced vibration (cf.
e.g. [83, 96]) and nonlinear single-degree-of-freedom flutter (cf. e.g. [236, 373]).

2.5.3 Computational fluid dynamics models

With the application of the numerical CFD methods for Wind Engineering problems, a new
field, Computational Wind Engineering, has emerged. The CFD methods have been used for a
wide variety of applications such as aerodynamic and aeroelastic analyses of buildings, bridge
decks, riser pipes, off-shore wind turbines, etc. Blocken [29] gives an excellent perspective of
the realm of Computational Wind Engineering. For the purpose of this study, the narrow
application of CFD modeling in Computational Bridge Aerodynamics is of interest.

There are several ways how to discretize the fluid equations and solve numerically the fluid-
structure interaction. Perhaps, the most widely applied method is the Finite Volume Method,
which discretizes the Navier-Stokes equations on a Eulerian grid, enabling conservation of
the volume for all cells and the overall flow volume. Another approach is the conventional
Finite Element method that utilizes the variational formulation of the fluid equations for the
discretization. Perhaps the most straightforward grid-based method is the Finite Difference
Method, which was attractive in the early beginnings of Computational Wind Engineering.

As an alternative to the grid-based methods, the Lagrangian 2D Discrete Vortex Method has
proven to be robust and efficient for flow simulation in a relatively wide field of application,
especially for free-field bluff body aerodynamics problems. Within this method, the vorticity
field is discretized by particles, carrying concentrated circulation [70]. This has enabled to
study the flow past complex geometries with a good accuracy for a reasonable computational
cost.

As all scales of turbulence cannot be resolved using Direct Numerical Simulation due to com-
putational restraints, another issue that is of particular importance for the CFD models is
the turbulence modeling. Turbulent models are based on spatial-averaging Large Eddy Simu-
lation (LES), time-averaging Reynolds Averaged Navier-Stokes (RANS) or their combination
Detached Eddy Simulation (DES). Moreover, particular care should be also put on modeling the
contribution of turbulence on the subgrid scales. Mostly, the models for turbulence modeling
have been utilized for the grid-based CFD methods. Comprehensive information on grid-based
methods and turbulence modeling can be found in, e.g., Ferziger and Peric [107].
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Grid-based methods

Commonly, grid-based methods have served for CFD models for obtaining the static wind
coefficients and flutter derivatives. A significant number of studies have been published in
recent years; thus, only a fraction of these are mentioned herein.

Fujiwara et al. [111] reported one of the earliest applications of the Finite Difference Method to
study the aerodynamic behavior of a bridge deck in terms of static wind coefficients and even
determined the vortex-induced vibration amplitudes. Using the same method, Kuroda [183]
studied the Great Belt section on a stationary grid without a turbulence model at a Reynolds
number in the order 105. The mean pressure distribution and static wind coefficients were
obtained and the agreement with the experimental static wind coefficients was evaluated as
good noting the discrepancies in the lift due to insufficient modeling of railings and crash
barriers.

Two early attempts to utilize the Finite Volume Method are the one by Selvam et al. [296]
and the one Bruno et al. [37, 38]. The latter studies utilized the code FLUENT by Ansys to
determine the static wind coefficients and flutter derivatives of a bridge deck, as well as to study
the effect of barriers. Similarly, studies that involve of the flutter derivatives and static wind
coefficients based on the Finite Volume Method in 2D involve the ones by Vairo [332], Nieto et
al. [239] and Brusiani [40]. The latter study also provided a comparison of sub-grid turbulence
models and noted that differences may arise based on the choice of a turbulence model.

With the ascent of computer power, CFD studies have emerged that consider the 3D fluid
behavior for applications in bridge aerodynamics under laminar free-stream. Bai et al. [15]
utilized a 3D DES Finite Volume CFD model to determine the flutter derivatives and noted
that the need for 3D analyses is crucial for bluff bridge sections. Comparing the pressure on
the deck due to sinusoidal motion, Sarkic et al. [277] noted the limitation of the 2D Unsteady
RANS compared to 3D LES.

Motion-induced indicial functions were obtained using the Finite Element Method and RANS
turbulence model by Turbelin and Gibert [330] and Brar et al. [35]. Fransos and Bruno [109]
used the standard implementation of the Finite Volume Method in FLUENT to determine the
Wagner function. Generally, the time-step is a major culprit for numerical uncertainties when
ideal unit-step functions are applied for all CFD method.

Applications based on the grid-based CFD methods have seldom focused on directly determin-
ing the aeroelastic response for laminar free-stream. Fradsen [108] determined the free oscilla-
tion flutter using a Finite Element based code Spectrum by Anysis for the Great Belt Bridge.
She found the critical limit to be in good correspondence with wind tunnel tests. Utilizing
3D LES, Sarwar and Ishihara [279] determined the vortex-induced vibrations for a bluff bridge
deck including counter-measures. To validate their implementation, they initially compared
their results for a rectangular prism to former experimental results.

The recent trend for applications of the grid-based methods is to determine the critical velocity
including the limit cycle oscillation amplitudes. E.g., Ying et al. [370] determined the limit
cycle oscillation amplitudes for two bridge decks using 2D RANS Finite Element CFD model
and compared the results with experiments, yielding fair correspondence, while Lee et al. [196]
utilized similar CFD model and an implicit coupling scheme to determine the limit cycle oscil-
lation amplitudes of Tacoma Narrows bridge. However, the author is not aware of a grid-based
CFD application considering 3D structural behavior yet.
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Aeroelastic and aerodynamic analyses involving free-stream turbulence and grid-based CFD
methods are scarce. A part of this may be attributed to the lack of computationally efficient,
yet sufficiently validated methods for the inflow boundary conditions. In a rudimentary fashion,
the aerodynamic admittance and gust induced indicial functions have been computed by Ujema
et al. [331], Bruno et al. [39] and Turbelin and Gibert [330]. The author is not aware of other
grid-based CFD study presenting 3D buffeting analysis, other than the one by Kim et al. [172].
They used a RANS Finite Element CFD model which did not involve verification of the free-
stream turbulence within the CFD domain.

Discrete Vortex Method

Pioneering works for the application of CFD in bridge aerodynamics could be traced in the
late 80s and early 90s of the past century. One of the first applications of the Discrete Vortex
Method for bridge decks was by Bienkiwicz [22] and Kutz [21]. They used this method to
compute the pressure and static wind coefficients of a static rectangular prism and a bridge
deck.

A few years later, Walther [342] and Larsen [341] used their code DVMflow to study the
aerodynamic behavior of a bridge deck on numerous occasions. Initially, they mostly conduc-
ted aerodynamic analyses to determine the static wind coefficients and flutter derivatives (cf.
e.g. [190, 193]). Their code was also used by Farsani et al. [106] to compute indicial functions
for a bridge deck and by Ebrahimnejad et al. [95] to develop a reduced-order model of the
flutter derivatives.

Similar applications in terms of only aerodynamic analyses (i.e. no aeroelasticity) were made by
Taylor and Vezza [320], who used their code to compute the aerodynamic forces due to forced
oscillation of a square cylinder and later to study the stability of a footbridge [321]. Further,
Ge and Xiang [115] compared the Discrete Vortex Method to grid-based methods based on the
flutter derivatives and static wind coefficients for several bridge decks. Although differences
were noted, they were not substantial.

Morgenthal’s [226, 227] implementation of the 2D Vortex Method, VXflow, was used to com-
pute the static wind coefficients and flutter derivatives for several bridge decks, as well as for
aeroelastic analyses in terms of vortex-induced vibrations of the Great Belt Bridge and flut-
ter analysis of the Millau viaduct. Results were compared to wind tunnel tests for several
case-studies, yielding good correspondence.

Wilden and Graham [349, 350] developed a Pseudo-3D vortex method that accounts for the
3D structural behavior of riser-pipes during vortex-induced vibrations by positioning 2D fluid
strips along the structure. Based on this idea, Morgenthal and McRobie [229] introduced their
implementation of a laminar Pseudo-3D vortex method in the field of bridge aerodynamics to
study vortex-induced vibrations. Later, VXflow was successfully validated for vortex-induced
vibrations of Niteroi bridge for an enhanced GPU implementation [229]. Abbas [2] attempted
to utilize the laminar Pseudo-3D method in VXflow for flutter analysis with few slices and five
modes.

An important milestone of the 2D vortex method was overcome by Prendergast [257] and
McRobie [258] in terms of modeling of free-stream turbulence. They introduced a velocity-
based free-stream turbulence generation that can simulate free-stream turbulence in the CFD
domain. Incorporating this method in Morgenthal’s VXflow, the first application to study 2D
buffeting response of a bridge deck using the Discrete Vortex Method was made.
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Rassmusen et al. [261] used the velocity-based turbulence generation method and Walther’s
DVMflow to determine the aerodynamic admittance of the Great Belt Bridge. Using the same
implementation, Hejlesen et al. [134] determined the aerodynamic admittance for four bridge
decks and validated a part of the results with former wind tunnel studies.

Recently, Tolba and Mogenthal [326] extended the laminar Pseudo-3D Vortex Method to ac-
count for the isotropic free-stream turbulence by introducing a particle-based turbulence gen-
eration. With this, the idea of using a Pseudo-3D CFD method for buffeting analysis was
established. The difference between this method and Prendergast’s velocity-based method is
that the circulation of the inflow particles is generated directly instead as a by-product of a
velocity field. The authors argued that with the velocity-based turbulence generation method
"the correlations are not maintained in the process of their transformation to inflow vortex
particles" [326]. However, it was not shown to what extent is the loss of the span-wise correla-
tion.

2.5.4 Comparative studies
A large number of semi-analytical models have stimulated the need for model assessment.
Several comparative studies have emerged that compare various semi-analytical aerodynamic
models based on various quantities of interest. Additionally, the semi-analytical models have
been compared with CFD models and experimental models in terms of verification and valid-
ation.

A comparison of results from the frequency- and time-domain computations for the linear
unsteady model has been targeted by several studies. To perform such a comparison for the
buffeting response, Chen and Kareem [61] utilized the RMS and averaged PSD. Øiseth et
al [245] also compared several formulations of the elementary indicial and impulse functions
with the frequency-domain counterpart based on the RMS and PSD as quantities of interest.
The critical flutter velocity was additionally compared directly as a unique parameter. Similarly,
the critical flutter limit has been a quantity of interest for several other comparative studies
(cf. e.g. [194, 273]).

Another comparison perspective is to quantify the influence of the aerodynamic assumptions on
the aeroelastic response. Petrini et al. [255] compared several time-domain models based on the
quasi-steady and linear unsteady assumptions. Their comparative discussion on the buffeting
response is based on the PDF, mean values and envelopes (i.e. peak) quantities and by looking
at the time-histories qualitatively. Wu and Kareem [359] performed an extensive comparison of
linear and non-linear aerodynamic models in the time domain. Therein, the buffeting response
was compared for identical input wind time-histories based on the RMS and looking at the time-
histories qualitatively. Most of the studies that introduce nonlinear semi-analytical models (cf.
e.g. [59, 85, 86, 360]) also compare or validate the buffeting response, qualitatively, based on the
time-histories, or, quantitatively, in terms of RMS, peak and seldom PSD. Moreover, various
schematics are often offered (cf. e.g. [255, 364]) to ease the understanding of how these models
relate to one another and which is of higher complexity, i.e. better.
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2.6 Research questions
This section presented a compact overview of the different components for modeling of the wind
effects on bridges. Following a brief introduction of atmospheric turbulence and bridge aero-
dynamics and aeroelasticity, an emphasis was put on the review of mathematical aerodynamic
models and their comparative studies. In light of this, several research gaps can be identified.

First, the complexity of semi-analytical and CFD aerodynamic models in terms of their math-
ematical constructions has not been evaluated based on a sound mathematical approach such
as graph or category theory. Although one can intuitively say which model is more complex,
and hence, better, such an approach is necessary to formally support this kind of statements.

Second, there is still no procedure based on well-established local or global quantities (metrics)
for comparison of time-dependent models in bridge aerodynamics. Although the RMS and
PSD may be sufficient for comparison of linear models under Gaussian input, a more intrinsic
procedure is required to quantify the nonlinear and non-stationary features of the nonlinear
aerodynamic models.

Third, there is still the possibility to employ the velocity-based turbulence generation to the
Pseudo-3D Vortex Methods. Using this type of free-stream turbulence would offer certain
advantages over the particle-based method such as partial consideration of anisotropy.

Finally, a CFD method for the determination of the aerodynamic admittance under determin-
istic gusts has not yet been developed. Using such a method would make the the determination
of the six-component complex aerodynamic admittance feasible.

In the following chapters, an attempt is made to partially address these yet unresolved problems.
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Chapter 3

Modeling in Bridge Aerodynamics

3.1 Introduction
Having reviewed some of the recent developments in the field of bridge aerodynamics previously,
this chapter presents the theoretical formulation and certain aspects of selected and novel
aerodynamic models and methods. Before describing the structure of this chapter and its
contents, the coupled model of wind-bridge interaction is approached conceptually.

The coupled model consists of two models describing the immersed structure and surrounding
fluid. Thus, the modeling domain D entails a body domain G and a fluid domain F , such
that D = G ∪ F , including an interface B that encompasses G, as depicted in Fig. 3.1 (left).
Aside from the structural and fluid model, appropriate boundary conditions are satisfied on
the interface. In what follows, the structural and fluid models are formulated, with particular
emphasis on the aerodynamic forces acting on the body as a consequence of the fluid-structure
interaction.

Initially, the structural model is briefly outlined in Sec. 3.2 as it is of secondary importance
for the purpose of this work. Next, the modeling random free-stream turbulence is revisited in
Sec. 3.3, firstly by describing the free-stream turbulence using the spectral representation, and
then by explaining the generation process of fluctuating wind velocities as stationary Gaussian
random processes. In this sense, the free-stream turbulence then serves as an input for the
aerodynamic models of the buffeting forces.

Since the semi-analytical aerodynamic models for bridge decks rest on the foundations of the
analytical model for a flat plate, this model is first briefly discussed in Sec. 3.4 in terms of steady,
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Figure 3.1: Coupled model of wind-bridge interaction: formulation (left); discretization of the struc-
tural model (right).
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linear unsteady and quasi-steady aerodynamic assumptions. These assumptions represent the
pivotal points of twelve semi-analytical models defined in Sec. 3.5. Ten of these models are
implemented in a computer code that is used in the applications’ chapters. Moreover, a simple
method for computation of the buffeting forces based on the FFT is given in Sec. 3.5.7.

Further, a CFD model based on the VPM as a numerical discretization scheme is formulated in
Sec. 3.6. Two particular extensions of the VPM models are revisited including the velocity-based
method for simulating random free-stream turbulence and the laminar Pseudo-3D method.
These two extensions represent a basis for the new turbulent Pseudo-3D VPM, introduced in
Sec. 3.6.4.

Aerodynamic coefficients represent the link between the CFD and semi-analytical models.
Methods for determination of the aerodynamic coefficients are briefly recalled towards the
end of the chapter, in Sec. 3.7. As a part of this section, a novel method for the determination
of the complex aerodynamic admittance under deterministic gusts is introduced as well.

Apart from introducing new methods, the main notion of the chapter is to formally define the
aerodynamic models, which complexity is evaluated utilizing a category theory-based approach
in the next chapter. As the foundation of this modeling approach is the mathematical con-
structions (i.e. equations), the models are defined in such a manner to offer a clear distinction
where assumptions are made in their formulation.

3.2 Structural model
The governing equations of the body (i.e. bridge deck) can take a wide variety of forms depend-
ing on the physical assumptions made. Adopting weaker assumptions, the structural model can
be formulated in a complex manner in terms of nonlinear partial differential equations from
solid mechanics. Alternatively, the structural model can be constructed in a simplified fashion
by reducing dimensions in terms of plate and beam theories and posing stronger assumptions
such as linearity. As the structural model is of secondary importance in this work, the bridge
deck is modeled by the Euler-Bernoulli linear beam theory using the standard Finite Element
Method for the spatial discretization (cf. e.g. [20, 67]).

The domain of the body B (cf. Fig. 3.1, left) is reduced to a beam model in R
3 domain with

Nn ∈ N number of nodes at discrete locations xsj = (xsj, ysj, zsj), for j ∈ {1, . . . , Nn} (cf.
Fig. 3.1, right). Since most of the aerodynamic models are developed for sectional models in R

2

domain, each node corresponds to three degrees of freedom in the vertical direction h = h(xs; t),
lateral direction p = p(xs; t) and torsional rotation about the bridge axis α = α(xs; t). The
governing equation of motion for a system in dynamic equilibrium is

M oq̈o + Coq̇o + Koqo = f o, (3.1)

where M o, Co, Ko are the mass, damping and stiffness matrices, respectively, while
f o = f o(t) is the force vector comprised of the drag D = D(xs; t), lift L = L(xs; t) and moment
M = M(xs; t) forces at all locations xs. The displacement vector is denoted as qo = qo(t) along
with its corresponding time derivatives q̇o = q̇o(t) and q̈o = q̈o(t).

The size of the coupled matrices and vectors in (3.1) is in R
3Nn×3Nn and R

3Nn×1, respectively;
hence, the numerical solution can be computationally demanding for large Nn. Under the linear
assumption, (3.1) can be reduced by the mode generalized approach as

Mq̈ + Cq̇ + Kq = f , (3.2)
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where the modal mass, damping and stiffness matrices are

M = ΨT M oΨ, C = ΨT M oΨ, K = ΨT KoΨ, (3.3)

respectively, while the modal displacement q = q(t) and force vectors f = f(t) yield

q = ΨT qo, f = ΨT f o, (3.4)

respectively, for (·)T denoting transpose operation. The modal velocity q̇ = q̇(t) and accel-
eration q̈ = q̈(t) vectors can be obtained in a similar fashion as the modal displacements.
In (3.3) and (3.4), Ψ is the mode shape matrix which is formulated from the mode shapes ψ
(i.e. eigenvectors), which obtained from the eigenvalue analysis of (3.1).

The modal matrices in (3.3) are diagonal with size in R
Nm×Nm , while the length of the modal

vectors is in R
Nm×1, where Nm ∈ N is the number of selected vibration modes. Although the

maximum number of modes is Nm = 3Nn, usually few modes have a significant contribution to
the response for wind-induced loads. Hence, the system order is significantly reduced, rendering
efficient computation of (3.2).

The aerodynamic forces acting on the bridge deck are typically formulated in R
2 domain, while

their span-wise correlation is imposed by the structural motion and the wind field in case of
free-stream turbulence. This is a consequence of the strip assumption, which will be discussed
as a part of the critical remarks in the last chapter. Therefore, it is useful to define the structural
model (SM) in R

2 as a three-degree-of-freedom system as

SM :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mpp̈ + cpṗ + kpp = D,

mhḧ + chṗ + khh = L,

mαα̈ + cαα̇ + kαα = M,

(3.5)

where mp = mh is the inertial mass; mα is the mass moment of inertia; cp, ch, cα are the
damping coefficients and kp, kh, kα are the spring stiffnesses, all in terms of lateral p, vertical
h and rotational α displacements, respectively. For this system, the modal displacement and
force vectors yield q = (p, h, α) and f = (D, L, M), respectively. The advancement in time
of (3.2) and (3.5) is performed by the standard Newmark-beta method (cf. e.g. [67]).

3.3 Synthetic free-stream turbulence
In this section, the method for the generation of free-stream turbulence as a stationary Gaussian
process is briefly explained. Initially, the free-stream turbulence is described based on the
spectral representation, utilizing the adapted von Kármán spectra for engineering applications.
The wind velocities are then generated as multivariate stationary Gaussian random processes.

The generated wind velocities are used for two purposes, namely: (i) to obtain buffeting forces
for the semi-analytical aerodynamic models, and (ii) to simulate free-stream turbulence for the
CFD model. The latter requires further steps to impose the governing equations of the fluid,
which will be discussed later in Secs. 3.6.2 and 3.6.4.
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3.3.1 Spectral representation of the wind field
Consider a zero-mean homogeneous fluctuating fluid velocity u∗ = u∗(x) as a continuous
stationary stochastic process in R

3. The correlation velocity tensor R = R(Δx) for separation
distance Δx = (Δx, Δy, Δz) can be obtained in a similar fashion as in (2.7) (cf. e.g. [19, 211]).
Taking an ensemble average for the tensor product of the velocity vectors yields

R(Δx) = 〈u∗(x) ⊗ u∗(x + Δx)〉 , (3.6)
where ⊗ denotes the tensor product and 〈·〉 the ensemble-average operation. Same symbol
is used for time and ensemble averaging since all stochastic processes are considered to be
mean-ergodic in this work. The correlation tensor is Hermitian, i.e. R(Δx) = R(−Δx) =
R(Δx), for (·) denoting conjugate complex operation. Analogous to the Wiener-Khinchin the-
orem (2.10), the spectral velocity tensor S = S(κ) is obtained by taking the Fourier transform
of (3.6) as

S(κ) = 1
(2π)3

∫ ∞

−∞
R(Δx) exp(−iκ · Δx)dΔx, (3.7)

where
∫∞

−∞ dΔx =
∫∫∫∞

∞ dΔxdΔydΔz and κ = (κx, κy, κz) is the wavenumber vector. Similarly
as the correlation tensor, the spectral tensor is Hermitian, i.e. S = S.

For isotropic turbulence and incompressible flow [19], the spectral tensor becomes

S = E

4πκ4

(
Iκ2 − κ ⊗ κ

)
, (3.8)

where E = E(κ) is the energy spectrum of turbulence, I is the identity tensor, while κ is the
wavenumber magnitude, obtained as

κ = ‖κ‖ =
√

κ2
x + κ2

y + κ2
z. (3.9)

Based on the energy spectrum, the turbulent kinetic energy (TKE) per unit mass is

TKE =
∫ ∞

0
E(κ)dκ = 1

2
〈
‖u∗(x)‖2

〉
= 1

2
(
σ2

u + σ2
v + σ2

w

)
= 3

2σ2
iso, (3.10)

where σ2
j = σ2

iso for j ∈ {u, v, w} is the variance of turbulent wind fluctuations. This relates
the turbulence intensity (cf. Sec. 2.2) to the energy spectrum. von Kármán [336] suggested an
interpolation formula of the energy spectrum based on reasoning from Navier-Stokes equations.
The well-known von Kármán energy spectrum (cf. e.g. [247, 352]) is given by

E = 55
9

Γ∗(5/6)√
πΓ∗(1/3)

σ2
isoκ

4L5
T

[1 + (kLT )2]17/6 , (3.11)

where Γ∗ is the gamma function and LT is the von Kármán length scale. By specifying the
length scale and variance of the fluctuations, the complete wind field is defined analytically.
However, it is difficult to measure the spectral tensor directly.

Alternatively, the velocity field can be described by the spectral matrix (cf. e.g. [212, 247]),
which is significantly easier to be determined from experiments. The relation between the two-
sided spectral velocity matrix S∗

u = S∗
u(κx, Δy, Δx) and spectral tensor for points in the y − z

plane is
S∗

u(κx; Δy, Δx) =
∫ ∞

−∞
S(κ) exp [i(κyΔy + κzΔz)] dκ⊥, (3.12)

where
∫∞

−∞ dκ⊥, =
∫∫∞

∞ dκydκz, with the spectral matrix being Hermitian, i.e. S∗
u = S∗

u. Prin-
cipally, there is no additional information in the spectral matrix compared to the spectral
tensor [212, 213]. However, it is significantly easier to obtain the parameters that define the
spectral matrix from a practical aspect. The entries of this matrix are defined in what follows.
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One-point spectra

For a single point, the spectrum in the longitudinal direction is obtained by substituting (3.11)
and (3.8) in (3.12) and setting Δy = Δz = 0. Proceeding with the integration [212, 352], the
longitudinal spectrum yields

S∗
u(κx) = S∗

uu(κx; 0, 0) = Γ∗(5/6)√
πΓ∗(1/3)

σ2
uLT

[1 + (κxLT )2]5/6 . (3.13)

From this, the more commonly used single-sided spectrum Su(f), which is dependent on the
frequency f = Uκx/(2π), is obtained as

Su(f) = 2S∗
u(f) = 4π

U
S∗

u(κx). (3.14)

The von Kármán length scale is common (i.e. resultant) to all three components of the spectral
tensor. From (3.13), the longitudinal length scale Lu is obtained as

Lu =
√

πΓ∗(5/6)
Γ∗(1/3) LT

∼= 3
4LT . (3.15)

In this form, Lu is interpreted in the same way as in Sec. 2.2, i.e. as averaged length of the
eddies. Changing (3.14) and (3.15) into (3.13), the von Kármán longitudinal spectrum becomes

fSu(f)
σ2

u

= 4fLu/U

[1 + 70.8(fLu/U)2]5/6 . (3.16)

In a similar manner as for the longitudinal spectra, the lateral and vertical spectra can be
obtained as

S∗
j (κx) = S∗

jj(κx, 0, 0) = 1
2

Γ∗(5/6)√
πΓ∗(1/3)

σ2
j LT [1 + 8/3(κxLT )2]

[1 + (κxLT )2]11/6 , for j ∈ {v, w} . (3.17)

Taking the lateral Lv and vertical Lw length scales as

Lv = Lw = 1
2

√
πΓ∗(5/6)
Γ∗(1/3) LT

∼= 3
8LT , (3.18)

and using (3.14) in (3.17), the single-sided Kármán lateral and vertical spectra yield

fSj(f)
σ2

j

= 4fLj/U [1 + 755.2(fLj/U)2]
[1 + 283.2(fLj/U)2]11/6 , for j ∈ {v, w} . (3.19)

Some properties can be deduced from the analytical one-point spectra for isotropic turbulence.
First, all one-point cross-spectra are zero, i.e. Sjk/Sjk = 0 for j, k ∈ {u, v, w} such that j �= k;
hence, the variance of the cross velocity component is also zero σjk = 0. Second, it can be
gathered from (3.18) and (3.15) that the longitudinal length scale is two-times larger than the
lateral and vertical length scales, i.e. Lu/Lv = Lu/Lw = 2. Third, the ratio between the
longitudinal and lateral or longitudinal spectra amounts to Sv/Su = Sw/Su = 4/3 for a large
part of the frequencies.
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Two-point spectra

The cross-spectra between points xj = (xj, yj, zj) and xk = (xk, yk, zk) at distance Δxjk =
(0, Δyjk, Δzjk) is denoted as

S∗
ajbk

(κx) = S∗
ab(κx; Δyjk, Δzjk), for a, b ∈ {u, v, w} ; j, k ∈ {1, . . . , Nwp} , (3.20)

where Nwp ∈ N is the number of points in the fluid domain. The cross-spectra can be obtained
in a similar way as the point spectra, by substituting (3.8) and (3.11) in (3.12) for ‖Δxjk‖ �= 0.

A more meaningful physical interpretation is obtained by the use of coherence, i.e. the normal-
ized cross-spectra. The magnitude-squared coherence is given by

coh2
ajbk

(f) = coh2
ab(f ; Δyjk, Δzjk) =

�
[
Sajbk

(f)
]2

+ �
[
Sajbk

(f)
]2

Sa(f)Sb(f) , (3.21)

where � (·) and � (·) denote the real and imaginary parts, respectively. As derived by Irwin
[143], the coherences for the von Kármán energy spectrum yield the following:

cohujuk
(f) = 0.994

[
A

5/6
t K5/6(At) − 0.5A

11/6
t K1/6(At)

]
,

cohvjvk
(f) = 0.994

[
A

5/6
t K5/6(At) + 283.2(fLv/U)2

1 + 755.2(fLv/U)2 A
11/6
t K1/6(At)

]
,

cohwjwk
(f) = 0.994

[
A

5/6
t K5/6(At) − 1

1 + 755.2(fLw/U)2 A
11/6
t K1/6(At)

]
,

(3.22)

where K5/6 = K5/6(At) and K1/6 = K1/6(At) are modified Bessel functions of second kind and

At = 0.747‖Δx‖
Lu

√
1 + 70.8(fLu/U)2. (3.23)

Isotropy also implies that the cross-coherence cohujwk
= 0; however, cohuv �= 0 [181].

Wind engineering adaptation

Isotropic conditions are rarely met in the atmospheric boundary layer. The measured turbu-
lence variances in the atmosphere depend on the height above ground, roughness length, mean
wind velocity, and Coriolis parameter. Generally, the relation σw < σv < σu is obtained for
anisotropic turbulence. From a collection of measurements close to the ground, Solari and
Piccardo [305] give estimates of the turbulence ratios of 〈σv/σu〉 = 0.75 and 〈σv/σw〉 = 0.50.
Similarly, the ratio of the length scales do not agree with the ratio of 2 obtained previously for
the von Kármán spectra, i.e. 〈Lu/Lv〉 = 4 and 〈Lu/Lw〉 = 10.

To obtain a design spectra, a generic spectral function, such as (3.16) and (3.19), is fitted to
measurement data using parameters such as the length scales. Various spectral functions have
been proposed in the literature as the von Kármán spectra are not consistent with the atmo-
spheric conditions and Kolomorgov’s hypotheses in the high-frequency range due to anisotropy
and shear (i.e. inhomogeneity) [301]. Some of the most widely used models of spectral distri-
bution include the ones by Haris [132], Kaimal [157], and ESDU [100] (cf. [248, 302, 305] for
an excellent overview). While these models usually result in a better fit to measurements, the
main disadvantage is that they are mostly empirical and do not have a general energy spectrum
(cf. (3.11)); thus, they lack spectral tensor description of the velocity field (cf. (3.8)).
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3.3. Synthetic free-stream turbulence

Furthermore, the von Kármán coherence does not comply with the measurements as a con-
sequence of the anisotropic behavior. Based on the principle of geometric similarity, Daven-
port [73, 74] introduced a simple, yet useful, expression for the coherence. Extended for all
three directions [305], Davenport coherence is given as follows:

cohjk = cohajbk
(Δx; f) = exp

(
− f

U
cx · |Δx|

)
, (3.24)

where cx = (Cx, Cy, Cz) > 0 is the coherence decay coefficient vector, and | · | denotes a point-
wise absolute value. The concept of geometric similarity implies that the coherence w.r.t. the
normalized distance fΔj/U for j ∈ {x, y, z} is similar, and coh → 1 for f → 0. This is not the
case for the von Kármán coherence (cf. Fig. 3.2, right). There has been many modifications
of the Davenport coherence (cf. Solari [305] for discussion and review). In some formulations,
(3.24) contains nine coherence decay coefficients, which can be used to fit the measured data.
Vickery [334] proposed to utilize the second norm instead of the absolute value in (3.25). The
extended format [267, 305] of Vickery’s coherence reads

cohjk = cohajbk
(Δx; f) = exp

(
− f

U
‖cx 	 Δx‖

)
, (3.25)

where 	 denotes a point-wise multiplication. This formulation is termed as Vickery coherence.

To describe the free-stream turbulence, the von Kármán point-spectra (cf. (3.16) and (3.19)) and
Vickery coherence (cf. (3.25)) are used in this work. The Davenport coherence (3.24) is utilized
in some instances for CFD-based free-stream turbulence to simplify the Vickery coherence.
Since aerodynamic forces in the span-wise direction are neglected, the lateral spectrum amounts
to Sv = 0. Further, the point cross-spectra is neglected, i.e. Suw = 0. The reason for this is
due to the particular simulation method of free-stream turbulence for the CFD model, which
will be discussed in Sec. 3.6.2. The general formulation of the spectral matrix finally yields

Sajak
= Sajak

(Δx; f) =
√

SaSacohjk exp (−i2πfθjk) , (3.26)
where a ∈ {u, w} and θjk is the phase angle for points separated in the stream-wise direction.
Based on Taylor’s hypothesis [194], this angle is obtained as

θjk = Δxjk

U
. (3.27)
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Figure 3.2: Properties of von Kármán spectra: ratio between vertical and longitudinal fluctuations
(left); comparison of von Kármán spectra velocity coherence for points with different lateral separation
with the Davenport coherence. If there is only lateral separation the Davenport coherence is similar
to the Vickery coherence.
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CHAPTER 3. MODELING IN BRIDGE AERODYNAMICS

The incentive for using the von Kármán spectra is that they are based on the Navier-Stokes
equations and the energy spectrum, which gives a physical representation of the turbulence
field to a certain extent. This is of particular importance for the simulation of free-stream
turbulence for the CFD model. Moreover, the 4/3 ratio of the lateral and vertical spectrum
w.r.t. the longitudinal spectrum is retained as there is local isotropy in the inertial subrange
[248] (cf. Fig. 3.2, left). Several studies (cf. e.g. [44, 140, 254]) have reported that the von
Kármán describes relatively well the atmospheric turbulence with for the design of structures
with low natural frequencies [301]. The condition of the coherence to asymptotically tend
to unity for low frequencies is generally not true in atmospheric [212, 214] or wind tunnel
conditions [187]; however, several studies have shown the principle geometric similarity to be
sufficiently adequate for wind engineering purposes (cf. e.g. [44, 140, 182, 254, 305]). With
this, a rather flexible description of the spectral matrix (cf. (3.26)) is obtained.

It is noted that to obtain synthetic free-stream turbulence that satisfies the continuity condition
of the Navier-Stokes equations, a description based on the spectral tensor is required [178].
This is not of particular importance for the semi-analytical models; however, it can result in
a loss of the TKE for the CFD model. For atmospheric turbulence, Mann [212] proposed
such tensor based on the rapid distortion theory, which has been validated with measurements
from the atmosphere [75, 212]. Since the free-stream turbulence herein is simulated as a one-
dimensional multivariate process, rather than two- or three-dimensional, the continuity equation
is additionally imposed for the CFD model, as discussed further in Sec. 3.6.2.

3.3.2 Generation of stationary Gaussian processes
Once the spectral matrix is defined, the next step involves the generation of spatially correlated
wind time-histories as random stationary Gaussian processes using the spectral method (cf.
e.g. [79, 298, 299]). Initially, the concept of spectral representation for a univariate process is
explained. Based on the same principles, the generation of the wind field as a multivariate
process is established.

Univariate process

Consider a zero-mean univariate one-dimensional random process u = u(t) with two-sided
spectrum S∗

u = S∗
u(ω). Utilizing the spectral representation by Priestley [259], a random process

can be described using a stochastic integral as a

u(t) =
∫ ∞

−∞
exp (iωt) dϑ(ω), (3.28)

where ϑ = ϑ(ω) is a complex random process with random increment dϑ = dϑ(ω), describing the
random phases and spectral amplitudes. Assuming the spectrum is continuous and S∗

u(ω) ≥ 0,
a normalized version of the spectral process (cf. e.g. [210, 249]) is obtained as

ϑ∗(ω) =
∫ ω

−∞
dϑ(ω1)√
S∗

u(ω1)
dω1, (3.29)

which simplifies (3.28) as

u(t) =
∫ ∞

−∞
exp (iωt)

√
S∗

u(ω)dϑ∗(ω). (3.30)
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3.3. Synthetic free-stream turbulence

The increments dϑ∗ of the normalized spectral process (i.e. normalized random Fourier incre-
ment) are orthogonal; thus, they satisfy the following orthogonality conditions:

〈dϑ∗(ω)〉 = 0,〈
dϑ∗(ω)dϑ∗(ω)

〉
= dω,〈

dϑ∗(ω1)dϑ∗(ω2)
〉

= 0, for ω1 �= ω2.

(3.31)

Rewriting (3.30) as

u(t) =
∫ ∞

0
exp (iωt)

√
S∗

u(ω)dϑ∗(ω) +
∫ 0

−∞
exp (iωt)

√
S∗

u(ω)dϑ∗(ω)

=
∫ ∞

0
exp (iωt)

√
S∗

u(ω)dϑ∗(ω) +
∫ ∞

0
exp (−iωt)

√
S∗

u(−ω)dϑ(−ω),
(3.32)

and since the increments are Hermitian for real processes i.e. dϑ∗(−ω) = dϑ∗(ω) [46], the
spectral representation of u = u(t) reduces to

u(t) = 2�
[∫ ∞

0
exp (iωt)

√
S∗

u(ω)dϑ∗(ω)
]

, (3.33)

which represents a Fourier-Stieltjes integral. The normalized Fourier increment can be described
by dϑ∗(ω) = �dω, where � = �(ω) is a complex-valued, uncorrelated white noise with unit
variance; hence, (3.33) yields

u(t) = 2�
{∫ ∞

0
exp (iωt)

√
S∗

u(ω)�(ω)dω
}

. (3.34)

Assuming constant spectral amplitudes, the white noise can be represented using a random
phase ϕR ∼ U [0, 2π) for each harmonic, where U denotes the uniform distribution. Taking this
into account, the discrete form of (3.34) yields

u(t) = 2�
⎡
⎣Nf −1∑

l=0

√
S∗

u(ωl)Δω exp
[
iωlt + iϕR

l

]⎤⎦ , (3.35)

where Nf ∈ N is the number of discrete frequencies and Δω is the increment of the circular
frequency. It is easy to realize from (3.35) that FFT can be used to generate random signals
by introducing a random phase for a prescribed spectral density.

Multivariate process

In the case of a multivariate one-dimensional correlated process, the fluctuating velocity field
can be discretized on Nwp number of points as follows [249]:

u∗(x; t) =⇒ u∗(t) =
{
u1(t), . . . , uNwp(t), w1(t), . . . , wNwp(t)

}
. (3.36)

In a similar fashion as for a univariate process (cf. (3.28)), the velocity field can be described
as

u∗(t) =
∫ ∞

−∞
exp (iωt) H(ω)dϑ∗(ω), (3.37)
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CHAPTER 3. MODELING IN BRIDGE AERODYNAMICS

where now ϑ∗ is a normalized Fourier increment vector corresponding to the 3Nwp points,
satisfying the following orthogonality conditions:

〈dϑ∗(ω)〉 = 0,〈
dϑ∗(ω)dϑ∗T (ω)

〉
= dωJNwp ,〈

dϑ∗(ω1)dϑ∗T (ω2)
〉

= 0, for ω1 �= ω2.

(3.38)

where JNwp is a unit matrix (all ones) of size in R
Nwp×Nwp . The matrix H = H(ω) satisfies

the condition
S∗

u = HHT , (3.39)
where S∗

u = S∗
u(ω) is the two-sided spectral matrix which is obtained from (3.26). Thus, in the

same analogy to (3.30) for S∗
u, the H matrix contains information regarding the spectral density

of the velocity at each point in the diagonal terms. In addition, information regarding the
correlation between different points is contained in the off-diagonal terms. Since S∗

u is positive
definite, H is obtained in (3.39) using Cholesky decomposition. The matrix H represents a
complex, lower triangular matrix and it can be represented as

H =
√

H 	 H 	 exp(Θ), (3.40)

where
Θ = tan−1 [� (H) 
 � (H)] , (3.41)

for 
 denoting the point-wise division.

There are various ways to discretize (3.37), akin to (3.35). Taking (3.40) and (3.41) into account,
the efficient discretization by Ruan and McLaughlin [269] and Ding et al.[89] is utilized herein,
yielding the following for each process in u(t):

aj(t) = 2
√

Δω�
⎧⎨
⎩

Nwp∑
k=1

Nf −1∑
l=0

|Hjk(ωl)| exp
[
iωklt + iΘjk(ωl) + iϕR

kl

]⎫⎬
⎭ , (3.42)

where j ∈ {1, . . . , Nwp}, a ∈ {u, w}, ϕR ∼ U [0, 2π) is a random phase angle, ωl = lΔω+Δω/2 is
the single indexing frequency; ωkl = lΔω+k/NwpΔω is the double indexing frequency, Nf ∈ N is
number of discrete frequencies which corresponds to the upper cutoff frequency ωmax = ΔωNf ,
for frequency increment Δω. It is clear from (3.42) that besides the summation over the
frequencies, there is a summation over all points, accounting for the cross-correlation. Only the
vertical and longitudinal fluctuating velocities are considered in (3.42) and (3.36). Additionally,
the one-point cross-spectrum is neglected, i.e. Suw = 0. Therefore, the summation in (3.42)
is only over Nwp instead of 2Nwp, resulting in independent generation of the longitudinal and
vertical fluctuations.

Numerical implementation using the Fast Fourier transform

Looking at (3.42), it is obvious that one may take advantage of the FFT to improve the
computational efficiency for the generation of wind fluctuations. Noting that H is a lower
triangular matrix, (3.42) can be reformulated as

aj,p = aj(pΔt) = 2
√

Δω�
⎛
⎝ j∑

k=0
Cjkp

⎞
⎠ , (3.43)
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3.4. Analytical model: Flat plate

where a ∈ {u, w}, p ∈ {0, . . . , Ns −1}, Ns = 2Nf is the number of time-steps such that Ns ∈ N,
Δt is the time-increment,

Cjkp =
Ns−1∑
l=0

Bjkl exp
(

i
2π

Ns

lp
)

, (3.44)

where

Bjkl =

⎧⎪⎨
⎪⎩

|Hjk(ωl)| exp
[
iΘjk(ωl) + iϕR

kl

]
, for 0 ≤ l < Nf ,

0, for Nf ≤ l < Ns.
(3.45)

It can be seen that (3.44) is the inverse FFT of (3.45), which can be solved efficiently utilizing
standard FFT libraries. Depending on the definition of the inverse FFT, (3.44) might require
multiplication by the number of steps Ns.

3.4 Analytical model: Flat plate
The fundamentals of the modeling of forces in bridge aerodynamics essentially rests on the
classical airfoil theory. To be able to assess the semi-analytical aerodynamic models, quantify
the effect of aerodynamic assumptions and provide an intrinsic discussion, the essentials of the
classical airfoil theory are briefly revisited herein. Thus, the goal is not to provide an extensive
overview, rather form foundations for the formulation of the semi-analytical models. Hence,
the expressions for the aerodynamic forces are given directly, based on pioneering studies such
as the ones by Wagner [339], Küssner [184], Theodorsen [323], Sears [293] and von Kármán and
Sears [338], which are summarized in the excellent works by Jones [154], Fung [112], Bisplinghoff
et al. [23], and more recently by Dowel [91].

The airfoil is assumed to be infinitely thin, i.e. as a flat plate with chord B in R
2 (cf. Fig. 3.3,

left). Two degrees of freedom are considered to completely describe the flat plate motion, in
the vertical h and rotational α directions, corresponding to the lift L and moment M forces,
respectively. The stiffness center is positioned at the middle of the flat plate, i.e. xs = (0, 0).
At angle α = 0, the mean wind speed U is parallel to the flat-plate. The behavior of the
aerodynamic forces can be fully described for three states, including steady motion, oscillation,
and free-stream vertical gust w. For these states, the following assumptions hold: the flow is
potential, the disturbance of the velocity potential is small (i.e. linear superposition principle
applies) and the flow leaves the trailing edge smoothly (i.e. the Kutta condition).

Before proceeding further, it is useful to define the following non-dimensional relations, which
will be used throughout this work:

τ = tU

B
, K = ωB

U
, K∗ = K

2 , Vr = 2π

K
= U

fB
, (3.46)

where τ is the reduced time; K is the reduced frequency w.r.t. a circular frequency ω of
motion or gust; K∗ is the reduced frequency for half chord; and Vr is the reduced velocity.
In the following, the aerodynamic forces are obtained for steady, unsteady and quasi-steady
aerodynamics.
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Figure 3.3: Flat plate aerodynamic model: aerodynamic forces acting on a flat plate (left); sources
of vorticity due to motion and free-stream gust (right).

3.4.1 Steady aerodynamics
Consider a flat plate under a mean wind speed U at static angle αs (i.e. time-independent). For
a steady flow the forces are time-independent, i.e. L = L(xs, αs) and M = M(xs, αs). Based
on the Kutta-Jukowski theorem, the total lift acting on the airfoil at angle αs is obtained by
integrating the net strength of the bound vortex sheet γb = γb(x, αs) as

L = −ρU
∫ B/2

−B/2
γb(x)dx = ρUΓb, (3.47)

where Γb = Γb(xb) is a concentrated bound vortex strength at xb = (xb, zb). The bound vortex
sheet strength γb is dependent on the downwash velocity wa = wa(x) on the surface of the flat
plate. Since γb can be analytically determined (cf. e.g. [23, 112]), the analytical solution for
the lift and moment yield

L = −1
2ρU2B2παs, M = 1

2ρU2B2 π

2 αs. (3.48)

From (3.48), it can be gathered that the resultant lift force is acting at the front quarter-point,
i.e. the concentrated vortex is positioned at xb = −0.25B. Comparing (2.15) and (3.48), the
lift and moment coefficients yield

CL = 2παs = C ′
Lαs, CM = π

2 αs = C ′
Mαs, (3.49)

where the C ′
L = dCL/dαs and C ′

M = dCM/dαs are the derivatives of the lift and moment
coefficients w.r.t. αs, as (3.49) is obviously a linear expression.

3.4.2 Unsteady aerodynamics
Consider a flat plate in an unsteady flow. The aerodynamic forces originate from the mo-
tion of the flat plate and free-stream gusts, for which the following three elementary cases
are distinguished: translatory harmonic motion (Case 1), rotational harmonic motion (Case 2)
and free-stream sinusoidal vertical gust (Case 3). For the motion-induced forces due to har-
monic oscillations (Case 1 and Case 2), complete closed-form expressions were first given by
Theodrsen [323]. Herein, the formulation by von Kármán and Sears [338] and Sears [293] is
used for all elementary cases, as it offers more explicit physical interpretation.

In an unsteady flow, the bound vortex sheet is time-dependent, i.e. γb = γb(x; t) for −B/2 ≤
x ≤ B/2 (cf. Fig 3.3, right). Further, there is a vortex sheet in the wake that is induced by the
motion with strength γw = γw(x; t) for B/2 ≤ x < ∞. The strength of the bound vortex sheet
can be separated as γb = γ0 + γ1, where γ0 is the quasi-steady part, which would be the total
circulation if the wake had no effect, while γ1 is the wake-induced part, which corresponds to the
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3.4. Analytical model: Flat plate

strength of the wake vortex sheet γw based on the Kelvin circulation theorem. The self-excited
aerodynamic forces are obtained using the law of conservation of momentum (which is directly
related to the total vortex sheet strength). Hence, the aerodynamic forces are constituted of
three parts, namely: (i) quasi-steady part, corresponding to γ0; (ii) wake part, corresponding
to γ1; and (iii) apparent mass, corresponding to the inertial effects. The aerodynamic forces
are dependent on the downwash velocity wa = wa(x; t) on the plate surface. For the two cases
of oscillations, the lift and moment yield the following:

Case 1. Translatory oscillation: wa(x; t) = ḣ(t)

LQS
ḣ

= −1
2ρU2B2π

(
α + ḣ

U

)
, LAM

ḣ = −1
4ρB2π

(
Uα̇ + ḧ

)
, LW

ḣ = LQS
ḣ

[1 − C(K∗)] ,

MQS
ḣ

= −LQS
ḣ

B

4 , MAM
ḣ = 0, MW

ḣ = −LW
ḣ

B

4 .

(3.50)

Case 2. Rotational oscillation: wa(x; t) = xα̇(t) for −B/2 ≤ x ≤ B/2

LQS
α̇ = −1

2ρU2B2π
0.25Bα̇

U
, LAM

α̇ = 0, LW
α̇ = LQS

α̇ [1 − C(K∗)] ,

MQS
α̇ = 0, MAM

α̇ = − π

128ρc4α̇, MW
α̇ = −LW

α̇

B

4 ,

(3.51)

where the superscripts QS, W and AM correspond to the quasi-steady, wake and apparent mass
parts, respectively, while C = C(K∗) is the Theodorsen complex function given as

C = H
(2)
1

H
(2)
1 + iH

(2)
0

, (3.52)

for H
(2)
0 = H

(2)
0 (K∗) and H

(2)
1 = H

(2)
1 (K∗) being Hankel functions of second kind.

Next, consider a harmonic motion comprised of translatory and rotational oscillations (i.e. Case
1 and 2 combined). The total downwash velocity of the flat plate wa = wa(x; t) is then

wa = ḣ + αU + α̇x. (3.53)

Applying the results from (3.50) to the first two terms and from (3.51) to the last term in (3.53),
the unsteady self-excited aerodynamic force yield the following:

LUS
se = −π

4 ρB2
(
ḧ + Uα̇

)
− 1

2ρU2B2πC(K∗)
(

α + ḣ

U
+ 0.25Bα̇

U

)
,

MUS
se = −π

8 ρB3
(

Uα̇ + B

16 α̈
)

+ 1
2ρU2B2 π

2 C(K∗)
(

α + ḣ

U
+ 0.25Bα̇

U

)
,

(3.54)

which is exactly the form given by Theodorsen [323].

The unsteady buffeting forces due to free-stream sinusoidal gust w = w(x; t) = w0 sin(ωt) can
be obtain analogous to (3.50) and (3.51). Instead of the influence of the wake, in this case, the
unsteadiness in the aerodynamic forces originates from uneven downwash velocity distribution.
Denoting this contribution by the superscript E, the aerodynamic forces yield
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Case 3. Sinusoidal gust: wa(x; t) = w0 exp[iω(t − x/U)] for −B/2 ≤ x ≤ B/2

LUS
b = −LQS

w + LE
w = −LQS

w + LQS
w [1 − χ(K∗)] = −1

2ρU2B2πχ(K∗)w

U
,

MUS
b = −LUS

b

B

4 = 1
2ρU2B2 π

2 χ(K∗)w

U
,

(3.55)

where χ = χ(K∗) is the Sears complex aerodynamic admittance, given as

χ = (J0 − iJ1) C + iJ1, (3.56)

where J0 = J0(K∗) and J1 = J1(K∗) are Bessel functions of the first kind.

Summing up the buffeting and self-excited parts, the total unsteady aerodynamic forces yield

LUS = −π

4 ρB2
(
ḧ + Uα̇

)
− 1

2ρU2B2π

[
C(K∗)

(
α + ḣ

U
+ 0.25Bα̇

U

)
+ χ(K∗)w

U

]
,

MUS = − π

16ρB3
(

Uα̇ + Bα̈

8

)
+ 1

2ρU2B2 π

2

[
C(K∗)

(
α + ḣ

U
+ 0.25Bα̇

U

)
+ χ(K∗)w

U

]
.

(3.57)

The first term in each expression of (3.57) corresponds to the apparent mass effect. Each term
in the square brackets represents an angle corresponding to a particular motion component or
the gust. Thus, these terms can be realized as an effective unsteady angle of attack

αUS
e = C(K∗)

(
α + ḣ

U
+ 0.25Bα̇

U

)
+ χ(K∗)w

U
. (3.58)

The unsteady forces in (3.57) are of mixed nature, i.e. they contain frequency- and time-
dependent terms. Wagner [339] and Küssner [184] formulated the unsteady problem in pure
time-domain (in fact, chronologically earlier than Theodorsen [323] and Sears [293]), by means
of indicial functions corresponding to elementary unit-step motion or gust. The unsteady
aerodynamic forces LUN = LUN(xs; τ) and MUN = MUN(xs; τ) dependent of the reduced time
τ are given as follows:

LUN = −π

4 ρU2 (h′′ + Bα′) − 1
2ρU2B2π

⎧⎨
⎩
∫ τ

−∞
Φse(τ − τ1)

[
α′(τ1) + h′′(τ1)

B
+ 0.25α′′(τ1)

]
dτ1

+
∫ τ

∞
Φb(τ − τ1)

w′(τ1)
U

dτ1

}
,

MUN = − π

16ρB2U2
(

α′ + α′′

8

)
+ 1

2ρU2B2 π

2

⎧⎨
⎩
∫ τ

−∞
Φse(τ − τ1)

[
α′(τ1) + h′′(τ1)

B
+ 0.25α′′(τ1)

]
dτ1

+
∫ τ

∞
Φb(τ − τ1)

w′(τ1)
U

dτ1

}
,

(3.59)
where Φse = Φse(τ) and Φb = Φb(τ) are the Wagner and Küssner indicial response functions
corresponding to unit step motion and sharp-edged gust, respectively. The prime subscript of
the time-dependent terms in (3.59) denotes differentiation w.r.t reduced time, such that

h′ = dh

dτ
= dt

dτ

dh

dt
= dt

dτ
ḣ = B

U
ḣ, h′′ = d2h

dτ 2 =
(

dt

dτ

)2 d2h

dt2 + d2t

dτ 2
dh

dt
= B

U

dt

dτ
ḧ = B2

U2 ḧ.

(3.60)
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Similar expressions can be obtained for the rotation. The duality between the frequency and
time-domain in (3.57) and (3.59) is realized by means of Fourier-integral superposition, as
noted by Garrick [113]. Hence, the relations between the functions of Wagner-Theodorsen and
Küssner-Sears yield

Φse(τ) = 1
2πi

∫ ∞

−∞
C(K∗)

K∗ exp(iK∗2τ)dK∗, Φb(τ) = 1
2πi

∫ ∞

−∞
χ(K∗)

K∗ exp [iK∗(2τ − 1)] dK∗,

(3.61)
respectively, for τ > 0. It is noted that the reduced time is based on full chord herein, instead
of half chord as commonly adopted (cf. e.g. [23, 113]). The preceding integrals are singular
at the origin; hence, they are evaluated using the Cauchy’s residue theorem. As the integrals
yield relatively complicated relations, it is often resorted to approximate forms of Φse and Φb

(cf. e.g. [23, 112]), such as:

Φse
∼= 1 − 0.165 exp(−0.089τ) − 0.335 exp(−0.6τ),

Φb
∼= 1 − 0.5 exp(−0.26τ) − 0.5 exp(−2τ),

(3.62)

which were obtained by Jones [153] and Sears and Sparks [294], respectively. As noted by Gies-
ing et al. [118], Φb in (3.62) is for a gust acting at the leading edge of the flat plate. Theodorsen
and Sears functions are depicted in Fig. 3.4 (left), more conveniently w.r.t. the reduced velocity.
Both are complex-valued, meaning there is a phase difference between the aerodynamic forces
and corresponding motion or gust. Analogous, Wagner and Küssner functions (cf. Fig. 3.4,
right) give the rise-time due to unit-step input motion and gust, respectively, at τ = 0. In
essence, all of these functions describe the influence of fluid memory.

3.4.3 Quasi-steady aerodynamics

In quasi-steady aerodynamics, it is assumed that the aerodynamic forces are not influenced by
the wake effect or non-uniformity of the gust distribution, i.e. unsteadiness of the flow. In other
words, the effect of fluid memory is neglected. This corresponds to the following asymptotic

Vr = π/K ∗ [-]
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Figure 3.4: Unsteadiness of aerodynamic forces acting on a flat plate: real and imaginary parts
of the frequency-dependent Theodorsen (C, cf. (3.52) ) and Sears (χ, cf. (3.56)) functions (left);
approximation (cf. (3.62)) of the time-domain indicial self-excited Wagner Φse and buffeting Küssner
Φb functions (right).
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CHAPTER 3. MODELING IN BRIDGE AERODYNAMICS

cases (cf. Fig. 3.4):
lim

Vr→∞
C(Vr) = 1, lim

Vr→∞
χ(Vr) = 1,

lim
τ→∞ Φse(τ) = 1, lim

τ→∞ Φb(τ) = 1.
(3.63)

For these limiting cases, it can be gathered from from (3.50), (3.51) and (3.55) that the forces
due to the wake and uneven velocity distribution tend to vanish. Hence, using (3.63) in (3.57)
or (3.59), the quasi-steady aerodynamic forces yield

LQS = −π

4 ρB2
(
ḧ + Uα̇

)
− 1

2ρU2B2π

(
α + w

U
+ ḣ

U
+ 0.25Bα̇

U

)
,

MQS = −π

8 ρB3
(

Uα̇ + B

16 α̈
)

+ 1
2ρU2B2 π

2

(
α + w

U
+ ḣ

U
+ 0.25Bα̇

U

)
.

(3.64)

It is noted that in some formulations of the quasi-steady theory (cf. e.g. [112]), the apparent
mass effect is not taken into account completely. Analogous to the forces, the quasi-steady
effective angle of attack is obtained from (3.58) as

αQS
e = α + w

U
+ ḣ

U
+ 0.25Bα̇

U
. (3.65)

3.5 Semi-analytical models
Having introduced the fundamentals of flat plate aerodynamics, the semi-analytical models of
aerodynamic forces for bridge decks are presented in this section. In fact most of these models
are based on the principles of steady, quasi-steady and unsteady aerodynamics of a flat plate.
In essence, the quasi-steady and unsteady state can be considered as aerodynamic assumptions.
These two assumptions represent a pivotal point for most of the semi-analytical models; hence,
it is useful to define them for bridge decks in a more formal manner.

Adapted from Fung [112], the quasi-steady assumption is defined for the purpose of this work
as follows:

Definition 3.1 (Quasi-steady assumption). The aerodynamic characteristics of a bridge deck
for a time-variable angle of attack at any instant of time are the same as the characteristics
for an equivalent constant angle of attack.

FD
FL

xs
pα

M

U + u

w

B

h

L

D

HD

Figure 3.5: Coordinate system of three-degree-of-freedom wind-bridge interaction.
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3.5. Semi-analytical models

Correspondingly, the linear unsteady assumption is defined as follows:

Definition 3.2 (Linear unsteady assumption). The aerodynamic characteristics of a bridge
deck for a time-variable angle of attack, at any instant of time, are the same as the character-
istics considering the evolution of the angle of attack for small amplitudes, where linearity and
the superposition principle apply.

The wind-structure interaction is described for the system depicted in Fig. 3.5. The deck is
with width B and depth HD. The structural model is the one defined in (3.5) for three degrees
of freedom. For convenience, three contributions are distinguished in the force vector (and
its components) f = f(f s, f b, f se), corresponding to the static f s = f s(αs) (due to mean
wind), buffeting f b = f b(t) and self-excited f se = f se(t) parts of the aerodynamic forces. A
total of ten models are considered, namely: steady (ST), linear steady (LST), quasi-steady
(QS), linear quasi-steady (LQS), corrected quasi-steady (CQS), modified quasi-steady (MQS),
mode-by-mode (MQS), complex mode-by-mode (CMBM) and hybrid nonlinear (HNL) model.
All these models are implemented in a computer code, including the generation of fluctuating
wind velocities. Moreover, two advanced models, the modified nonlinear (MNL) and nonlinear
unsteady (NLU), are briefly outlined for the purpose of model assessment using the categorical
modeling approach in the next chapter.

3.5.1 Steady model
First, the ST model is introduced. It is essentially based on (3.48), taking that the static wind
coefficients can be nonlinear (cf. Fig. 3.6). In this case, the steadiness refers to the structure,
i.e. the aerodynamic forces are independent of the motion [255], although it may be argued
that the terminology implies steady flow. Nevertheless, the buffeting forces are accounted for
in a quasi-steady manner. The ST model is formulated as

ST :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D = FL sin ϕw + FD cos ϕw, L = FL cos ϕw − FD sin ϕw, M = FM ,

FD = 1
2ρU2

r BCD(αe), FL = −1
2ρU2

r BCL(αe), FM = 1
2ρU2

r B2CM(αe),

αe = αs + ϕw, ϕw = arctan
(

w

U + u

)
, Ur =

√
(U + u)2 + w2,

(3.66)

where αs is the angle of attack at static equilibrium due to static aerodynamic forces and
ϕw = ϕw(t) is the dynamic angle of attack due to free-stream turbulence, both constituting the
effective angle of attack αe = αe(t). The resultant velocity is denoted as Ur. From (3.66) it
can be gathered that for an arbitrary trend of the static wind coefficients CD, CL and CM , the
aerodynamic forces are nonlinearly dependent on the effective angle of attack. Thus, the static
and buffeting forces do not abide by the superposition principle.

3.5.2 Linear steady model
The static wind coefficients from wind tunnel experiments are usually determined up to a certain
angle of attack (e.g. ±15 deg). Hence, extrapolation is required for effective angles outside
this range for the aerodynamic forces in (3.66). Alternatively, the aerodynamic forces may be
linearized at the static angle of attack that also offers mathematical simplifications. In the case
of streamlined bridge decks, this is a fair assumption for the lift and moment coefficients as
they are generally linear within this range (cf. Fig. 3.6).
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Nonlinear

Linearized

CD CL CM

ααα

Figure 3.6: Typical nonlinear and corresponding linearized static wind coefficients of a bridge deck:
drag (left); lift (center) and moment (right).

For e.g., using Taylor’s expansion for the lift force in (3.66) yields

L|αs = 1
2ρ[(U + u)2 + w2]B {[−CL(αs) − C ′

L(αs)ϕw] cos(ϕw) − [CD(αs) + C ′
D(αs)ϕw] sin(ϕw)} ,

(3.67)
where C ′

L = C ′
L(αs) and C ′

D = C ′
D(αs) are the derivatives of the lift and drag coefficients

at the static angle of attack αs. Further, using small angle approximation (i.e. sin(ϕw) =
tan(ϕw) = ϕw and cos(ϕw) = 1 − ϕ2

w/2) and neglecting the squared terms of fluctuating
velocity products, (3.67) is simplified to

L = 1
2ρU2B

[
−CL − C ′

L

w

U
− CD

w

U
− 2CL

u

U

]
, (3.68)

where CL = CL(αs) and CM = CM(αs). The first term in the brackets corresponds to the static
part Ls, while the other terms correspond to the buffeting part Lb. Similar expressions can be
obtained for the drag and moment forces. Based on this, the LST model yields

LST :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = Ds + Db, L = Ls + Lb, M = Ms + Mb,

Ds = 1
2ρU2BCD, Ls = −1

2ρU2BCL, Ms = 1
2ρU2B2CM ,

Db = 1
2ρU2B

[
2CD

u

U
+ (C ′

D − CL)w

U

]
,

Lb = −1
2ρU2B

[
2CL

u

U
+ (C ′

L + CL)w

U

]
,

Mb = 1
2ρU2B2

(
2CM

u

U
+ C ′

M

w

U

)
.

. (3.69)

3.5.3 Quasi-steady model
Introducing the motion-induced contribution to the effective angle of the ST model in (3.66)
(cf. e.g. [33, 58, 179]), the QS model is obtained as

QS :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = FL sin ϕD + FD cos ϕD, L = FL cos ϕL − FD sin ϕL, M = FM ,

FD = 1
2ρU2

rDBCD(αeD), FL = −1
2ρU2

rLBCL(αeL), FM = 1
2ρU2

rMB2CM(αeM),

αej = αs + α + ϕj, ϕj = arctan
(

w + ḣ + mjBα̇

U + u − ṗ

)
,

Urj =
√

(U + u − ṗ)2 + (w + ḣ + mjBα̇)2, for j ∈ {D, L, M} ,

(3.70)
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3.5. Semi-analytical models

where ϕj is the dynamic angle of attack including wind and motion terms, while mj coeffi-
cients specify the position of the aerodynamic center [27]. The preceding expressions com-
ply with Definition 3.1. When compared with flat plate quasi-steady aerodynamics (cf. (3.64)
and (3.65)), it can be gathered that the QS model in bridge aerodynamics additionally accounts
for the aerodynamic nonlinearity in the static wind coefficients (i.e. quasi-steady nonlinearity).
However, the apparent mass effects are disregarded in (3.70).

The aerodynamic center mj specifies a point at which an equivalent (resultant) downwash
velocity due to angular motion is positioned. In the case of a flat plate, it can be seen from (3.65)
that the aerodynamic center corresponds to the front quarter-point, i.e. mj = 0.25. Specifying
the same point in bridge aerodynamics can result in significant underestimation of the critical
velocity corresponding to torsional instability. For a flat-plate, the contribution of the angular
velocity is canceled out due to the apparent mass forces (cf. (3.64)). In bridge aerodynamics,
the self-excited forces are dependent on the downwash at multiple points due to large flow
separation [359]. Hence, an equivalent point should be obtained by selecting an appropriate
quasi-steady state. In this case, this is done by utilizing the flutter derivatives. However, there
is no well-established method for obtaining this point. This will be discussed further in Ch. 6.

3.5.4 Linear quasi-steady model
Similarly, as for the LST model, the LQS model is obtained by linearizing the QS model at
the static angle of attack, employing the same assumptions as in (3.67) and (3.68). The LQS
model yields the following formulation:

LQS :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = Ds + Db + Dse, L = Ls + Lb + Lse, M = Ms + Mb + Mse,

Ds = 1
2ρU2BCD, Ls = −1

2ρU2BCL, Ms = 1
2ρU2

r B2CM ,

Db = 1
2ρU2B

[
2CD

u

U
+ (C ′

D − CL)w

U

]
,

Lb = −1
2ρU2B

[
2CL

u

U
+ (C ′

L + CL)w

U

]
,

Mb = 1
2ρU2B2

(
2CM

u

U
+ C ′

M

w

U

)
,

Dse = 1
2ρU2B

[
(C ′

D − CL) ḣ + mDBα̇

U
+ C ′

Dα − 2CD
ṗ

U

]
,

Lse = −1
2ρU2B

[
(C ′

L + CD) ḣ + mLBα̇

U
+ C ′

Lα − 2CL
ṗ

U

]
,

Mse = 1
2ρU2B2

(
C ′

M

ḣ + mMBα̇

U
+ C ′

Mα − 2CM
ṗ

U

)
.

(3.71)

Compared to the ST model (cf. (3.69)), the LQS model includes the contribution of self-excited
forces Dse, Lse, Mse. Moreover, the LQS model resembles more the QS model of a flat plate
(cf. (3.64)) than the QS model in bridge aerodynamics (cf. (3.70)), as it is linear. The effect of
fluid memory is neglected in both QS and LQS models.
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3.5.5 Linear unsteady model
Unlike to the LQS model, the LU model takes into account the unsteadiness of aerodynamic
forces. As for a flat plate, the LU model is formulated also in time and frequency domain.
Moreover, in addition to the indicial elementary function in the time-domain, the LU model
can be also formulated based on impulse functions. As shown further, these formulations are
equivalent in a mathematical sense.

Since the LU model is perhaps the most widely used model, an extended explanation is given
herein compared to the rest of the semi-analytical models. The time- and frequency-domain
formulations are first reviewed, followed by their interrelations and analogies with the flat-plate
and quasi-steady aerodynamics. Finally, numerical implementation is briefly discussed.

Frequency-domain formulation

In the frequency domain, the fluid memory is included by introducing a frequency-dependent
aerodynamic coefficient in analogy to Theodorsen and Sears functions in (3.57). The self-excited
forces in the extended Scanlan’s formulation (cf. e.g. [163, 280, 289, 290]) yield the following:

DLU
se =1

2ρU2B

⎛
⎝KP ∗

1
ṗ

U
+ KP ∗

2
Bα̇

U
+ K2P ∗

3 α + K2P ∗
4

p

B
+ KP ∗

5
ḣ

U
+ K2P ∗

6
h

B

⎞
⎠,

LLU
se =1

2ρU2B

⎛
⎝KH∗

1
ḣ

U
+ KH∗

2
Bα̇

U
+ K2H∗

3 α + K2H∗
4

h

B
+ KH∗

5
ṗ

U
+ K2H∗

6
p

B

⎞
⎠,

MLU
se =1

2ρU2B2

⎛
⎝KA∗

1
ḣ

U
+ KA∗

2
Bα̇

U
+ K2A∗

3α + K2A∗
4

h

B
+ KA∗

5
ṗ

U
+ K2A∗

6
p

B

⎞
⎠.

(3.72)

This formulation is of a mixed nature as it contains frequency-dependent flutter derivatives
P ∗

j = P ∗
j (K), H∗

j = H∗
j (K) and A∗

j = A∗
j(K) for j ∈ {1, . . . , 6}, based on the reduced fre-

quency of motion K (cf. (3.46)), while the displacements are time-dependent, i.e. p = p(t),
h = h(t) and α = α(t). Similarly, as for a flat plate, Davenport [72, 73] included the unsteadi-
ness in the buffeting forces for bridge decks utilizing general aerodynamic admittances. In an
extended format (cf. e.g. [58, 73, 147]), the buffeting forces are formulated as:

DLU
b =1

2ρU2B

⎡
⎣2CDχDu

u

U
+ (C ′

D − CL)χDw
w

U

⎤
⎦,

LLU
b = − 1

2ρU2B

⎡
⎣2CLχLu

u

U
+ (C ′

L + CD)χLw
w

U

⎤
⎦,

MLU
b =1

2ρU2B2

⎛
⎝2CMχMu

u

U
+ C

′
MχMw

w

U

⎞
⎠,

(3.73)

where χDj = χDj(K), χLj = χLj(K) and χMj = χMj(K) for j ∈ {u, w} are the complex aerody-
namic admittance functions corresponding to the drag, lift and moment forces, respectively, all
dependent on the reduced frequency of the free-stream turbulence K. The formulation (3.73)
also contains frequency- (χ = χ(K)) and time-dependent terms (u = u(t) and w = w(t)).

To obtain pure a frequency-domain formulation for the three-degree-of-freedom system, the
self-excited force vector fse can be expressed as

f se = Kseq + Cseq̇, (3.74)
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Moving this vector on the right-hand side in (3.5) yields

Mq̈ + (C − Cae) q̇ + (K − Kae) q = f s + f b, (3.75)

where

Kae = Kae(K) = 1
2ρU2K2

⎡
⎢⎣ P ∗

4 P ∗
6 BP ∗

3
H∗

6 H∗
4 BH∗

3
BA∗

6 BA∗
4 B2A∗

3

⎤
⎥⎦ , (3.76)

and

Cae = Cae(K) = 1
2ρUBK

⎡
⎢⎣ P ∗

1 P ∗
5 BP ∗

2
H∗

5 H∗
1 BH∗

2
BA∗

5 BA∗
1 B2A∗

2

⎤
⎥⎦ , (3.77)

represent the aerodynamic stiffness and damping matrices, respectively. Taking the Fourier
transform, (3.75) is obtained in a pure frequency-domain formulation as[

−ω2M + iω(C − Cae) + (K − Kae)
]

q̂ = f s + f̂ b, (3.78)

where q̂ = q̂(ω) and f̂ b = f̂ b(ω) are the Fourier transforms of the modal displacement and
modal buffeting force vectors, respectively.

In case of flutter analysis, the buffeting forces are neglected and the critical flutter velocity is
identified based on the eigenvalue problem

Gq̂ = 0, (3.79)

where
G = G(ω, U) = −ω2M + iω(C − Cae) + (K − Kae), (3.80)

is the impedance matrix. As noted by Scanlan and his coworkers [147, 148, 163, 289], nontrivial
solution of (3.79) is obtained if the determinant of the impedance matrix vanishes, indicating
negative damping threshold. As the impedance matrix is complex, the flutter condition is
formulated as

| det(G)| = 0. (3.81)
From (3.80) and (3.81), it can be gathered that the system is dependent on two variables: the
wind speed U and oscillation frequency ω. The critical wind speed Ucr is sought by fixing a
value of U , and evaluating condition (3.81) in a frequency range of interest. If the condition is
not met, the velocity is increased until Ucr is obtained.

The buffeting response is computed by a spectral analysis of (3.78). The PSD of the modal
displacements matrix Sq = Sq(ω) is obtained based on the PSD of the buffeting forces Sfb

=
Sfb

(ω) and the impermanence matrix from (3.80). Finally, the PSD of the system displacement
matrix Sqo

= Sqo
(ω) is obtained, in which the diagonal members correspond to each degree

of freedom. Summarizing, the following relations constitute the determination of the buffeting
response:

Sfb
= f̂ b

(
f̂ b

)T

, Sq = G−1Sfb

(
G−1

)T
, Sqo

= ΨT Sfb
Ψ. (3.82)

The formulation of the buffeting force vector f b is based on (3.73) and the PSD of the wind fluc-
tuations in (3.26) in a straightforward manner. Principally, the method for multimode analyses
for the whole deck is the equivalent of the three-degree-of-freedom system. In this case, the
aerodynamic stiffness, damping, and buffeting force matrices are formulated using the standard
Finite Element principles. It is noted that the flutter derivatives and aerodynamic admittances
should be obtained corresponding to the static angle of attack, based on an aerostatic analysis.
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Time-domain formulation

As for a flat plate, the aerodynamic forces acting on a bridge deck may be formulated in a pure
time-domain form in terms of indicial response functions due to unit-step input. Perhaps one
of the earliest formulation of the self-excited forces in terms of indicial functions was done by
Scanlan et al. [288], followed by many studies that included or excluded various terms (cf. e.g.
[45, 69, 76, 133, 282, 284, 287]). Corresponding to the flat plate model formulated by (3.59),
formulation of the LU model in the time domain by indicial functions is formally defined as
follows:

LU :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = Ds + Db + Dse, L = Ls + Lb + Lse, M = Ms + Mb + Mse,

Ds = 1
2ρU2BCD, Ls = −1

2ρU2BCL, Ms = 1
2ρU2B2CM ,

Db = 1
2ρU2B

[
2CD

∫ t

−∞
ΦDu(t − t1)

u̇(t1)
U

dt1 + (C ′
D − CL)

∫ t

−∞
ΦDw(t − t1)

ẇ(t1)
U

dt1

]
,

Lb = −1
2ρU2B

[
2CL

∫ t

−∞
ΦLu(t − t1)

u̇(t1)
U

dt1 + (C ′
L + CD)

∫ t

−∞
ΦLw(t − t1)

ẇ(t1)
U

dt1

]
,

Mb = 1
2ρU2B2

[
2CM

∫ t

−∞
ΦMu(t − t1)

u̇(t1)
U

dt1 + C ′
M

∫ t

−∞
ΦMw(t − t1)

ẇ(t1)
U

dt1

]
,

Dse = 1
2ρU2B

⎡
⎣(C ′

D − CL)
∫ t

−∞
ΦDh(t − t1)

ḧ(t1)
U

dt1 + C ′
D

∫ t

−∞
ΦDα(t − t1)α̇(t1)dt1

+ (C ′
D − CL)

∫ t

−∞
ΦDα̇(t − t1)

mDBα̈(t1)
U

dt1 − 2CD

∫ t

−∞
ΦDp(t − t1)

p̈(t1)
U

dt1

⎤
⎦,

Lse = −1
2ρU2B

⎡
⎣(C ′

L + CD)
∫ t

−∞
ΦLh(t − t1)

ḧ(t1)
U

dt1 + C ′
L

∫ t

−∞
ΦLα(t − t1)α̇(t1)dt1

+ (C ′
L + CD)

∫ t

−∞
ΦLα̇(t − t1)

mLBα̈(t1)
U

dt1 − 2CL

∫ t

−∞
ΦLp(t − t1)

p̈(t1)
U

dt1

⎤
⎦,

Mse = 1
2ρU2B2

⎡
⎣C ′

M

∫ t

−∞
ΦMh(t − t1)

ḧ(t1)
U

dt1 + C ′
M

∫ t

−∞
ΦMα(t − t1)α̇(t1)dt1

+ C ′
M

∫ t

−∞
ΦMα̇(t − t1)

mMBα̈(t1)
U

dt1 − 2CM

∫ t

−∞
ΦMp(t − t1)

p̈(t1)
U

dt1

⎤
⎦,

(3.83)

where ΦDj = ΦDj(t), ΦLj = ΦLj(t) and ΦMj = ΦMj(t) are the drag, lift and moment buffeting
indicial functions for j ∈ {u, w} or self-excited indical functions for j ∈ {h, p, α, α̇}. The indicial
functions are obtained either directly from experimental and CFD tests, or indirectly from the
flutter derivatives. Determining the indicial functions in such a manner, it is difficult to isolate
the term corresponding to the angular velocity Φα̇. Thus, this term is generally neglected in the
analysis and it is kept only in the formulation herein. Moreover, Bucher and Lin [41, 42] and
Wu and Kareem [361] note that the terms corresponding to the indicial function corresponding
to the angular rotation Φα contains most of the information w.r.t. the angular velocity α̇, i.e.
Φα̇ is redundant.
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Alternatively, to the indicial function approach, the formulation of the buffeting forces by
impulse functions has been widely utilized (cf. e.g. [31, 41, 42, 56, 61, 208]). Utilizing impulse
functions, the self-excited forces yield

DLU
se = 1

2ρU2B

⎡
⎣(C ′

D − CL)
∫ t

−∞
IDh(t − t1)

h(t1)
B

dt1 + C ′
D

∫ t

−∞
IDα(t − t1)α(t1)dt1

− 2CD

∫ t

−∞
IDp(t − t1)

p(t1)
B

dt1

⎤
⎦,

LLU
se = −1

2ρU2B

⎡
⎣(C ′

L + CD)
∫ t

−∞
ILh(t − t1)

h(t1)
B

dt1 + C ′
L

∫ t

−∞
ILα(t − t1)α(t1)dt1

− 2CL

∫ t

−∞
ILp(t − t1)

p(t1)
B

dt1

⎤
⎦,

MLU
se = 1

2ρU2B2

⎡
⎣C ′

M

∫ t

−∞
IMh(t − t1)

h(t1)
B

dt1 + C ′
M

∫ t

−∞
IMα(t − t1)α(t1)dt1

− 2CM

∫ t

−∞
IMp(t − t1)

p(t1)
B

dt1

⎤
⎦,

(3.84)

while the buffeting forces are

DLU
b =1

2ρU2B

[
2CD

∫ t

−∞
IDu(t − t1)

u(t1)
U

dt1 + (C ′
D − CL)

∫ t

−∞
IDw(t − t1)

w(t1)
U

dt1

]

LLU
b = − 1

2ρU2B

[
2CL

∫ t

−∞
ILu(t − t1)

u(t1)
U

dt1 + (C ′
L + CD)

∫ t

−∞
ILw(t − t1)

w(t1)
U

dt1

]
,

MLU
b =1

2ρU2B2
[
2CM

∫ t

−∞
IMu(t − t1)

u(t1)
U

dt1, +C
′
M

∫ t

−∞
IMw(t − t1)

w(t1)
U

dt1

]
.

(3.85)

In (3.84) and (3.85), IDj = IDj(t), ILj = ILj(t) and IMj = IMj(t) are the drag, lift and moment
buffeting impulse functions for j ∈ {u, w} or self-excited impulse functions for j ∈ {h, p, α}.

The impulse and indicial functions are the time-domain counterparts of the flutter derivatives;
hence, they account for the effect of fluid memory. They are equivalent in terms of the in-
formation that they can contain mathematically, by the same analogy as unit-step and impulse
response functions. Let a = a(t) be the system input (i.e. motion or gust) and b = b(t) be
the system output (i.e. forces). The system output can be written using either unit-impulse
response function I = I(t) or unit-step (indicial) response function Φ = Φ(t), corresponding to
a unit-impulse and unit-step input in terms of Duhamel integral. This yields

b(t) = a(0)Φ(t) +
∫ t

0
ȧ(t1)Φ(t − t1)dt1 = a(t)Φ(0) +

∫ t

0
a(t1)Φ̇(t − t1)dt1 =

∫ t

0
a(t1)I(t − t1)dt1,

(3.86)
from where it follows

I(t) = Φ(0)δ(t) + Φ̇(t), (3.87)

where δ(t) is the Dirac delta function. A self-explanatory graphical illustration of the unit-step
and unit-impulse response is given in Fig. 3.7.
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Figure 3.7: Duhamel integral for unit-step (left) and unit-impulse (right) input functions: total
input (top); elementary input (center); elementary response (bottom). Adapted from von Kármán
and Biot [337] and Fung [112].

In bridge aerodynamics, the impulse and indicial functions are commonly obtained from the
flutter derivatives based on a general approximate form, utilizing rational approximation. The
minor differences between the two formulations lie mainly in this approximate form and the
determination of the coefficients, which will be briefly discussed later.

As an alternative to the indicial and impulse function formulation, the LU model has been
formulated in the time domain using rheological models [85] or directly approximating the
aerodynamic trusnfer function corresponding to the impedance (cf. (3.80)) using second-order
polynomials [156]. As noted further, all formulations are equivalent if the unsteady information
is obtained from the flutter derivatives.

Time and frequency domain interrelations

Mathematically, the frequency-domain formulation (cf. (3.72) and (3.73)) and the time-domain
formulation using indicial (cf. (3.83)) or impulse (cf. (3.84) and (3.85)) functions are equivalent.
This means that they are all representation of a model which is linear and can account for the
fluid memory. Herein, the relations between these formulations are briefly revisited to be able
to perform rational approximation and finally obtain a pure time-domain form of the LU model.

The lift due to vertical excitation can be expressed as follows:

LLU
h = 1

2ρU2B

(
KH∗

1
ḣ

U
+ K2H∗

4
h

B

)

= −1
2ρU2B(C ′

L + CD)
∫ t

−∞
ΦLh(t − t1)

ḧ(t1)
U

dt1

= −1
2ρU2B(C ′

L + CD)
∫ t

−∞
ILh(t − t1)

h(t1)
B

dt1.

(3.88)
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Noting the relations in (3.60), and performing integration by parts with a change of variables
on the term involving the indicial function
∫ t

−∞
ΦLh(t − t1)

ḧ(t1)
U

dt1 =
∫ τ

−∞
ΦLh(τ − τ1)

h′′(τ1)
B

dτ1 = ΦLh(0)h′

B
+
∫ τ

0
Φ′

Lh(τ1)
h′(τ − τ1)

B
dτ1,

(3.89)
and

ILh(τ) = B

U
ILh(t), ΦLh(τ) = ΦLh(t), (3.90)

(3.88) can be expressed w.r.t. the reduced time as

LLU
h = 1

2ρU2B

(
KH∗

1
h′

B
+ K2H∗

4
h

B

)

= −1
2ρU2B(C ′

L + CD)
[
ΦLh(0)h′

B
+
∫ τ

0
Φ′

Lh(τ − τ1)
h′(τ1)

B
dτ1

]

= −1
2ρU2B(C ′

L + CD)
∫ τ

−∞
ILh(τ − τ1)

h(τ1)
B

dτ1.

(3.91)

To obtain (3.91) in a pure frequency-domain form, the Fourier transform is performed, in
analogy with flat plate in (3.61). According to the convolution theorem, convolution is simply
multiplication in the frequency domain, i.e.

∫ ∞

−∞
a(t1)b(t − t1)dt1 =

∫ ∞

−∞
a(t − t1)b(t1)dt1 = â(f)b̂(f). (3.92)

Taking the Fourier transform of (3.91) w.r.t. the reduced frequency K and using the convolution
theorem, (3.91) can be expressed for harmonic motion in the frequency domain as

L̂LU
h = 1

2ρU2B

⎛
⎝K2H∗

1
iĥ

B
+ K2H∗

4
ĥ

B

⎞
⎠

= −1
2ρU2B(C ′

L + CD)
⎡
⎣ΦLh(0)K iĥ

B
+ Φ̂′

LhK
iĥ

B

⎤
⎦

= −1
2ρU2B(C ′

L + CD)ÎLh
ĥ

B
,

(3.93)

where the identity
ĥ′ = iKĥ (3.94)

is used for the velocity terms. Thus, relations between the flutter derivatives, self-excited
impulse and indicial functions can be obtained from (3.93) in the frequency domain for Lh.
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In a similar fashion, relations can be obtained for the rest of the self-excited forces, yielding
the following identities:

ÎDh = iK
[
ΦDh(0) + Φ̂′

Dh

]
= K2

(C ′
D − CL) (iP ∗

5 + P6) ,

ÎDα =
[
ΦDα(0) + Φ̂′

Dα

]
= K2

C ′
D

(iP ∗
2 + P ∗

3 ) ,

ÎDp = iK
[
ΦDp(0) + Φ̂′

Dp

]
= − K2

2CD

(iP ∗
1 + P ∗

4 ) ,

ÎLh = iK
[
ΦLh(0) + Φ̂′

Lh

]
= − K2

(C ′
L + CD) (iH∗

1 + H∗
4 ) ,

ÎLα =
[
ΦLα(0) + Φ̂′

Lα

]
= −K2

C ′
L

(iH∗
2 + H∗

3 ) ,

ÎLp = iK
[
ΦLp(0) + Φ̂′

Lp

]
= K2

2CL

(iH∗
5 + H∗

6 ) ,

ÎMh = iK
[
ΦLh(0) + Φ̂′

Lh

]
= K2

C ′
M

(iA∗
1 + A∗

4) ,

ÎMα =
[
ΦMα(0) + Φ̂′

Mα

]
= K2

C ′
M

(iA∗
2 + A∗

3) ,

ÎMp = iK
[
ΦMp(0) + Φ̂′

Mp

]
= − K2

2CM

(iA∗
5 + A∗

6) .

(3.95)

As the aerodynamic admittance functions are complex, i.e. χ = �(χ) + i�(χ), the same
approach can be used for the buffeting forces as for the self-excited forces. Taking the lift force
due to vertical gust as an example, the following identity holds:

LLU
w = −1

2ρU2B (C ′
L + CD) (�(χLw) + i�(χLw)) w

U

= −1
2ρU2B(C ′

L + CD)
∫ t

−∞
ΦLw(t − t1)

ẇ(t1)
U

dt1

= −1
2ρU2B(C ′

L + CD)
∫ t

−∞
ILw(t − t1)

w(t1)
B

dt1.

(3.96)

Noting similar relations as in (3.60), (3.89) and (3.90), the lift force in (3.96) can be expressed
w.r.t. the reduced time as

LLU
w = −1

2ρU2B (C ′
L + CD) (�(χLw) + i�(χLw)) w

U

= −1
2ρU2B(C ′

L + CD)
[
ΦLw(0)w

U
+
∫ τ

0
Φ′

Lw(τ − τ1)
w′(τ1)

U
dτ1

]

= −1
2ρU2B(C ′

L + CD)
∫ τ

−∞
ILw(τ − τ1)

w(τ1)
U

dτ1.

(3.97)

56



3.5. Semi-analytical models

Taking the Fourier transform of (3.97) yields

L̂LU
w = −1

2ρU2B (C ′
L + CD) (�(χLw) + i�(χLw)) ŵ

U

= −1
2ρU2B(C ′

L + CD)
[
ΦLw(0) ŵ

U
+ Φ̂′

Lw

ŵ

U

]

= −1
2ρU2B(C ′

L + CD)ÎLw
ŵ

U
,

(3.98)

which gives the relation between the buffeting impulse and indicial functions and aerodynamic
admittance in the frequency domain. For all aerodynamic forces due to incoming gusts, the
following relation holds:

Îjk = Φjk(0) + Φ̂′
jk = �(χjk) + i�(χjk), for j ∈ {D, L, M} , k ∈ {u, w} . (3.99)

Rational function approximation and numerical implementation

Although the indicial functions can be obtained experimentally, the common process is to
approximate them based on the flutter derivatives and aerodynamic admittances, utilizing the
identities in (3.95) and (3.99). A general approximate form for the indicial functions based on
a flat plate (cf. (3.62)) is expressed as

Φ = Φse = Φb = 1 −
Nst∑
j=1

Aj exp (−djτ) , (3.100)

where Aj are linear coefficients and dj are unsteady state coefficients that can be seen as a
cascade of filters for Nst ∈ N0 number of aerodynamic states, that account for the unsteady
behavior of the aerodynamic forces. The number of states is different for each set of flutter
derivatives; however, selecting in the range for Nst = 3 − 5 usually suffices [347]. It can be seen
that as τ → 1, the indicial function tends to the quasi-steady state, i.e. Φ = 1. Several studies
have also proposed alternative forms of (3.100). For e.g., Caracoglia and Jones [45] suggest
replacing the unity in the first term with an additional coefficient A0, by which the quasi-steady
state is based on the flutter derivatives, while Jung [155] utilized cubic splines. However, the
form (3.100) is used herein as it bears the most physically insightful meaning [361, 375].

From (3.100), the approximate indicial function at τ = 0 and its first derivative yield

Φ(0) = 1 −
Nst∑
j=1

Aj, Φ′ =
Nst∑
j=1

Ajdj exp (−djτ) . (3.101)

The Laplace transform is defined as

ã(s) :=
∫ ∞

0
a(t) exp (−st) dt, (3.102)

where s is the Laplace integration variable, taken to be purely on the imaginary axis, i.e.
s = iK. Summing the terms in (3.101) and performing the Laplace transform yields

Φ(0) + Φ̃′ = 1 −
Nst∑
j=1

Aj +
Nst∑
j=1

Ajdj
1

dj + iK
= 1 −

Nst∑
j=1

(
AjK

2

d2
j + K2 + i

AjdjK

d2
j + K2

)
. (3.103)

57



CHAPTER 3. MODELING IN BRIDGE AERODYNAMICS

This form is suitable to determine the unknown coefficients Aj and dj for the indicial functions,
based on the flutter derivatives and aerodynamic admittance functions. Comparing the left-
hand side of (3.103), it can be seen that it is very similar to the expressions in (3.95), with the
difference being one corresponding to the Laplace and to the Fourier transform. As the Laplace
transform is performed purely on the imaginary axis, the Fourier transform can be generalized
as Laplace transform, as discussed by Fung [112]. With this generalization, the expressions
in (3.95) hold for a divergent oscillation. Thus, for e.g., in case of the lift indicial function due
to vertical motion ΦLh, these unknown coefficients are related to the flutter derivatives as

H∗
1 = (C ′

L + CD)
K

⎛
⎝1 −

Nst∑
j=1

AjK
2

d2
j + K2

⎞
⎠ , H∗

4 = (C ′
L + CD)

Nst∑
j=1

Ajdj

d2
j + K2 . (3.104)

Correspondingly, the Aj and dj coefficients for the lift indical function due to vertical gust are
related to the aerodynamic admittance function (cf. (3.99)) as

�(χLw) =
⎛
⎝1 −

Nst∑
j=1

AjK
2

d2
j + K2

⎞
⎠ , �(χLw) =

Nst∑
j=1

Ajdj

d2
j + K2 . (3.105)

Based on the data in the flutter derivatives and aerodynamic admittance functions, (3.104)
and (3.105) represent a nonlinear optimization problem with Aj and dj as design variables,
which can be formulated as follows:

OP :

⎧⎪⎪⎨
⎪⎪⎩

min
A,d

O(K, A, d),

subject to: d > 0,
(3.106)

where O = O(K, A, d) is the objective function in terms of square-root error. For e.g., the
objective function for the lift due to vertical motion is formulated as

OLh =
Nsamp∑

k=1

⎧⎨
⎩
⎡
⎣H∗

1 (Kp) − (C ′
L + CD)

Kp

⎛
⎝1 −

Nst∑
j=1

AjK
2
p

d2
j + K2

p

⎞
⎠
⎤
⎦

2

+
⎡
⎣H∗

4 (Kp) − (C ′
L + CD)

Nst∑
j=1

Ajdj

d2
j + K2

p

⎤
⎦

2 ⎫⎬
⎭,

(3.107)

or for the lift due to vertical gust as

OLw =
Nsamp∑

p=1

⎧⎨
⎩
⎡
⎣�[χLw(Kp)] −

⎛
⎝1 −

Nst∑
j=1

AjK
2
p

d2
j + K2

p

⎞
⎠
⎤
⎦

2

+
⎡
⎣�[χLw(Kp)] −

Nst∑
j=1

Ajdj

d2
j + K2

p

⎤
⎦

2 ⎫⎬
⎭,

(3.108)

where Kp are the distinct reduced frequencies at which the flutter derivatives or aerodynamic
admittance functions are determined from experiments or CFD analysis for a number of samples
Nsamp ∈ N. Similar relations can be obtained for the remaining indicial functions, based
on (3.95). The nonlinear optimization problem is solved utilizing the standard nonlinear least-
squares technique, as proposed by Scanlan [288]. Further modifications have been proposed to
refine the optimization process such as modification in the algorithm (cf. e.g. [45]) or by fixing
values of the state coefficients dj (cf. e.g. [194, 375]). Generally, these modifications influence
the goodness-of-fit, which was not an issue in this work.
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The impulse functions are obtained using a rational approximation as it is difficult to perform
impulse excitation experimentally or numerically. As noted in (3.87), the impulse and indicial
functions are related. If this relationship is true even for the approximative form of the impulse
function, then based on (3.101) and

Φ′(0) =
Nst∑
j=1

Ajdj, Φ′′ = −
Nst∑
j=1

Ajd
2
j exp (−djτ) , (3.109)

the following relation can be obtained for the impulse functions corresponding to vertical h and
lateral p displacements:

Ip = Ih = (1 −
Nst∑
j=1

Aj)δ′(τ) +
Nst∑
j=1

Aldj [δ(τ) − dj exp (djτ)] , (3.110)

while the approximate form of the impulse functions corresponding to rotation α and gusts, u
and w, yields

Iu = Iw = Iα = δ(τ) −
Nst∑
j=1

Aj [δ(τ) − dj exp (−djτ)] . (3.111)

Instead of using two separate formulations, the self-excited impulse functions are commonly ap-
proximated based on the so-called Roger’s approximation [265, 324, 325] in wing aerodynamics
(cf. e.g. [31, 61, 194, 347] for applications in bridge aerodynamics). Roger’s approximation for
the self-excited forces is given as

Ise = A1δ(τ) + A2δ
′(τ) + A3δ

′′(τ) +
Nst∑
j=1

Aj+3 [δ(τ) − dj exp (−djτ)] . (3.112)

Analogous, the approximate form for the buffeting impulse functions include an additional
term:

Ib = A1δ(τ) +
Nst∑
j=1

Aj+1 [δ(τ) − dj exp (−djτ)] . (3.113)

Taking the Laplace transform of (3.112) and (3.113) yield

Ĩse = A1 + A2iK + A3(iK)2 +
Nst∑
j=1

Aj+3

[
1 − dj

1
dj + iK

]

= A1 + A2iK + A3K
2 +

Nst∑
j=1

(
Aj+3K

2

d2
j + K2 + i

Aj+3djK

d2
j + K2

)
,

(3.114)

and

Ĩb = A1 +
Nst∑
l=1

Aj+1

[
1 − dj

1
dj + iK

]
= A1 +

Nst∑
j=1

(
Aj+1K

2

d2
j + K2 + i

Aj+1djK

d2
j + K2

)
, (3.115)

respectively. Based on these relations and (3.95) and (3.99), the following bi-level nonlinear
optimization problem can be formulated:

BOP :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
d

O(K, A, d),

subject to: d > 0,

where d solves:
{

min
A

O(K, A, d),

(3.116)
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where, for e.g., the objective function for the lift impulse function due to vertical is given as

OLh =
Nsamp∑

p=1

⎧⎨
⎩
⎡
⎣H∗

4 (Kp) + (C ′
L + CD)
K2

p

⎛
⎝A1 + A3K

2
p +

Nst∑
j=1

Aj+3K
2
p

d2
j + K2

p

⎞
⎠
⎤
⎦

2

+
⎡
⎣H∗

1 (Kp) + (C ′
L + CD)

Kp

⎛
⎝A2 +

Nst∑
j=1

Aj+3dj

d2
j + K2

p

⎞
⎠
⎤
⎦

2 ⎫⎬
⎭,

(3.117)

while for the lift impulse function due to vertical gust as

OLw =
Nsamp∑

p=1

⎧⎨
⎩
⎡
⎣�[χLw(Kp)] −

⎛
⎝A1 +

Nst∑
j=1

Aj+1K
2
p

d2
j + K2

p

⎞
⎠
⎤
⎦

2

+
⎡
⎣�[χLw(Kp)] −

Nst∑
j=1

Aj+1dj

d2
j + K2

p

⎤
⎦

2 ⎫⎬
⎭.

(3.118)

The bi-level optimization problem in (3.116) is comprised of a linear lower-level optimization,
where the coefficients Aj are sought, and a nonlinear higher-level optimization process, where
the nonlinear coefficients dj are the design variables. The linear optimization is solved utilizing
the linear least-squares algorithm, while a constrained Nelder-Mead simplex algorithm is used
for the upper optimization task. It is noted that, (3.116) can be formulated in the same
manner as the standard optimization problem for the indicial functions in (3.106) and solved
using a nonlinear least-squares algorithm. Obtaining the unknown coefficients as a bi-level
optimization problem was proposed by Tiffany and Adams [324, 325]. They indicate that using
bi-level optimization reduces the computational costs for the nonlinear process and fit of the
linear part do not rely on the convergence properties of the nonlinear algorithm.

Both indicial and impulse response functions are obtained from the fluter derivatives and aero-
dynamic admittances. Hence, they cannot account for additional unsteady information than the
one included in these linear frequency-dependent coefficients. Taking this into account, and the
relation (3.87), it can be argued that they are equivalent mathematical constructions in terms
of the aerodynamic assumptions (i.e. both linear and unsteady). However, the goodness-of-fit
of the impulse functions seem to be superior using the present formulation due to the additional
coefficients in (3.112) and (3.113), and the advantage of the bi-level optimization in (3.116) as
opposed to the nonlinear optimization in (3.106). On the other hand, the indicial response func-
tions offer better physical interpretation as the rise-time of the unsteady forces can be directly
observed (i.e. the fluid memory), as argued by Wu and Kareem in [361]. Several studies have
been conducted comparing the two types of approximations (cf. e.g. [58, 195, 245, 361]) based
on several criteria such as mathematical formulation and numerical uncertainty, most render-
ing the conclusion of their equivalence. However, the differences in the goodness-of-fit of both
formulations to the derivatives may bring discrepancies in the response [245]. Nevertheless, this
is dependent on the particular set of flutter derivatives.

In the numerical implementation, the convolution of the memory part contained in the indicial
and impulse functions (i.e. exponential part in (3.100), (3.111) and (3.112)) can be of high
computational cost for a large number of time steps. Hence, the memory term can be reduced
utilizing recursive functions (cf. [195, 375]). For e.g., the lift force due to vertical displacements
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using indicial functions (cf. (3.91) and (3.100)) can be written as

Lh(τ) = −1
2ρU2B(C ′

L + CD)
∫ τ

−∞
ΦLh(τ − τ1)

h′′(τ1)
U

dτ1

= −1
2ρU2B(C ′

L + CD)
∫ τ

−∞

⎧⎨
⎩1 −

Nst∑
j=1

Aj exp[−dj(τ − τ1)]
⎫⎬
⎭ h′′(τ1)

U
dτ1

= −1
2ρU2B(C ′

L + CD)h′(τ)
U

+
Nst∑
j=1

1
2ρU2B(C ′

L + CD)
∫ τ

−∞
Aj exp[−dj(τ − τ1)]

h′′(τ1)
U

dτ1

= −1
2ρU2B(C ′

L + CD)h′(τ)
U

+
Nst∑
j=1

L∗
hj(τ).

(3.119)
The terms L∗

hj represent the reduction in the lift due to the unsteady states, which can be
separated into two parts:

L∗
hj(τ) =1

2ρU2B(C ′
L + CD)

∫ τ−Δτ

−∞
Aj exp[−dj(τ − Δτ + Δτ − τ1)]

h′′(τ1)
U

dτ1

+ 1
2ρU2B(C ′

L + CD)
∫ τ

τ−Δτ
Aj exp[−dj(τ − τ1)]

h′′(τ1)
U

dτ1.

(3.120)

It can be seen that the first term in the preceding expression includes the lift reduction at
τ − Δτ , where Δτ denotes the reduced time-step. Moreover, assuming that the integrand
under the second term changes linearly between τ − Δτ and τ , the following is obtained:

L∗
hj(τ) ∼= exp(−djΔτ)L∗

hj(τ−Δτ)+1
2ρU2B(C ′

L+CD)Aj exp
(

−dj
Δτ

2

)
h′′(τ − Δτ

2 )
U

Δτ. (3.121)

Since the force at τ is required to obtain the displacements at the same point in time, the
displacements are known until τ − Δτ . Hence, the term h′′(τ − Δτ/2) can approximated using
Taylor’s series. By simple expansion until the first order, (3.121) yields

L∗
hj(τ) ∼= exp(−djΔτ)L∗

hj(τ − Δτ) + 1
2ρU2B(C ′

L + CD)Aj exp
(

−dj
Δτ

2

)
h′(τ − Δτ)

U
Δτ.

(3.122)
Several studies have proposed reduced numerical schemes for the solution of the convolution
integral (cf. e.g. [195, 245]). Some of these schemes tend to converge faster than (3.122) w.r.t.
the reduced time-step Δτ ; however, they require higher computational effort in computing the
last term in (3.121). Alternatively, a pilot run can be conducted using the "full" convolution
reduced scheme in (3.119) and then verify the result with (3.122), as it is done in this study. The
remaining convolution integrals involving the rest of indicial functions in (3.83) and impulse
functions in (3.84) and (3.85) can be reduced in a similar fashion.

Interrelations with flat plate and quasi-steady aerodynamics

For a state of τ → ∞, the indicial functions in (3.83) tend asymptotically to unity, i.e. Φ → 1,
in a similar fashion as for flat plate (cf. (3.63)). In that case, the LU model in time domain (3.83)
reduces to the LQS model in (3.71). Alternatively, the flutter derivatives of the LU model can
be related to their quasi-steady asymptotes at the limit Vr → ∞. Comparing (3.71) and (3.72),
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the following relations are obtained:

P ∗
1 = −2CD

K
, P ∗

2 = (C ′
D − CL)mD

K
, P ∗

3 = C ′
D

K2 , P ∗
4 = 0, P ∗

5 = C ′
D − CL

K
, P ∗

6 = 0,

H∗
1 = −C ′

L + CD

K
, H∗

2 = −(C ′
L + CD)mL

K
, H∗

3 = −C ′
L

K2 , H∗
4 = 0, H∗

5 = 2CL

K
, H∗

6 = 0,

A∗
1 = C ′

M

K
, A∗

2 = C ′
MmM

K
, A∗

3 = C ′
M

K2 , A∗
4 = 0, A∗

5 = −2CM

K
, A∗

6 = 0.

(3.123)

When performing rational approximation, the asymptotes of the flutter derivatives can be set
according to (3.123), which reduces the numerical uncertainty due to extrapolation at high
reduced velocities. The aerodynamic admittances in the quasi-steady state simply yield

χjk = 1, for j ∈ {D, L, M} , k ∈ {u, w} . (3.124)

As noted previously in Sec. 3.5.3, the aerodynamic center can be obtained based on the flutter
derivatives from (3.123) as

mD = KP ∗
2

K2P ∗
3 − CL

, mL = KH∗
2

K2H∗
3 − CD

, mM = KA∗
2

K2A∗
3
. (3.125)

For high reduced velocities, the aerodynamic center tends to an asymptotic value, which repres-
ents the equivalent quasi-steady state. Selecting a reduced velocity of Vr ≥ 16 for the aerody-
namic center in (3.125) can be regarded as equivalent quasi-steady state in bridge aerodynamic,
as noted by Diana and his coworkers [80, 85].

The flutter derivatives can be obtained based on flat plate unsteady aerodynamics. Assuming
harmonic motion and relating (3.72) to (3.54) [301], the following equivalences are obtained:

H∗
1 = −2π

1
K2 K�(C), A∗

1 = π

2
1

K2 K�(C),

H∗
2 = −2π

1
K2

[
K

4 + �(C) + K�(C)
4

]
, A∗

2 = π

2
1

K2

[
−K

4 + �(C) + K�(C)
4

]
,

H∗
3 = −2π

1
K2 [�(C) − K�(C)] , A∗

3 = π

2
1

K2

[
K2

32 + �(C) − K�(C)
4

]
,

H∗
4 = 2π

1
K2

[
K2

4 + K�(C)
]

, A∗
4 = −π

2
1

K2 K�(C),

(3.126)

where C = C(K∗) is Theodorsen function (cf. (3.52)) for K∗ = K/2. Based on this formulation,
the flutter derivatives contain the apparent mass forces. Caracoglia and Jones [45] argued that
the general formulation of the unsteady self-excited forces should not contain the apparent mass
terms contained in (3.72); hence, any term not multiplied to C(K∗) should be disregarded.
Moreover, the rotation-related derivatives, H∗

2 , H∗
3 , A∗

2 and A∗
3, contain both imaginary and

real part of C(K∗). This is due to the contribution related to the angular velocity in (3.54),
which is not explicitly modeled in (3.72). Neglecting the contribution proportional to K for
these derivatives and the apparent mass effect results in the following equivalences:
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H∗
1 = −2π

1
K2 K�(C), A∗

1 = π

2
1

K2 K�(C),

H∗
2 = −2π

1
K2 �(C), A∗

2 = π

2
1

K2 �(C),

H∗
3 = −2π

1
K2 �(C), A∗

3 = π

2
1

K2 �(C),

H∗
4 = 2π

1
K2 K�(C), A∗

4 = −π

2
1

K2 K�(C).

(3.127)

Changing this formulation into (3.95) and using flat plate slopes of the static wind coefficients
(cf. (3.49)), all indicial functions are similar, i.e. ΦLh = ΦLα = ΦMh = ΦMα = Φse, as it is
in the flat plate case (cf. (3.59)). The formulation (3.127) will be used for verification of the
rational approximation of indicial functions. However, to verify the derivatives from numerical
simulations or experiments, the relations in (3.126) should be used as the contribution of the
apparent mass and angular velocity to the forces cannot be separated. In the case of the
buffeting forces, it is clear from (3.73) and (3.54) that only Sears admittance should be used.

3.5.6 Mode-by-mode model
The simplification in the MBM model is the disregard of aerodynamic coupling. This means that
the cross-terms in the LU model (cf. (3.83)) are neglected, yielding the following formulation:

MBM :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = Ds + Db + Dse, L = Ls + Lb + Lse, M = Ms + Mb + Mse,

Ds = 1
2ρU2BCD, Ls = −1

2ρU2BCL, Ms = 1
2ρU2B2CM ,

Db = 1
2ρU2B

⎡
⎣2CD
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−∞
ΦDu(t − t1)

u̇(t1)
U

dt1(C ′
D − CL)

∫ t

−∞
ΦDw(t − t1)

ẇ(t1)
U

dt1

⎤
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Lb = −1
2ρU2B

⎡
⎣2CL

∫ t

−∞
ΦLu(t − t1)

u̇(t1)
U

dt1

+ (C ′
L + CD)

∫ t

−∞
ΦLw(t − t1)

ẇ(t1)
U

dt1

⎤
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2ρU2B2

[
2CM

∫ t

−∞
ΦMu(t − t1)

u̇(t1)
U

dt1 + C ′
M

∫ t

−∞
ΦMw(t − t1)

ẇ(t1)
U

dt1

]
,

Dse = 1
2ρU2B2CD

∫ t

−∞
ΦDp(t − t1)

p̈(t1)
U

dt1

Lse = −1
2ρU2B(C ′

L + CD)
∫ t

−∞
ΦLh(t − t1)

ḧ(t1)
U

dt1,

Mse = 1
2ρU2B2

⎡
⎣C ′

M

∫ t

−∞
ΦMα(t − t1)α̇(t1)dt1

+ C ′
M

∫ t

−∞
ΦMα̇(t − t1)

mMBα̈(t1)
U

dt1

⎤
⎦.

(3.128)
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Due to its simplicity and computational efficiency in the frequency domain, the conventional
MBM model was utilized in the past for buffeting analysis (cf. e.g. [281, 289]). Based on
the frequency-domain formulation of the LU model given in (3.78), the MBM model in the
frequency domain yields[

−ω2M + iω(C − ICae) + (K − IKae)
]

q̂ = f s + f̂ b, (3.129)

where I is the identity matrix which suppresses the aerodynamic coupling. Formulated in such
a way, the system in (3.129) is decoupled, i.e. the off-diagonal term in all matrices are zero.

3.5.7 Complex mode-by-mode model
The CMBM model is presented herein, including a new simple method for computation of the
buffeting forces based on Fourier transform.

To account for the aerodynamic coupling and still solve a frequency-independent system for the
self-excited forces, the CMBM was introduced by Chen and Kareem [57] and later on revisited
by Øiseth et al. [245]. The method is based on the complex modal decomposition technique.
Rearranging (3.75), the system can be expressed in the state-space as

η̇o = Oηo + N(f s + f b), (3.130)

where ηo = ηo(t) is the state vector, O = O(K) is the state matrix, dependent on the reduced
frequency K, and N is the input matrix. These are obtained as

ηo =
(

q
q̇

)
, O =

[
0 I

−M−1(K − Kae) −M−1(C − Cae)

]
, N =

[
0

M−1

]
. (3.131)

The effect of the self-excited forces can be studied through complex eigenvalue analysis for an
eigenvalue problem of (3.130) as

(O − λI)ζ = 0, ζ =
(

φ
λφ

)
, (3.132)

where the vector ζ is the complex eigenvector with size in R
2Nm×1, φ is the complex mode

shape vector with size in R
Nm×1 and λ is the complex eigenvalue, defined as

λ = −ξω + iω
√

1 − ξ2, (3.133)

where ω and ξ are the frequency and damping ratio of the complex mode. Since the size of the
matrix O is in R

2Nm×2Nm , there are 2Nm roots of the characteristic polynomial; therefore the
complex modes φj and complex eigenvalues λj are obtained along with their complex conjugates
φj+Nm

=φj and λj+NM
= λj for j ∈ {1, . . . , Nm}, respectively. Since O is frequency-dependent,

iterative complex eigenvalue analysis is required for each mode until the assumed frequency
converges with the imaginary part �(λ). In the case of flutter analysis, the critical velocity Ucr

is determined for a zero damping ratio of any complex mode, i.e. �(λ) ≥ 0.
In the frequency-domain buffeting analysis, the transfer function between the buffeting forces
and modal responses is computed for each frequency increment (cf. (3.82)). Thus, generally
the complex eigenvalue analysis is not required. However, the method in the frequency domain
described in Sec. 3.5.5 requires multiple matrix inversion operations and can be computationally
costly. In the MBMC model, it is assumed that the peaks at the complex eigenvalues in the
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system transfer function have the most influence on the response; thus, the state matrix O can
be approximated by equivalent state matrix O∗, that is based on the complex eigenvalues and
satisfy the condition:

Ξ−1O∗Ξ = Λ, (3.134)

where Ξ is a matrix with size in R
2Nm×2Nm and it contains the complex eigenvectors ζj such

that ζj+Nm
= ζj for j ∈ {1, . . . , Nm} and satisfies the orthogonality condition Ξ−1Ξ = I.

The eigenvalue matrix Λ is a diagonal matrix containing the eigenvalues λj and their complex
conjugates λj+Nm = λj. In this way the state vector ηo can be expressed in terms of complex
modal coordinates as

ηo = Ξη, (3.135)

where the modal state vector η = η(t) contains the complex modal displacements such that
ηj+Nm = ηj for j ∈ {1, . . . , Nm} and (3.130) can be decoupled as

η̇ = Λη + Ξ−1N(f s + f b). (3.136)

Since the preceding equation is decoupled and frequency independent, it can be solved in the
time domain without rational approximation for the self-excited forces.

To be able to define the MNL model explicitly in the time domain, the self-excited forces are de-
rived for the three-degree-of-freedom system in (3.5). For this system, the modal displacements
are

q =
3∑

j=1

(
φjηj + φjηj

)
. (3.137)

The self-excited force vector can be described in terms of aerodynamic stiffness and damping
matrices as in (3.74). E.g., the lift force due to vertical motion yields

Lh = 1
2ρUB

⎡
⎣UK2H∗

4 (K)
3∑

j=1

(
φ2jηj + φ2jηj

)
+ BKH∗

1 (K)
3∑

j=1

(
φ2j η̇j + φ2j η̇j

)⎤⎦ . (3.138)

The whole system in (3.131) has the same complex eigenvalues as in (3.136). The main as-
sumption in the MBMC model is that the self-excited forces can be modeled by interpolating
the aerodynamic stiffness and damping matrices at the complex modal frequencies as

Lh = 1
2ρUB

⎡
⎣U

3∑
j=1

K2
cjH

∗
4 (Kcj)

(
φ2jηj + φjηj

)
+ B

3∑
j=1

KcjH
∗
1 (Kcj)

(
φ2j η̇j + φ2j η̇j

)⎤⎦ , (3.139)

where Kcj = Kcj(λj) is the reduced frequency corresponding to the complex eigenfrequencies.
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Summarizing, the CMBM model is defined as follows:

CMBM :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = Ds + Db + Dse, L = Ls + Lb + Lse, M = Ms + Mb + Mse,

Ds = 1
2ρU2BCD, Ls = −1

2ρU2BCL, Ms = 1
2ρU2B2CM ,

Db = 1
2ρU2B

⎡
⎣2CD

∫ t

−∞
ΦDu(t − t1)

u̇(t1)
U

dt1

+ (C ′
D − CL)

∫ t

−∞
ΦDw(t − t1)

ẇ(t1)
U

dt1

⎤
⎦,

Lb = −1
2ρU2B

⎡
⎣2CL

∫ t

−∞
ΦLu(t − t1)

u̇(t1)
U

dt1

+ (C ′
L + CD)

∫ t

−∞
ΦLw(t − t1)

ẇ(t1)
U

dt1

⎤
⎦,

Mb = 1
2ρU2B2

[
2CM

∫ t

−∞
ΦMu(t − t1)

u̇(t1)
U

dt1

+ C ′
M

∫ t

−∞
ΦMw(t − t1)

ẇ(t1)
U

dt1

]
,

Dse =
3∑

j=1

[
kae1(Kcj)φjηj + kae1(Kcj)φjηj + cae1(Kcj)φjηj + cae1(Kcj)φjηj

]
,

Lse =
3∑

j=1

[
kae2(Kcj)φjηj + kae2(Kcj)φjηj + cae2(Kcj)φjηj + cae2(Kcj)φjηj

]
,

Mse =
3∑

j=1

[
kae3(Kcj)φjηj + kae3(Kcj)φjηj + cae3(Kcj)φjηj + cae3(Kcj)φjηj

]
,

(3.140)

where kaen = kaek(Kcj) and caek = caek(Kcj) are row vectors of size in R
1×3 that correspond to

the k-th row of the aerodynamic stiffness and damping matrices in (3.76) and (3.77), respect-
ively. For each complex mode, these vectors depend on the reduced frequency Kcj = Kcj(λj)
corresponding to the complex eigenfrequency �(λj).

Method for computation of the unsteady buffeting forces based on FFT*

The buffeting forces in the MBMC still are modeled as for the LU model, i.e. they require
rational approximation as pointed out by Chen and Kareem in [57]. Øiseth et al. [245] did not
include fluid memory in the buffeting forces. Herein, a novel method is presented in order to
avoid rational approximation, which is indeed the motivation for the MBMC model.
The method utilizes the principles of a response of stable linear systems due to periodic inputs
[67]. In this case, the buffeting force is the response, which is, in fact, stable and linear, while the
wind fluctuations are the input. Assuming that the wind fluctuations are stationary periodic
signals (as previously defined in Sec. 3.3), the buffeting forces in (3.73) can be obtained using
the Fourier transform for a given time-domain wind fluctuations, i.e. u = u(t) and w = w(t).
Noting the convolution theorem in (3.92), the aerodynamic admittance can be simply multiplied
to the Fourier transform of the wind fluctuations and then transferred back to the time domain
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using the inverse Fourier transform. Taking this into account, e.g., the lift buffeting force yields

Lbw(t) = 1
2ρU2B(C ′

L + CD)
∫ ∞

−∞
χLw(f)ŵ(f)

U
exp(2πift)df. (3.141)

For periodic input and stable output, the difference between using the Fourier instead of the
Laplace transform as for rational approximation is that there is an additional assumption that
the transient part (fluid memory) of the initial part of the force is zero. It is later shown in
Sec. 5.4.5 that this influence is insignificant. As wind fluctuations are commonly generated
before solving (3.5) or (3.136), the FFT can be directly employed for the discrete solution of
the circular convolution implied in (3.141). Since the force and the wind fluctuations are real
signals, the admittance has the Hermitian symmetry, i.e. χLw(f) = χLw(−f). It is clear that
instead of rational approximation of χLw, interpolation or fitting in the frequency domain can
be used which is more convenient in bridge aerodynamics especially for noisy experimentally
obtained admittance functions (cf. e.g. [187]). The method could also be applied for admittance
functions obtained from the spectral method with zero lag, i.e. �(χ)=0. However, it should
be mentioned that this implies that the admittance is a non-causal filter, i.e. the lift force
depends on future inputs. Since the generated wind fluctuation signals are a superposition of
integer harmonic signals, the Gibbs effect and spectral leakage are avoided. Figure 3.8 depicts
the presented method schematically.

This method for computation of the buffeting forces can also be applied to any model that
includes the fluid memory such as the LU or HNL models. The computational time is signi-
ficantly reduced for the solution of the second-order differential equation (cf. (3.5)). Instead
of solving the linear convolution integral, FFT is used once before the analysis. Alternatively,
the buffeting forces can be directly generated by modifying the spectral matrix of the wind
fluctuations (3.26) with the aerodynamic admittance as in [62]. However, in this case, the
aerodynamic nonlinearities in the HNL model, such as the dependency of aerodynamic para-
meters on the effective angle of attack cannot be accounted for, as noted by Chen and Kareem
[56]. In the case of experimentally obtained admittance functions containing finite data set,
the extrapolation of the admittance for the high reduced velocity is by assuming quasi-steady
values. If rational function approximation is utilized, this problem is solved simply by utilizing
the analytic continuation of the impulse or indicial response functions.
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×
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Time domain
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Figure 3.8: Graphical illustration of the method of computation of the unsteady buffeting forces
based on the FFT.
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3.5.8 Modified quasi-steady model
In order to avoid rational approximation in the LU model and reduce the ambiguity of the
aerodynamic center in the LQS model, Øiseth et al. [244] introduced the MQS model. In
this model, the self-excited forces are obtained by substituting the flutter derivatives in (3.72)
with frequency-independent coefficients that neglect the unsteady contribution. With this, and
assuming the buffeting forces are modeled as for the LQS model (3.71), the formulation of the
MQS model yields the following:

MQS :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = Ds + Db + Dse, L = Ls + Lb + Lse, M = Ms + Mb + Mse,

Ds = 1
2ρU2BCD, Ls = −1

2ρU2BCL, Ms = 1
2ρU2

r B2CM ,

Db = 1
2ρU2B

[
2CD

u

U
+ (C ′

D − CL)w

U

]
,

Lb = −1
2ρU2B

[
2CL

u

U
+ (C ′

L + CL)w

U

]
,

Mb = 1
2ρU2B2

(
2CM

u

U
+ C ′

M

w

U

)
,

Dse = 1
2ρU2B

⎛
⎝Ap1

ṗ

U
+ Ap2

Bα̇

U
+ Ap3α + Ap4

p

B
+ Ap5

ḣ

U
+ Ap6

h

B

⎞
⎠,

Lse = 1
2ρU2B

⎛
⎝Ah1

ḣ

U
+ Ah2

Bα̇

U
+ Ah3α + Ah4

h

B
+ Ah5

ṗ

U
+ Ah6

p

B

⎞
⎠,

Mse = 1
2ρU2B2

⎛
⎝Aa1

ḣ

U
+ Aa2

Bα̇

U
+ Aa3α + Aa4

h

B
+ Aa5

ṗ

U
+ Aa6

p

B

⎞
⎠,

(3.142)

where Apj = Apj(Vrc1), Ahj = Ahj(Vrc2) and Aaj = Aaj(Vrc3) for j ∈ {1, . . . , 6} are frequency-
independent coefficients taking into account the averaged fluid memory at specific reduced
velocity of oscillation Vrck for k ∈ {1, 2, 3}. Comparing (3.72) and (3.142), the following relations
are obtained:

Apj = Kc1P
∗
j , Ahj = Kc2H

∗
j , Aaj = Kc3A

∗
j , for j ∈ {1, 2, 5}, (3.143)

Apj = K2
c1P

∗
j , Ahj = K2

c2H
∗
j , Aaj = K2

c3A
∗
j , for j ∈ {3, 4, 6}. (3.144)

The frequency-independent coefficients are obtained either by using linear least-square fit or
by secant approximation to the flutter derivatives. The secant approximation is at a selected
value of Vrck (equivalently, Kck), that is based on an oscillation frequency for each direction of
motion (translation or rotation), i.e. k ∈ {1, . . . , 3}. In the first case, Vrc is obtained implicitly,
while in the latter, Vrc is typically based on the first natural frequency for each direction.
The frequency-independent coefficients can be also related to the approximation of the impulse
response function (cf. (3.112)), in a sense that the A1 coefficient corresponds to the stiffness-
related frequency-independent coefficients Ap (cf. (3.144)), while A2 coefficient corresponds to
the damping-related frequency-independent coefficients Ap (cf. (3.143)).

3.5.9 Corrected quasi-steady model
The idea of the CQS model is to retain the nonlinearity considered in the QS model as an
advantage over the LU model, while partially modeling the unsteadiness. Diana et al. [80]
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proposed the CQS model by modifying the slope of the static wind coefficients in (3.70) with
dynamic derivatives that take into account an averaged fluid memory. The CQS model is
formulated as

CQS :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = FL sin ϕD + FD cos ϕD, L = FL cos ϕL − FD sin ϕL, M = FM ,

FD = 1
2ρU2

rDBC∗
D(αeD), FL = −1

2ρU2
rLBC∗

L(αeL), FM = 1
2ρU2

rMB2C∗
M(αeM),

αej = αs + α + ϕj, ϕj = arctan
(

w + ḣ + mjBα̇

U + u − ṗ

)
,

Urj =
√

(U + u − ṗ)2 + (w + ḣ + mjBα̇)2,

C∗
j (αej) = Cj(αs) +

∫ αe

αs

Q∗
j(α1, Vrc)C ′

j(α1)dα1, for j ∈ {D, L, M} ,

(3.145)

where C∗
j = C∗

j (αej) are the corrected static wind coefficients based on the dynamic derivatives
Q∗

j = Q∗
j(Vrc, αej). The dynamic derivatives are either obtained from dynamic tests or more

commonly, from the flutter derivatives. In the latter case, the equivalences between the dynamic
derivatives and the flutter derivatives are obtained from (3.145) and (3.72), yielding

Q∗
D = K2

c P ∗
3

C
′
D

, Q∗
L = −K2

c H∗
3

C
′
L

, Q∗
M = K2

c A∗
3

C
′
M

. (3.146)

For the CQS model, the flutter derivatives are required at various angles of attack, i.e. P ∗
3 =

P ∗
3 (α, Vrc), H∗

3 = A∗
3(α, Vrc), A∗

3 = A∗
3(α, Vrc), and are interpolated at specific reduced velocity

Vrc, based on the averaged frequency of oscillation fc. In this work, fc is computed as fc =
(fh + fα)/2, with fh and fα being the frequencies of the first vertical and torsional modes,
respectively. Since the contribution to the effective angle of attack of wind fluctuations and
motion cannot be separated, the same correction coefficients account for both averaged fluid
memory in the buffeting and self-excited forces. The implied assumption here is that the
fluid memory of the self-excited and buffeting forces are essentially the same. Some studies
have correlated the flutter derivatives and the admittance functions in an analytical and an
experimental way (cf. e.g. [11, 286, 287, 328]). However, these correlations do not hold for the
flat plate analytical solution.

3.5.10 Hybrid nonlinear model

Chen and Kareem [59] introduced the HNL model under the premise that the effect fluid
memory is insignificant at high reduced velocities and the nonlinearity is governing the aero-
dynamic forces, while for low reduced velocities, the effect of fluid memory is dominant. In the
HNL, the effective angle of attack is split into a low- and a high-frequency component denoted
as αl

e and αh
e , respectively. For the low-frequency part, the QS model is utilized to compute the

forces (cf. (3.70)), and for the high-frequency component, the LU model is employed (cf. (3.83)),
linearized at the low-frequency angle of attack αl

e. Taking this into account, the HNL model is
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defined as follows:

HNL :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = DQS(αl
e) + DLU(αh

e )|αl
e
, L = LQS(αl

e) + LLU(αh
e )|αl

e
,

M = MQS(αl
e) + MLU(αh

e )|αl
e
, αej = αl

ej + αh
ej,

αl
ej = αs + αl + arctan

(
wl + ḣl + mjBα̇l + njẇ

l

U + ul − ṗl

)
. for j ∈ {D, L, M}.

(3.147)
In Chen and Kareem’s formulation of the NLU model in [59], the effective angle of attack is in
a similar form as for the QS model (cf. (3.70)). Herein, the formulation recently presented by
Diana et al. [85] is employed, which introduces the coefficient nj that accounts for the phase lag
between the wind fluctuations and quasi-steady aerodynamic force in the low-frequency range.
This coefficient is obtained based on the aerodynamic admittance of vertical fluctuations as

nj = �(χjw)
�(χjw)

Vr

2π

B

U
. (3.148)

As for the aerodynamic center, a reduced velocity should be selected for nj at which the phase
becomes negligible (i.e. equivalent quasi-steady state). In bridge aerodynamics, this is usually
for reduced velocities amounting to Vr ≥ 15. Correspondingly, the cut-off frequency should be
chosen in such a manner to accommodate for the validity of the quasi-steady assumption in the
low-frequency band of αl

e. Alternatively, this threshold can be taken similar to the first natural
frequency [59]. It is noted that the HNL model is not fully nonlinear or fully unsteady; rather
a hybrid model, based on the intrinsic understanding of the aerodynamic force.

3.5.11 Advanced models
Two additional models, MNL and HNL, are given in this section to evaluate their complexity
based on the categorical modeling approach in the next chapter. No numerical implementation
of these models is considered in this work. The reasons are briefly discussed after these models
are presented.

The MNL model approximates the aerodynamic hysteresis in a nonlinear fashion, yielding the
following formulation of the aerodynamic forces:

MNL :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = 1
2ρU2

rjB
[
−Chys

L (αeL) sin ϕD + Chys
D (αeD) cos ϕD

]
,

L = −1
2ρU2

rjB
[
Chys

L (αeL) cos ϕL + Chys
D (αeD) sin ϕL

]
, M = 1

2ρU2
rjB

2Chys
M (αeM),

αej = αs + α + ϕj, ϕj = arctan
(

w + ḣ + mjBα̇

U + u − ṗ

)
,

Urj =
√

(U + u − ṗ)2 + (w + ḣ + mjBα̇)2, for j ∈ {D, L, M},

(3.149)
where Chys

j = Chys
j (αe, α̇e, Vrc) is the aerodynamic hysteresis. There are several ways how

to approximate the aerodynamic hysteresis, e.g., using rheological models [84] or artificial
neural networks [356]. For illustration, herein approximation using polynomials is utilized
(cf. [86, 359]), which introduces an additional assumption that the fluid memory due to wind
fluctuations and motion is similar. The aerodynamic hysteresis then yields

Chys
j = Cj(αs) +

Nc∑
k,l

Ajklα
k
ej(Vrc)α̇l

ej(Vrc), (3.150)
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where A are the approximation coefficients for a polynomial of degree Nc ∈ N0. The ex-
perimental or numerical aerodynamic hysteresis generally differs for various Vr; however, the
approximated aerodynamic hysteresis is obtained at a specific reduced velocity Vr based on
the frequency of oscillation. Alternatively, the aerodynamic hysteresis can be averaged for the
whole range of reduced velocities Vr including a rheological model for the instability range
[86] or the band-superposition scheme can be used for splitting the wind-spectrum in multiple
frequency "bands" [359].

One of the most recently developed semi-analytical models is the NLU model, based on the non-
linear indicial functional. Since a general nonlinear indicial functional is presently unavailable
for bridge decks, Wu and Kareem [360, 364] introduced a reduced scheme based on a finite sum
of multidimensional convolution integrals accounting for higher-order nonlinear effects. Based
on their formulation, the mathematical formulation of the NLU model is given as follows:

NLU :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = 1
2ρU2B

⎡
⎣Φ0

D +
∑

k

∫ t

−∞
ΦI

Dk(t − t1)k̇(t1)dt1

+
∑
k,l

∫ t

−∞

∫ t

−∞
ΦII

Dkl(t − t1, t − t2)k̇(t1)l̇(t2)dt1dt2 + . . .

⎤
⎦,

L = − 1
2ρU2B

⎡
⎣Φ0

L +
∑

k

∫ t

−∞
ΦI

Lk(t − t1)k̇(t1)dt1

+
∑
k,l

∫ t

−∞

∫ t

−∞
ΦII

Lkl(t − t1, t − t2)k̇(t1)l̇(t2)dt1dt2 + . . .

⎤
⎦,

M =1
2ρU2B2

⎡
⎣Φ0

M +
∑

k

∫ t

−∞
ΦI

Mk(t − t1)k̇(t1)dt1

+
∑
k,l

∫ t

−∞

∫ t

−∞
ΦII

Mkl(t − t1, t − t2)k̇(t1)l̇(t2)dt1dt2 + . . .

⎤
⎦,

for k, l ∈
{
u, w, ṗ, ḣ, α, α̇

}
,

(3.151)

where Φ0 = Φ0(t), ΦI = ΦI(t), and ΦII = ΦII(t) are the zeroth, first and second-order indicial
functions. Higher-order indicial functions can be introduced in a similar fashion. It is convenient
to formulate the NLU model in a Volterra series formalism, by using the analogies between
the unit-step and unit-impulse functions [360]. With this, the well-established methods for
identification of the Volterra kernels due to unit-impulse input are readily applicable.

From a perspective of numerical implementation, the MNL model is relatively straightforward.
The main issue why this model was not considered in the analyses is the lack of a well-established
method for the determination of the aerodynamic hysteresis. For highly nonlinear behavior at
high oscillation amplitudes, the hysteresis exhibits non-periodic (i.e. non-repetitive) behavior
(cf. e.g. [376]). The studies that utilize the MNL model commonly show a smooth hysteretic
curve (cf. e.g. [86, 359]), which is probably the result of some kind of averaging at each
angle. Moreover, high-frequency content in the forces due to vortex shedding and numerical
noise can affect significantly the reliability of the aerodynamic hysteresis when it is obtained
based on CFD using the VPM. Hence, first a standard method of determining the aerodynamic
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hysteresis should be established before assessing this model in a quantitative manner for a
practical example.

The determination of the kernels for the NLU model requires significant output data either
from wind tunnel tests or CFD analyses. For e.g., the second-order indicial function ΦII

in (3.151) requires separate analyses at each time couple t − t1 and t − t2, which can yield a
significant number of experimental tests or simulation runs. Alternatively, the Volterra kernels
can be obtained by determining their frequency response counterparts from multi-frequency
input [206]. For e.g., the second-order kernel requires dual-frequency input. The number
of frequency couples grows quadratically; thus, it can yield a significant number of separate
tests. Although the NLU model has been utilized for predicting vortex-induced vibrations (cf.
e.g. [368]), the author is not aware of a study that presents full buffeting and flutter analyses of a
bridge (2D or 3D), utilizing the NLU model based on CFD or experimental kernels. Hence, the
practical application of the model is not yet well-established. Moreover, the NLU model requires
burdensome numerical implementation. Nevertheless, from the preliminary investigations in
previous studies, the model seems quite promising [360, 362, 363, 364]. Thus, although only
conceptual, the mathematical constructions are included for the categorical evaluation of model
complexity in the next chapter. However, to be able to quantitatively asses the model and have
certain reliability of the results, further studies are required.

3.6 Computational fluid dynamics model
In this section, the CFD model is formulated as an alternative to the semi-analytical models.
The VPM is adopted for the numerical discretization of the fluid governing equations. Initially,
a brief background of the governing equation and numerical discretization of the VPM is given,
followed by the velocity-based method for free-stream turbulence. Then, the Pseudo-3D vortex
method with laminar free-stream is revisited to finally introduce a novel turbulent Pseudo-3D
method based on the velocity-based free-stream turbulence.

3.6.1 Vortex particle method
The problem is defined for an oscillating body immersed into a fluid in R

2 (cf. Fig. 3.9). The
mathematical constructions of the fluid motion, boundary conditions with the corresponding
aerodynamic forces are given in the following. Without being exhaustive, the brief formulation
is essentially based on excellent works by Chorin and Marsden [65], Leonard [198], Cottet and
Koumoutsakos [70] and Wu [353], and for further information, the reader is referred to these
references.

Fluid motion

Considering an incompressible fluid flow with constant kinematic viscosity ν in a domain F
in R

2, the fluid motion is governed by the Navier-Stokes equations for conservation of the
momentum:

∂u

∂t
+ (u · ∇) u = −1

ρ
∇pr + ν∇2u, (3.152)

and the incompressibility condition through continuity equation:

∇ · u = 0, (3.153)
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Figure 3.9: Coupled CFD model in 2D: formulation (left); numerical discretization (right).

where the velocity vector is u = u(x; t) = (u(x; t), 0, w(x; t)) and pr = pr(x; t) is the pressure
for x = (x, 0, z). Taking the curl of (3.152) and applying the incompressibility condition
in (3.153) yields the vorticity transport equation:

∂ωu

∂t
+ (u · ∇) ωu = ν∇2ωu, (3.154)

where the curl of the velocity vector delivers

∇ × u = ωu, (3.155)

where ωu = ωu(x; t) = (0, ωu(x; t), 0) is the vorticity vector. The only relevant component of
the vorticity in R

2 is the one perpendicular to the fluid plane, i.e. vorticity is a scalar field. For
an inviscid fluid, the vorticity transport equation reduces to

∂ωu

∂t
+ (u · ∇) ωu = 0. (3.156)

Utilizing the following identity

∇ × (∇ × u) = ∇(∇ · u) − ∇2u, (3.157)

and the continuity condition in (3.153), the velocity field can be obtained from the vorticity
field by the following inverted kinematic relation:

∇2u = −∇ × ωu. (3.158)

The preceding expression represents a Poisson equation, which can be solved using Green’s
function as

u(x) = u∞ − 1
2π

∫
D

(x − z) × ωu(z)
|x − z|2 dz, (3.159)

where u∞ is the mean fluid velocity vector (cf. (2.2)). Commonly, (3.159) is referred to as the
Biot-Savart relation.

Boundary conditions

The no-penetration and no-slip velocity boundary conditions (cf. Fig. 3.9, left) yield

uB · nB = uG · nB, (3.160)

uB · sB = uG · sB, (3.161)
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respectively. Herein, the fluid velocity on the boundary is denoted as uB = uB(xB; t), xB =
(xB, 0, zB) is the interface (i.e boundary) coordinate vector on the interface B, uG = uG(xB) is
the body surface velocity, nB and sB are vectors normal and tangential to the body surface,
respectively. Satisfying the boundary conditions in (3.160) and (3.161), the vorticity on the
boundary is obtained through the Biot-Savart relation (3.159), yielding

1
2π

∫
DB

(xB − x) × ωu(x)
|xB − x|2 dDx = ιB − (uB − u∞), (3.162)

where DB is a thin zone adjacent to the surface B (cf. Fig. 3.9), and

ιB(xB) = − 1
2π

∫
D\DB

(xB − x) × ωu(x)
|xB − x|2 dDx + 1

2π

∮
B

(xB − x) × [u(x) × nB(x)]
|xB − x|2 dBx

+ 1
2π

∮
B

(xB − x)[u(x) · nB(x)]
|xB − x|2 dBx,

(3.163)

is the velocity induced from the vorticity without the contribution of DB. The subscript x
denotes the integration variable for Dx and Bx.

In the vorticity-velocity formulation in R
2, the no-slip and no-penetration conditions represent

two equations for one unknown vorticity component. Hence, only one velocity component can
be prescribed in (3.162). The present study adopts the implementation by Morgenthal [226]
and Morgenthal and Walther [230], which makes use of the no-penetration condition in (3.160),
although several studies utilize the no-slip condition instead (cf. e.g. [98, 353, 354]). Instead
of solving (3.162) for the vorticity, the vortex methods make use of the vortex sheets bound to
the surface. The strength of the vortex sheets can be obtained from the vorticity as

γb = lim
lb→0

∫ lb

0
ωudnB, (3.164)

where γb = γ(xB; t) = (0, γb(xB; t), 0) is the strength of the vortex sheet. Applying (3.164) and
the no-penetration condition (3.159) to (3.162) yields the following:

[
1

2π

∫
B

(xB − x) × γb(x)
|xB − x|2 dBx

]
· nB = [ιB − (uB − u∞)] · nB. (3.165)

Since the strength of the vortex sheet is the unknown variable, (3.165) represents a boundary
value problem. The unique solution of this problem is imposed by an additional equation
corresponding to the Kelvin circulation theorem, as shown by Walther [341, 342] and Walther
and Larsen [341]. This theorem in terms of global vorticity conservation is given as follows:

d
dt

∫
D

ωu(x)dx = 0. (3.166)

As noted by Wu and Thompson [355], the no-slip condition in (3.161) is imposed implicitly as
a consequence of (3.165) and (3.156) for the prescribed no-penetration condition.

Aerodynamic forces

The total aerodynamic forces acting on the body are obtained from the conservation of mo-
mentum as

f = −ρ
d
dt

∫
D

ωu(x) × xdx. (3.167)
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Alternatively, by assuming the low friction forces, which is a fair assumption for bridge decks,
the aerodynamic forces can be obtained by integrating the pressure over the perimeter as

f ∼= f pr =
∮

B
pr(x)nB(x)dBx. (3.168)

The pressure gradient can be obtained from the strength of the vortex sheet as

∂pr

∂sB
= −∂γb

∂t
. (3.169)

Numerical discretization

In the VPM, the vorticity field is discretized by vortex particles (cf. Fig. 3.9, right), charac-
terized by their location xp = xp(t) = (xp(t), 0, zp(t)) and strength Γp = Γp = (0, Γp, 0), as
follows

ωu(x; t) =
Np∑
p=1

δ(x − xp(t))Γp, (3.170)

where Np ∈ N is the number of particles. The vortex strength corresponds to an integral of a
small patch of vorticity Dp or, equivalently, to a line integral of the velocity over the patch’s
perimeter S:

Γp =
∫

Dp

ωu(x)dx =
∮

S
u(x)nsds, (3.171)

where ns is a tangential vector of the patch perimeter. Utilizing (3.170), the discrete form of
Biot-Savart relation (3.159) for particle’s velocity in an Eulerian frame of reference yields

u(xp) = ∂xp

∂t
= u∞ − 1

2π

Np∑
j=1

(xp − xj) × Γj

|xj − x|2 = u∞ −
Np∑
j=1

κ(xp − xj)Γj, (3.172)

where κ = κ(xp − x) is the velocity kernel. To approximate for the numerical instabilities
in the denominator in (3.172), the velocity kernel is substituted by mollified velocity kernel
κε. There are various kernels which can be used (cf. e.g. [14, 64]). Herein, the second-order
Gaussian kernel is employed, given as:

κε(xp − xj) = 1
2π

(xp − xj) × ny

|xp − xj|2
[
1 − exp

(
−|xp − xj|2

ε2

)]
, (3.173)

where ε is the core radius that assures smooth cut-off distance.

The vorticity transport equation (3.154) is solved in two steps using the operator spitting
technique by Chorin [64]. Within this technique, the convection and diffusion are solved se-
quentially. In the convection step, the kinematics of the particles is obtained by solving the
Poisson equation (3.158) and Biot-Savart relation (3.172). As the computational cost of dir-
ectly solving (3.172) is O(N2

p ), number of fast numerical algorithms have been developed over
the years, which are mainly based either on the fast multipole method (cf. e.g. [17, 48]) or the
vortex-in-cell (VIC) method (cf. e.g. [16, 66, 137]), which were recently reviewed by Yokota and
Obi [371]). The latter method solves Poisson equation (3.158) on a regularized grid utilizing the
FFT and (3.158) for the sub-grid particle velocities (3.158), which reduces the computational
cost to O(Np log Np). For this, the unbounded domain is approximated bounded computational
domain of size ld × lh (cf. Fig. 3.9,right), which is discretized by Nx × Nz FFT grid. Herein,
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the efficient P3M algorithm is utilized [137], adapted for immersed interfaces by Morgenthal
and Walther [230]. Recent developments of the VIC methods involve multi-resolution grids (cf.
e.g. [97, 135, 262]); however, the basic VIC and P3M algorithm are deemed sufficient for the
present application.

The time-advancement in the convection step of the inviscid Euler equation (3.156) is ap-
proximated by the standard Runge-Kutta time-marching techniques. Next, the diffusion step
in (3.154) is solved using the random walk method by Chorin [64]. Within this method, the
particles’ locations are perturbed in a random direction with a random magnitude. Thus, the
particles’ position xp,j at time-step j are first advanced to xp,j+1/2 and then diffused to the final
position xp,j+1 at step j + 1 for j ∈ {1, . . . , Ns}, where Ns ∈ N is the number of time-steps.
For first-order Runge-Kutta, the convection and diffusion steps yield

xp,k+1/2 = xp,k + up,kΔt, xp,k+1 = xp,k+1/2 + xRW
p , (3.174)

respectively, where xRW
p is the random walk vector with variance σ2

|xRW| =
√

4νΔt.

For the discretization of an immersed body, the boundary element method is utilized [164]. The
geometry of the body is discretized on a finite number of panels Npan ∈ N with approximately
uniform length Δlpan, at which surface there is a linear variation of the strength of the bound
vortex sheets. The boundary conditions are enforced at the center of each panel, yielding the
following discrete approximation of of (3.165) and (3.166):

Mγb = b, (3.175)

where M is the influence matrix that is of size in R
Npan+1×Npan and b is the right-hand side

vector of (3.162) that is in R
Npan+1×1. The formulation of the M matrix is given in [164, 226].

The system in (3.175) contains Kelvin circulation theorem as appended separate equation, given
as a sum of the contributions to the total circulation as:∑

Γsystem =
∑

Γparticles +
∑

Γfarfield +
∑

Γboundary +
∑

Γbody = 0. (3.176)

Since the system is overdetermined, the b vector is computed utilizing the least-squares method
and it includes the induced velocities on the panels. The aerodynamic forces can be then found
from the strength of the bound vortex sheets from (3.169) in a straightforward manner.

The computer code VXflow, developed by Morgenthal [226], is utilized for the numerical im-
plementation of the VPM herein. The code is adapted for highly efficient GPU and OpenCL
parallel architecture and it has been verified and validated numerous times (cf. e.g. [52, 226,
228, 229, 230, 251]). Often the parameters in the VPM are experience-based for unresolved
simulations; however, particular guidelines exist that yield consistent results. Unless noted oth-
erwise, the core-radius is selected to maintain overlapping between particles, once released from
the boundaries, i.e. ε/Δlpan = 1.2. This overlapping represents a convergence criterion [70],
which in this case is satisfied at least near the surface as no re-meshing is used. The number of
neighboring Poisson cells Nr for correction of the sub-grid velocities in the P3M algorithm typ-
ically amounts to Nr = 3, which assures less than 1% error. For more information on numerical
implementation, the reader is referred to the Ph.D. thesis of Morgenthal [226].

3.6.2 Velocity-based free-stream turbulence
The velocity-based free-stream turbulence generation (VTG) method was developed by Pren-
dergast [257] and Prendergast and McRobie [258]. It represents a two-step method involving
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generating wind velocities on a ladder and subsequently converting them into inflow particles.
Herein, it is briefly explained with a different perspective to the mathematical formulation.

Assuming finite vorticity support, i.e. the vorticity is restricted to the modeled domain, the
incoming free-stream turbulence can be represented as initial conditions in terms of vorticity
field, extending upstream of the section as

ωu(x; t0) = ωut0. (3.177)

where ωut0 = ωut0(x; t0) is the initial vorticity field at initial time t0. The vorticity field can be
discretized by inflow particles using (3.170) as

ωu(x; t0) =
Nip∑
p=1

δ (x − xp(t0)) Γin
p , (3.178)

where Γin
p is the inflow particles’ circulation (i.e. strength), positioned at regularized discrete

gird xp at t = t0 and Nip is the number of inflow particles. Utilizing Taylor’s hypothesis, it
is assumed that the particles are convected downstream only by the mean velocity, thus each
particles’ trajectory at time t is described as

xp(t) = xp(t0) + u∞t. (3.179)

Hence, it can be described which particle, described by its position xp, is occupying a fixed
point xin = (xin, 0, zin) at time t by setting xin = xp(t).

The initial conditions of the voriticity in (3.177), i.e. the free-stream turbulence, can be applied
by inserting vortex particles with circulation Γin

p at multiple fixed positions xin upstream of
the section (i.e. a band of particles, cf. Fig. 3.10) through time. For discretized time, the
particles are inserted at a constant time-interval Δtin = ΔpΔt, where Δp ∈ N is the particle-
release factor that accounts for the difference between the particle injection time-step Δtin and
simulation time-step Δt. This yields circulation at xin at time-step j:

Γin
p,j = Γin

p (xin; jΔtin), (3.180)

for j ∈ {1, . . . , �Ns/Δp�}, where �·� is the floor function. The goal is to determine Γin
p,j for

prescribed statistical properties of the turbulent velocity field.

In the first step, Prendergast [257] positioned a sampling ladder surrounding the particle inflow
band to generate the inflow circulation for a prescribed velocity field (cf. Fig. 3.10). At
each node of the ladder, two-component correlated velocity field is simulated as a multivariate
stationary Gaussian process as described in Sec. 3.3.

In the second step, the approximate inflow circulation is obtained by utilizing (3.171) and
approximating the velocity distribution of a quadratic cell by the corner-point velocities (i.e.
linear velocity variation, cf. Fig. 3.10). This yields the following:

Γin
a =

(
∂w

∂x
− ∂u

∂z

)
Δc2

=
[

(wk + wn) − (wj + wp)
2Δc

− (up + un) − (uj + uk)
2Δc

]
Δc2

= Δc

2 (wk + wn − wj − wp − up − un + uj + uk) ,

(3.181)
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Figure 3.10: Simulation of random-free stream turbulence for the CFD model using the VTG. The
velocity is generated at the nodes of the sampling ladder positioned upstream of the deck (right). The
inflow circulation injected on the particle band is obtained based on linear velocity distribution (dark
gray) and then corrected for the actual nonlinear distribution (light gray).

where Δc is the cell size. For a single point vortex, the actual circulation Γin
p is based on

a nonlinear velocity distribution (light gray area in Fig. 3.10, left), while the approximated
circulation Γin

a is obtained from a linear velocity (dark gray area in Fig. 3.10, left). Hence, a
factor of π/2 should be applied in order to account for the nonlinear velocity distribution. The
modeled vortex Γin

m is then obtained as follows:

Γin
m = βinΓin

p = βin
π

2 Γin
a , (3.182)

where βin is a correction factor of the modeled circulation. In the case of a single vortex, this
correction factor amounts to βin = 1. However, for a ladder of particles, this factor is reduced
due to the cancellation of the errors on the cell boundaries resulting in values βinπ/2 → 1 for
isotropic turbulence. Prendergast [257] refers to this effect to as "smudging of the vorticity",
which will be briefly studied in Ch. 5. The cell size Δc is obtained using Taylor’s hypothesis
as Δc = UΔtin.

Injecting particles upstream in the domain introduces non-zero net circulation in the domain.
Hence, Kelvin circulation theorem (cf. (3.176)), needs to be modified to account for the free-
stream circulation as

∑
Γsystem =

∑
Γparticles +

∑
Γfarfield +

∑
Γsurface +

∑
Γbody − ∑

Γfree−stream = 0. (3.183)

The conversion of ladder velocities to particles in (3.182) was validated on an actual 2D
flow, represented by the numerical solution of the Navier-Stokes equations by Chaudhury and
Morengthal [51]. Therein, the velocity field was recorded on a ladder, positioned in the wake
of a bluff body. The flow was then reproduced using (3.182), yielding satisfactory results.

The divergence-free condition on the velocity field, enforced by the continuity condition in (3.153),
does not apply to the generated velocity field using the presented method in Sec. 3.3. This is a
consequence of the generation of the velocity field as a 1D multivariate random process instead
of a 2D process; hence, there is no relation between the longitudinal and vertical wavenumbers.
In the vorticity transport equation (3.154), the divergence-free condition is implicit. Hence,
there is a loss of TKE when the kinematic constraints of the Navier-Stokes equations are ap-
plied to the generated velocity field. Further, the spectral matrix in (3.12) is derived on a 3D
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spectral tensor, instead of a 2D. The turbulent energy transfer is different in 2D than in 3D
due to the inverse energy cascade (cf. e.g. [30, 222, 223]). All these factors, and additionally
the numerical issue with finite vorticity support contribute to the loss of TKE. Alternatively,
the divergence-free condition can be incorporated in the generation of the wind time-histories
as multivariate 2D processes (cf. Wu [365] for an excellent overview) or by imposing this condi-
tions in an intermediate step (cf. Kondo et al. [177]), as per common practice for the grid-based
CFD methods in terms of Large Eddy Simulations. However, the presented turbulent Pseudo-
3D method in Sec. 3.6.4 requires the velocity field to be divergence-free in the 2D fluid strips
while retaining the correlation between the strips. This is neither a 2D nor 3D case; thus, the
typical CFD inflow methods that are divergence-free do not apply. This is the reason why these
methods were not utilized to avoid the loss of TKE. Moreover, by extensive analyses of the
turbulent characteristics based on ESDU spectra, it was shown that the free-stream turbulence
retains the statistical properties using the velocity-based turbulence generation method (cf.
e.g. [134, 257, 261]. As seen in Ch. 5, using isotropic von Kármán spectra yields even better
results.

As noted in Sec 3.3.1, the cross-spectrum between the two velocity components, i.e. Suw = 0,
is neglected in VTG even for anisotropic free-stream turbulence. In the atmospheric boundary
layer, the point cross-spectra does not equal to zero for anisotropic turbulence, as measured
by many experimental studies (cf. [302, 305] for a summary) and described analytically for the
second-order structure of turbulence by Mann’s tensor [212]. Nevertheless, the effect of the
point cross-spectra on the bridge response is commonly considered to be negligible relative to
the overall uncertainty in the modeling of the wind field (cf. e.g. [60, 246, 329]). Although
generating the wind as a 1D multivariate process can account for the point cross-spectrum Suw,
the one-dimensionality assumption neglects the phase information between the two velocity
components, i.e. there is no relation between their corresponding wavenumbers. This is why this
assumption is deemed reasonable and was included in the original VTG by Prendergast [257].
Moreover, the computational time for generation of wind time-histories is reduced significantly
in this case as both fluctuation components can be generated independently, reducing the size
of the cross-spectral matrix Su by a factor of two, as noted in Sec. 3.3.

Having defined the free-stream turbulence as an initial condition, from (3.154), (3.159), (3.165),
(3.166), (3.177) and (3.167), the final formulation of the CFD model can be defined as:

CFD :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ωu

∂t
+ (u · ∇) ωu = ν∇2ωu, u(x) = u∞ − 1

2π

∫
D

(x − z) × ωu(z)
|x − z|2 dz,

[
1

2π

∫
B

(xB − x) × γb(x)
|xB − x|2 dBx

]
· nB = [ιB − (uB − u∞)] · nB,

d
dt

∫
D

ωu(x)dx = 0, ωu(x; t0) = ωut0, f = −ρ
d

dt

∫
D

ωu(x) × xdx.

(3.184)

3.6.3 Laminar Pseudo-3D vortex method
The laminar Pseudo-3D VPM attempts to include the structural behavior in R

3 while mod-
eling the fluid in R

2 by planes (strips) along the span by employing the strip assumption (cf.
Fig. 3.11). It was first used for bridges by Morgenthal and his co-workers [228, 229]. The
structure is modeled using 3D representation as in (3.1). With this, several improvements
can be made, despite the simplification of the 3D flow effects. These improvements include:
(i) varying cross-sectional geometry along the structure, (ii) varying mean wind speed for each
section and most importantly, (iii) the inclusion of an arbitrary number of structural modes
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Figure 3.11: Concept of the Pseudo-3D VPM: discretization of the fluid domain on 2D planes (strips)
along a line-like structure.

which are necessary for adequate representation of 3D structural behavior. It is noted that lam-
inar Pseudo-3D VPM stands for laminar free-stream, not laminar flow. In the same manner,
turbulent Pseudo-3D VPM stands for turbulent free-stream.

The concept is straightforward: the force vector required for the external force required in (3.1)
is assembled for Nstr ∈ N number of strips as follows:

f o = (D1, L1, M1, . . . , DNstr , LNstr , MNstr) , (3.185)

where Dj, Lj and Mj for j ∈ {1, 2, · · · , Nstr} are the drag lift and moment force for the j-th
strip. These forces are obtained from each strip by 2D CFD simulations, which are coupled
by the structural model. For the representation of the structural model, a full (cf. (3.1)) or
reduced (cf. (3.2)) system can be used. In the case of laminar free-stream, it is reasonable to
assume that the self-excited forces are fully correlated over one element, as noted by Scanlan
[285]. This assumption was further examined in a numerical study by Bai et al.[15], where
it was observed that the 3D coherence effects in the wake have a minor effect on the flutter
derivatives for streamlined decks. However, the energy transfer between modes can severely
affect the flutter limit [114], and thus, it is necessary to consider the 3D dynamic behavior of
the structure.

3.6.4 Turbulent Pseudo-3D vortex method*
In the case of free-stream turbulence, the 3D effects of the flow are perplexing. A novel tur-
bulent Pseudo-3D VPM is presented herein that attempts to replicate the incoming turbulent
fluctuations in R

2, while retaining the velocity span-wise correlation in an empirical manner.
The motivation is to obtain the dynamic response of a bridge deck due to an incoming turbulent
wind, rather than to simulate free-stream coherent turbulent structures in detail.

A multivariate velocity field is generated on spatially correlated ladders, positioned upstream
of each 2D fluid plane (cf. Fig. 3.12). The inflow particles are obtained at the center of each
cell from the ladder by the VTG method. Assuming that (3.181) is able to correctly model the
node velocities by the inflow particles, the span-wise correlation will be thus retained. However,
there is a loss of TKE as the divergence-free condition is not imposed on the generated velocity
field (cf. Sec. 3.6.2). Thus, a loss of span-wise correlation of the simulated velocities is expected.

Herein, further analytical expressions are derived to study the span-wise correlation of the
circulation, and thus, the correlated velocity field between slices. The investigation is conducted
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Figure 3.12: Concept of turbulent Pseudo-3D VPM based on VTG: sampling ladders and the position
of inflow particles convected by the mean velocity U for two slices at distance Δy.

in two parts, in which: (i) it is shown how the span-wise coherence of the circulation cohΓ1Γ2

at points x1 and x2 relates to the span-wise coherence of the velocity at these two points
cohu1u2 = coh12 for the two types coherence functions, Vickery (3.25) and a proposed modified
one; and (ii) it is shown that the span-wise correlation, and thus coherence of the circulation
is retained for points x3 and x4 as the particles are convected in the fluid domain, based on
Taylor’s hypothesis (cf. Fig. 3.12).

In the first part, initially the cross-correlation RΓAΓB
= RΓAΓB

(tδ) of lag tδ is defined for the
circulation at two points, xA = (xA, yA, zA) and xB = (xB, yB, zB), located at the center of for
any two cells. Utilizing (3.181) and assuming Suw = Swu = 0 for the cross-terms (cf. Sec. 3.3),
the cross-correlation of the circulation at points xA and xB is obtained as follows:

RΓAΓB
= RΓAΓB

(tδ) = Δc2

4

〈
[wkA(t) + wnA(t) − wjA(t) − wpA(t)]

× [wkB(t + tδ) + wnB(t + tδ) − wjB(t + tδ) − wpB(t + tδ)]
+ [upA(t) + unA(t) − ujA(t) − ukA(t)]

× [upB(t + tδ) + unB(t + tδ) − ujB(t + tδ) − ukB(t + tδ)]
〉

,

(3.186)

where the subscript A and B denote the center point of the cell for the corner velocities. The
circulations ΓA = ΓA(xA; t) and ΓB = ΓB(xB; t) are not assigned to two particular particles,
rather to each particle injected into the domain at time t. Using unique symmetry relation
Rab(tδ) = Rba(−tδ) for two stationary random processes, a = a(t) and b = b(t), the following
can be obtained:

Sab + Sba = Sab + Sab = 2� [Sab] . (3.187)
Applying the Wiener-Khinchin theorem (2.10) on (3.186) and using (3.187) yields

SΓAΓB
= Δc2

4

[
SwkAwkB

+ SwnAwnB
+ SwjAwjB

+ SwpAwpB

+ 2�
(
SwkAwnB

− SwkAwjB
− SwkAwpB

− SwnAwjB
− SwnAwpB

+ SwjAwpB

)
+ SukAukB

+ SunAunB
+ SujAujB

+ SupAupB

+ 2�
(
−SukAunB

+ SukAujB
− SukAupB

− SunAujB
+ SunAupB

− SwjAupB

) ]
(3.188)
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for the circulation cross-spectrum SΓAΓB
= SΓAΓB

(xA, xB; f) between the two arbitrary points,
xA and xB. Using the same analogy as in (3.26), the cross-spectra of the circulation of two
points can be described as

SΓAΓB
=
√

SΓAΓA
SΓBΓB

cohΓAΓB
= SΓcohΓAΓB

. (3.189)

Next, consider two points x1 = (xo, yo, zo) and x2 = (xo, yo + Δy, zo) in the vicinity of two cells
located at two separate slices (cf. Fig. 3.12). To show that the circulation at these points is
correlated, the cross-spectrum should not amount to zero, i.e. SΓ1Γ2 �= 0.

The cross-spectrum of the circulation for velocity field based on the Vickery coherence (cf. (3.25))
is derived first. The limiting value of the velocity coherence between x1 and x2 for the ratio
Δc/Δy → 0 yields

lim
Δc/Δy→0

coh(Δx, Δy, Δz; f) = coh(0, Δy, 0; f) = coh12, (3.190)

for Δx, Δz ∈ {0, Δc}. Plugging this into (3.188), the limiting case of the circulation cross-
spectrum Slim

Γ1,Γ2
for x1 and x2 yields

Slim
Γ1Γ2

= Slim
Γ1Γ2

(Δc; f) =Δc2

4 Swcoh12

{
4 + 2�

[
1 − exp(−i2πfθ12) − exp(−i2πfθ12)

− exp(−i2πfθ12) − exp(−i2πfθ12) + 1
]}

+ Δc2

4 Sucoh12

{
4 + 2�

[
−1 + exp(−i2πfθ12) − exp(−i2πfθ12)

− exp(−i2πfθ12) + exp(−i2πfθ12) − 1
]}

,

(3.191)

where θ12 = Δc/U is the angular phase shift. Utilizing only the real part of Euler’s for-
mula, (3.191) reduces to

Slim
Γ1Γ2

= 2Δc2Sw

[
1 − cos

(
2πfΔc

U

)]
coh12. (3.192)

The preceding equation shows that the circulation at the points x1 and x2 is correlated as
it includes the spatial coherence term. To separate the parts due to space coherence and
point spectrum as in (3.189), the point circulation spectrum SΓ = SΓ(Δc, f) should be ob-
tained. Two more assumptions are posed to obtain the limiting case of the point-spectrum
Slim

Γ = Slim
Γ (Δc, f). Strictly speaking, Taylor’s hypothesis impels that the longitudinal coher-

ence coefficient Cx = 0 [181]. Further, assuming that the product fCzΔc/U → 0 yields

lim
fCzΔc/U→0

coh(Δx, 0, Δz; f) = 1, for Δx, Δz ∈ {0, Δc} . (3.193)

Plunging this into (3.188), the limiting case of the circulation spectrum yields

Slim
Γ =Δc2

4 Sw

{
4 + 2�

[
1 − exp(−i2πfθ12) − exp(−i2πfθ12) − exp(−i2πfθ12)

− exp(−i2πfθ12) + 1
]}

+ Δc2

4 Su

{
4 + 2�

[
−1 + exp(−i2πfθ12) − exp(−i2πfθ12) − exp(−i2πfθ12)

+ exp(−i2πfθ12) − 1
]}

,

(3.194)
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which reduces to
Slim

Γ = 2Δc2Sw

[
1 − cos

(
2πfΔc

U

)]
. (3.195)

Substituting (3.195) into (3.192) yields

Slim
Γ1Γ2

= Slim
Γ coh12. (3.196)

The preceding equation clearly shows that the limiting case of the cross-spectrum of the circu-
lation is constituted of two terms, the point spectrum and space coherence. Hence, the limit
value of the circulation coherence equals the velocity coherence, for a velocity field based on
the Vickery coherence. This yields the following:

cohlim
Γ1Γ2

= cohu1u2 = coh12. (3.197)

The expression in (3.196) shows that limiting case of the circulation for Δc/Δy → 0 is correlated
in the span-wise direction in a similar manner as any velocity component at points x1 and x2.

At a late stage of this work it was realized that, if a modified coherence for the velocity field
is used, (3.188) could be substantially reduced without the additional assumptions as for a
velocity field based on the Vickery coherence. The proposed modified coherence is obtained as
a hybrid between the Vickery (cf. (3.25)) and Davenport coherence (cf. (3.24)) as follows:

cohjk = cohajbk
(Δx; f) = exp

[
− f

U

(
Cy |Δy| +

√
C2

xΔx2 + C2
z Δz2

)]
, (3.198)

which can be separated for x1 and x2 as

coh(Δx, Δy, Δz; f) = coh(0, Δy, 0; f)coh(Δx, 0, Δz; f) = coh12coh(Δx, 0, Δz; f), (3.199)

for Δx, Δz ∈ {0, Δc}. Plunging this into (3.188) for x1 and x2 and using the point spectrum
SΓ the following can be obtained:

SΓ1Γ2 = SΓcoh12, (3.200)
which is of similar form as in (3.196), without the additional assumptions of Δc/Δy → 0,
fCzΔc/U → 0 and Cx = 0 (cf. (3.190) and (3.193)). This shows that for a velocity field based
on the proposed modified coherence function (cf. (3.198)), the circulation coherence is the same
as the velocity coherence for any Δc/Δy ratio and Cx.

Next, the circulation coherence for a velocity field based on the Vickery coherence is studied.
Figure 3.13 presents the circulation coherence cohΓ1Γ2 from the full spectrum (cf. (3.188)) for
varying Δc/Δy ratio (i.e. without any assumptions). From the figure, it can be seen that the
circulation coherence cohΓΓ is generally reduced compared to the velocity coherence coh12. For
the limiting case of Δc/Δy = 0, the circulation coherence matches the velocity coherence, i.e.
(3.197) holds. In the case of smaller ratios that are not equal to zero, the circulation coherence
reduces. This is because SΓ1Γ2 would attain lower values than SΓ as the Δy2 term is present
in the negative exponential of the Vickery coherence (cf. (3.25)). The circulation coherence
matches the velocity coherence for a velocity field based on the proposed coherence function
(cf. (3.198)), regardless of the Δc/Δy ratio, i.e. the principle of geometric similarity applies in
this case (cf. Sec. 3.3.1).

To conclude the first part of the investigation, the quality of the span-wise correlation of the
simulated velocities at the beginning of the CFD domain should not depend on the choice of
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velocity coherence function. This is only true if the modeled particles in (3.182) replicate the
nodal velocities exactly. However, as the generated nodal velocities are not divergence-free in
the x − z plane, a loss of span-wise correlation is expected. In this case, it will be shown during
the flow verification in Sec. 5.3.1 that the modified velocity coherence (cf. (3.198)) yields better
results. This is purely a numerical consequence as the coherence of the circulation based on
the Vickery coherence attains lower values (cf. Fig. 3.13), which makes it prone to numerical
noise. For a single strip, both the Vickery and modified coherence are similar.

In the second part of the investigation, it is shown that the cross-correlation of the circulation
for the points x1 and x2 at the ladder is similar as for the downwind points x3 = (xo+Δx, yo, zo)
and x4 = (xo + Δx, yo + Δy, zo) (cf. Fig. 3.12). Under Taylor’s hypothesis, the longitudinal
distance x relates to a time lag τr as τr = Δx/U . Using the stationarity assumption, the
cross-correlation possess the property R(tδ) = R(tδ + tr) and it can be expressed as follows:

RΓ1Γ2(tδ) = 〈Γ(xo, yo, zo; t)Γ(xo + Δx, yo, zo; t + tδ)〉
= 〈Γ(xo, yo, zo; t + tr)Γ(xo + Δx, yo, zo; t + tδ + tr)〉
= 〈Γ(xo, yo + Δy, zo; t)Γ(xo + Δx, yo + Δy, zo; t + tδ)〉
= RΓ3Γ4(tδ).

(3.201)

The latter equation shows, that the span-wise correlation of the circulation, and thus, velocity,
is retained in the along-wind direction.

Recently, Tolba and Morgenthal [326] also utilized the idea of introducing empirically correlated
free-stream turbulence to the Pseudo-3D VPM. Therein, a particle-based free-stream turbulence
generation was introduced instead of using the VTG explained in the previous section. For
the particle-based free-stream turbulence, the circulation of the particles is directly generated,
instead of first generating a velocity field as in the VTG. The incentives to utilize the VTG
for the turbulent Pseudo-3D VPM are the meaningful advantages of (i) partial consideration
of anisotropy in the flow, and (ii) ability to prescribe the PSD for both fluctuating components
of the velocity. These two points, and the fact that a velocity field is generated instead of
vorticity, makes the VTG method both more flexible and intuitive. On the other hand, the
span-wise correlation is directly enforced on the inflow particles for the particle-based method.

The energy transfer between turbulent eddies is different in 2D and 3D. However, the turbulent
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Figure 3.13: Span-wise circulation coherence based on a generated velocity field using the Vickery
coherence (cf. (3.25)). For Δc/Δy = 0, the circulation coherence tends to the velocity coherence
cohΓ1Γ2 = coh12. For a generated velocity field using the proposed modified coherence (cf. (3.24)), the
circulation coherence is always equal to the velocity coherence.
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Pseudo-3D VPM aims to model the large-scale eddies which carry the largest part of the
turbulent energy and are critical for the aerodynamic response. The correlation in these eddies
is higher than in the small eddies and for high Reynolds number, the advection is dominant.
For fluid-structure interaction, a drawback of the turbulent Pseudo-3D VPM is the disregard
of the 3D effects which result in increased correlation and reduced magnitude of the buffeting
forces w.r.t. their 2D counterparts. Presently, the strip assumption is utilized, as it is difficult
to empirically increase the span-wise correlation for the buffeting forces only, since they are
nonlinearly coupled with the self-excited forces. The effect of the strip assumption is discussed
in detail as a part of critical remarks in the last chapter.

3.7 Determination of aerodynamic coefficients
The aerodynamic coefficients represent the link between the semi-analytical models and a CFD
or an experimental model. With the CFD and semi-analytical models being introduced pre-
viously, CFD-based methods for determination of the aerodynamic coefficients are presented
here. Initially, simple methods extraction of the static wind coefficients and flutter derivatives
are briefly recalled. Next, a recently introduced method for determination of the aerodynamic
admittance for random gusts is revisited. Finally, a novel method for determination of the
aerodynamic admittance under deterministic gusts is introduced.

3.7.1 Static wind coefficients
The determination of the static wind coefficients is straightforward: the averaged (i.e. static)
forces of stationary body are normalized w.r.t. the free-stream pressure and a characteristic
dimension. Thus, the static forces are obtained as a time-averaged mean of the fluctuating
forces at a static angle of attack as

Ds(αs) = 〈D(αs; τ)〉 , Ls(αs) = 〈L(αs; τ)〉 , Ms(αs) = 〈M(αs; τ)〉 , (3.202)

based on which, the static wind coefficients are obtained as

CD(αs) = 2Ds(αs)
ρU2B

, CL(αs) = 2Ls(αs)
ρU2B

, CM(αs) = 2Ms(αs)
ρU2B2 . (3.203)

From a practical aspect, it is important that the time-varying mean of the static wind coefficient
converges to a certain value. As the simulation time needs to be set beforehand, usually
maintaining the total reduced time interval in the order of τ ≈ 50 − 200 suffices to filter the
vortex-shedding effects. In such a way, it is ensured that at least 50 chords of a wake are used for
the analysis. Moreover, it is important that the Reynolds number is maintained throughout the
aeroelastic analyses. Some studies (cf. e.g. Larose [186]) determine the static wind coefficients
under turbulent free-stream to compute the aerodynamic admittance. However, this would only
average the local non-stationary and nonlinear buffeting effects, as for simulation time τ → ∞,
the gust frequency f → 0 if the strip assumption is valid.

3.7.2 Flutter derivatives
As seen in the previous section, the flutter derivatives correspond to the linear unsteady part of
the self-excited forces. Hence, it is crucial that they are determined for displacements that yield
aerodynamic forces in the linear range. There are mainly two methods of determining the flutter
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derivatives: forced (cf. e.g. [85]) and free vibration (cf. e.g. [263]). Within the first method,
the section is forced to oscillate with a prescribed target amplitude and frequency, resulting in
aerodynamic forces. The flutter derivatives are then obtained simply as a transfer function in
terms of magnitude and phase. In case the free-vibration method, the flutter derivatives are
extracted from the damping and stiffness of a system, oscillating for an initial displacement.

Although the free-vibration method is useful in experiments due to the costs of constructing a
forced rig, there is great deal of uncertainty in the system identification. Thus, as per common
practice for CFD-analyses, the flutter derivatives are determined using forced vibration. To
obtain all eighteen flutter derivatives, sinusoidal motion is applied at the stiffness center xs

of the deck in one of three directions: sway, heave and pitch. For each of these cases, the
corresponding flutter derivatives are obtained by rearranging (3.72) and taking the Fourier
transform, yielding the following:

Sway: q(xs; t) = (p0(xs), 0, 0) exp(iωtt), P ∗
4 (Vrt) + iP ∗

1 (Vrt) = 2D̂se(Vrt)
ρUπ2V 2

rtp̂(Vrt)
,

H∗
6 (Vrt) + iH∗

5 (Vrt) = 2L̂se(Vrt)
ρUπ2V 2

rtp̂(Vrt)
, A∗

6(Vrt) + iA∗
5(Vrt) = 2M̂se(Vrt)

ρUπ2BV 2
rtp̂(Vrt)

,

(3.204)

Heave: q(xs; t) = (0, h0(xs), 0) exp(iωtt), P ∗
6 (Vrt) + iP ∗

5 (Vrt) = 2D̂se(Vrt)
ρUπ2V 2

rtĥ(Vrt)
,

H∗
4 (Vrt) + iH∗

1 (Vrt) = 2L̂se(Vrt)
ρUπ2V 2

rtĥ(Vrt)
, A∗

4(Vrt) + iA∗
1(Vrt) = 2M̂se(Vrt)

ρUπ2BV 2
rtĥ(Vrt)

,

(3.205)

Pitch: q(xs; t) = (0, 0, α0(xs)) exp(iωtt), P ∗
3 (Vrt) + iP ∗

2 (Vrt) = 2D̂se(Vrt)
ρUπ2BV 2

rtα̂(Vrt)
,

H∗
3 (Vrt) + iH∗

2 (Vrt) = 2L̂se(Vrt)
ρUπ2BV 2

rtα̂(Vrt)
, A∗

3(Vrt) + iA∗
2(Vrt) = 2M̂se(Vrt)

ρUπ2B2V 2
rtα̂(Vrt)

,

(3.206)

where p0, h0 and α0 are the motion amplitudes, while the subscript t denotes prescribed (tar-
get) value. Alternatively to the direct computation using the Fourier transform, the flutter
derivatives are obtained directly by performing linear least squares fit to the forces [193].

The motion amplitudes should be selected as such to ensure that the self-forces are in the
linear range. For an initial indication, it is beneficial to check the linear range of the static
wind coefficients (cf. Fig. 3.6)). Some studies (cf. e.g. [190, 193, 276, 277]), the displacement
amplitudes are selected in the range of 0.04 < k0/B < 0.06 for k ∈ {p, h} and 1 deg< α0 < 8
deg. A fairly comprehensive review on displacement amplitudes is given in Abbas et al. [3],
co-written by the author. In pitch case, this range is generally valid and is best decided based
on the static wind coefficients, which represent the first indicator for aerodynamic nonlinearity.
However, for the sway and heave cases, it is more sensible to select the amplitude based on an
effective angle αe = k̇0/U for k = {p, h}, in the same range as for the pitch case as performed
by Argentini [11]. In such a way, the displacement amplitude varies for each reduced velocity
and the linear range can be identified based on the static wind coefficients as for the rotation.

3.7.3 Aerodynamic admittance for random gusts
The two approaches for determination of the aerodynamic admittance in bridge aerodynamics
are based on random and deterministic free-stream turbulence. Computation of the aerody-
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namic admittance using the vortex methods was first conducted by Rasmussen et al. [261] and
is based on the VTG, discussed in Sec. 3.6.2. Herein, this approach is briefly revisited.

Consider a stationary deck, subjected to random free-stream turbulence. When random free-
stream fluctuations are considered as input, the determination of the aerodynamic admittance is
obtained for the whole reduced velocity range Vr. Naturally, the free-stream turbulence includes
fluctuations in both longitudinal and vertical directions. Thus, only three admittance compon-
ent can be obtained. From the PSD of (3.73), the squared-absolute value of the aerodynamic
admittances can be obtained as

|χD|2 = |χDu|2 = |χDw|2 = 4SDb

ρ2U2B2
[
4C2

DSu +
(
C

′
D − CL

)2
Sw

] ,

|χL|2 = |χLu|2 = |χLw|2 = 4SLb

ρ2U2B2
[
4C2

LSu +
(
C

′
L + CD

)2
Sw

] ,

|χM |2 = |χMu|2 = |χMw|2 = 4SMb

ρ2U2B4
(
4C2

MSu + C
′
M

2
Sw

) ,

(3.207)

where SDb
= SDb

(xs; f), SLb
= SLb

(xs; f) and SMb
= SMb

(xs; f) are the PSD of the drag,
lift and moment buffeting forces, respectively. The fluctuating velocities are tracked down in
the CFD domain at point xc, based on which the corresponding PSDs, Su = Su(xc; f) and
Su = Su(xc; f), are determined. Rassmussen et al. [261] and Hejlesen et al. [134] position the
velocity tracking point xc at an approximate distance of one chord B upstream of the leading
edge, i.e. xs − xc = (B, 0, 0). Herein, the gust-tracking point is selected to be at the stiffness
center, i.e. xs ≡ xc. Hence, the PSDs of the wind velocity fluctuations are determined from
a simulation considering only the free-stream turbulence, that is, without a body in the CFD
domain. With this, the wind spectrum is obtained at the same point where the forces are
acting. Moreover, and the influence of the deck on the incoming flow is not taken into account.
However, the LU model does not capture this effect anyway. As for the flutter derivatives, the
selected turbulence intensity should ensure linear buffeting forces. Typically, the range for 3
% ≤ σw/U ≤ 10 % for the vertical component is used. This range corresponds to a standard
deviation of an effective angle αe = w/U in the range from 1.5 deg to 6 deg.

Experimentally, the random free-stream turbulence is generated either by a grid or in boundary-
layer wind tunnels [123, 186, 187, 209, 274]. Unlike the admittance obtained from the 2D VPM,
the experiments consider the 3D structure of the turbulence in a statistical manner through its
PSD and coherence function.

3.7.4 Aerodynamic admittance for deterministic gusts*
The second approach for determination of the aerodynamic admittance is based on deterministic
free-stream turbulence in terms of sinusoidal gusts with a single prescribed frequency. This
section presents a novel method based on the VPM to determine the aerodynamic admittance
in its complex form. The method is based on the idea of an active turbulence generator, which
has been extensively utilized in experimental tests (cf. e.g. [11, 81, 85, 129, 151]).

An active turbulence generator represents a set of two or more pitching airfoils, oscillating with
a single frequency. For an out-of- or in-phase motion of two airfoils, longitudinal or vertical
sinusoidal gusts are generated in the region between the wakes of the airfoils, respectively. The
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gusts generated in such a way are considered to be fully correlated in the span-wise direction,
which complies with the strip assumption. Positioning a deck section downstream of the active
turbulence generator yields sinusoidal buffeting forces. Unlike the aerodynamic admittance for
random free-stream turbulence, this configuration allows determination of the real and imagin-
ary part of all six aerodynamic admittances as amplitude and phase modulation, respectively,
between the sinusoidal buffeting forces and wind gusts.

Consider two fundamental cases of incoming sinusoidal longitudinal uc = u0 exp(iωt) and ver-
tical wc = w0 exp(iωt) gusts with on a target frequency ωt. Rearranging (3.73) and taking the
Fourier transform, six components of the aerodynamic admittance can be obtained for the two
fundamental cases as follows:

Longitudinal: u∗(xc; t) = (u0(xc), 0, 0) exp(iωtt), χDu(Vrt) = D̂b(Vrt)
ρUBCDû(Vrt)

,

χLu(Vrt) = −L̂b(Vrt)
ρUBCLû(Vrt)

, χMu(Vrt) = M̂b(Vrt)
ρUB2CM û(Vrt)

.

(3.208)

Vertical: u∗(xc; t) = (0, 0, w0(xc)) exp(iωtt), χDw(Vrt) = 2D̂b(Vrt)
ρUB

(
C

′
D − CL

)
ŵ(Vrt)

,

χLw(Vrt) = −2L̂b(Vrt)
ρUB

(
C

′
L + CD

)
ŵ(Vrt)

, χDw(Vrt) = 2M̂b(Vrt)
ρUB2C

′
M ŵ(Vrt)

,

(3.209)
where u0 and w0 are the gust amplitudes at a gust-tracking point xc, while the subscript
t denotes prescribed (target) value. It is clear that all aerodynamic admittance functions
in (3.208) and (3.209) are in its complex form and can be obtained at various prescribed
reduced velocities Vrt.

In what follows, a concept of a numerical active turbulence generator is explained, which can
be used to generate free-stream sinusoidal gusts using the VPM, in terms of inflow particles.
A closed-form expression is derived that relates the inflow particles’ strength to the gust amp-
litudes. This expression is based on an existing mathematical model. Finally, a previously
developed inverse method that relates particles’ strength and gust amplitudes is briefly revis-
ited. The inverse method is used to verify the derived closed-form expression in Sec. 5.3.2.

Concept

Figure 3.14 depicts the concept of the presented method. Two fictitious airfoils, FA and FB,
are assumed to be oscillating upstream of the section and outside a CFD domain, constituting
an active turbulence generator. The motion of the airfoils is rotational, sinusoidal and with
same amplitudes. The pitching angles for the two airfoils, αFA

= αFA
(t) and αFB

= αFB
(t), are

αFA
= αF 0 exp (iωtt) , αFB

= αF 0 exp (iωtt + iϕF ) , (3.210)

where αF 0 is the oscillation amplitude and ϕF is the phase between the motion of the two foils.

In the CFD domain, only the wakes of the airfoils are modeled by releasing particles carrying
concentrated circulation Γin

F . Once the particles are released in the CFD domain, their motion
is governed by the Navier-Stokes equations, which are numerically solved utilizing the VPM (cf.
Sec. 3.6.1). The particles are introduced at two particle release locations, xFA

= (0, 0, −lR/2)

88



3.7. Determination of aerodynamic coefficients
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Figure 3.14: Concept of numerical active turbulence generator for generation of deterministic free-
stream turbulence for determination of the complex aerodynamic admittance using the VPM.

and xFB
= (0, 0, lR/2), at a constant time interval Δtin = ΔpΔt, where Δp ∈ N is the particle-

release factor and Δt is the simulation time-step. In case the oscillation of the airfoils is
sinusoidal, the inflow discrete circulation for both airfoils, Γin

FA
= Γin

FA
(xFA

; j) and Γin
FB

=
Γin

FB
(xFB

; j), yield

Γin
FA,j = Γin

F (xFA
; jΔtin) = Γin

F 0 exp (iωtjΔtin) ,

Γin
FB ,j = Γin

F (xFB
; jΔtin) = Γin

F 0 exp (iωtjΔtin + iϕF ) ,
(3.211)

where j ∈ {1, . . . , �Ns/Δp�} for Ns ∈ N number of steps. The circulation amplitude depends
on the temporal discretization, that is, ΓF 0 = ΓF 0(Δtin). Assuming Taylor’s hypothesis holds,
the spatial and temporal discretization are related as ΔxF = UΔtin, where ΔxF is the particle
spacing.

If Γin
FA

and Γin
FB

are in-phase (ϕF = 0) or out-of-phase (ϕF = π), a vertical or horizontal
sinusoidal gust is obtained, respectively, at a gust-tracking point on the centerline, i.e. xc =
(xc, 0, 0). However, this is only true if the following assumptions hold:

i) the vorticity shed from an airfoil into the wake is concentrated at the mean chord line
and is convected by the mean velocity (planar wake assumption);

ii) the wakes are non-interfering and infinite, and the point xc is located sufficiently down-
stream of the particle release locations (i.e. the airfoils).

Positioning a section downstream of the particle release locations results in sinusoidal aero-
dynamic forces. Hence, the aerodynamic admittances can be in a computed straightforward
manner (cf. (3.208) and (3.209)). In light of the previous explanation, the presented method
consists of two essential steps and one optional step, in which:

a) the inflow particles’ strength Γin
F (cf. (3.211)) is computed a-priori of the CFD simulations

for a prescribed gust amplitude, ut0 or wt0, and frequency ft;

b) a CFD simulation with a stationary body is conducted including inflow particles;

c) (optional) a CFD simulation without a body is conducted including inflow particles.

The optional step is included in case the gust-tracking point xc is selected to be at the stiffness
center, i.e. xc ≡ xs. In this case, the effect of the section on the incoming gust is not taken
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into account and the imaginary part of the admittance is obtained for wind fluctuations at the
stiffness center, which is the situation for the linear unsteady model based on the airfoil theory.

Modeling flapping airfoils using concentrated vortices has been used for experiments in a form
of mathematical models based on airfoil theory, to determine the airfoil flapping angles w.r.t.
gust amplitudes (cf. e.g. [130, 309]). Recently, Chawdhury et al. [50] used the concept of
counter-rotating vortices in the VPM to simulate pulsating flow, i.e. longitudinal gusts with
significantly longer lengths than the CFD domain, to study the performance of flutter-based
energy harvesters. For that purpose, a simple discrete model based on the Biot-Savart rela-
tion (3.159) was developed to relate the inflow circulation and longitudinal gust amplitudes.
That model is inapplicable for the gust lengths required for the aerodynamic admittance.

The presented method extends the concept for sinusoidal gusts in the VPM by Chawdhury
et al. [50] in two manners, first to consider co-rotating vortices to simulate vertical gusts, and
second, it offers an analytical relation between the inflow particles strength and gust amplitude.
In other words, the circulation amplitude of the released particles Γin

F 0 for a prescribed gust
amplitude, uct0 or wct0, in step a) is obtained from a closed-form expression. This expression
is derived based on an airfoil theory-based mathematical model by Stapountzis [309]. It is
noteworthy to mention that, the prescribed gust amplitude in step a) is only to provide an
approximate value, which will be later corrected by the one tracked in the CFD domain within
steps b) or c). The prescribed gust amplitude should also ensure that, up to a certain extent,
the aerodynamic forces remain linear.

Mathematical model

The mathematical model, that is used to determine circulation amplitude Γin
F 0 (cf. (3.211))

for prescribed gust amplitudes, practically enforces the two assumptions i) and ii). These
assumptions are required for a gust at point xc along the centerline to be sinusoidal. In order
to relate the pitching angle amplitude of the airfoils αF 0 to the circulation amplitude ΓF 0, and
hence, to prescribed gust amplitudes ut0 or wt0, two additional assumptions are required since
the wakes’ are modeled utilizing the flat plate theory (cf. Sec. 3.4), namely:

iii) the airfoils are idealized as flat plates and the oscillation amplitudes are sufficiently small,
so that linear unsteady theory applies;

iv) the Kutta-Jukowski condition is constantly fulfilled.

For an oscillating airfoil, which trailing edge is positioned at (0, 0, zF ), the induced velocity at
a point on the centerline xc can be obtained by using the Biot-Savart relation (cf. (3.159)) as
follows:

uF
c = uF (xc; t) = −zF

2π

∫ ∞

0

γF (x)
(xc − x)2 + z2

F

dx,

wF
c = wF (xc; t) = − 1

2π

∫ ∞

0

(xc − x)γF (x)
(xc − x)2 + z2

F

dx,

(3.212)

where, γF = γF (xγ; t) is strength of the wake vortex sheet of the airfoil at point xγ = (x, 0, zF ),
which is concentrated along the line z = zF (cf. assumption (i)). Assumption (ii) is implied
in (3.212) by neglecting the bound circulation, as the point xc is assumed to be sufficiently
downstream.

For two oscillating airfoils with non-interfering wakes, the fluctuating velocity components at
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the centerline yield
uc = uFA

c + uFB
c , wc = wFA

c + wFB
c . (3.213)

To obtain a solution for the mathematical model in (3.212) and (3.213), two methods are used,
referred to as "Analytical" and "Inverse" method.

Analytical forward method

For an airfoil performing sinusoidal rotation with prescribed frequency ωt, the strength of the
wake vortex sheet is also sinusoidal, i.e γF = γF 0 exp (iωtt). Based on the assumptions (i-iv),
Stapountzis [308, 309] gives a closed-form solution of (3.212) as follows:

uF
c = − sgn (zF ) A

2 exp
[
−2K∗

t

B
|zF | + i

(
ωtt − 2K∗

t

B
xc

)]
,

wF
c = i

A

2 exp
[
−2K∗

t

B
|zF | + i

(
ωtt − 2K∗

t

B
xc

)]
,

(3.214)

where sgn is the sign function, K∗
t is the prescribed reduced frequency w.r.t. half chord

(cf. (3.46)). For airfoils rotating about the front quarter point, A = A(K∗
t ) is given as fol-

lows:
A = −4UαF 0

1 + iK∗
t

H
(2)
1 + iH

(2)
0

. (3.215)

where H
(2)
1 = H

(2)
1 (K∗

t ) and H
(2)
0 = H

(2)
0 (K∗

t ) are Hankel functions of the second kind.

In the present configuration, two airfoils are positioned at xFA
and xFB

(cf. Fig. 3.14). The
velocities at the centerline can be obtained by changing (3.214) into (3.213). For in-phase
oscillations of the airfoils, uFA

c = −uFB
c and wFA

c = wFB
c ; hence, the velocities at the centerline

yield

uc = 0, wc = iA exp
[
−K∗

t lR
B

+ i
(

ωtt − 2K∗
t

B
xc

)]
. (3.216)

Correspondingly, for out-of-phase oscillations of the airfoils, uFA
c = uFB

c and wFA
c = −wFB

c ;
hence, the velocities at the centerline are

uc = −A exp
[
−K∗

t lR
B

+ i
(

ωtt − 2K∗
t

B
xc

)]
, wc = 0. (3.217)

In the experimental studies [310] the aim is to have a closed-form solution that relates the
oscillation amplitude of the airfoils αF 0 to the gust amplitudes wc0 and uc0. To relate the gust
amplitude to the circulation in a closed-form solution, the following relations are derived.

First, consider the case for in-phase oscillating airfoils, i.e. Γin
FA

= Γin
FB

= Γin
F . Changing (3.215)

into (3.216) for the vertical velocity and using the non-dimensional time τ (cf. (3.46)) yields

αF 0 = −wc

(
H

(2)
1 + iH

(2)
0

)
4U (1 + iK∗

t ) i
exp

[
K∗

t lR
B

− i
(

2K∗
t τ − 2K∗

t

B
xc

)]
. (3.218)

For a sinusoidal rotational motion of the airfoils, the vertical velocity is also sinusoidal, i.e.
wc = wc(τ) = wc0 exp (iK∗

t τ). Furthermore, the circulatory lift deficiency of such airfoils due
to the unsteady behavior is accounted by Theodorsen function C = C(K∗

t ) (cf. (3.52)). This
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means that the effective quasi-steady angle of oscillation αQS
e = αF is replaced with the effective

unsteady angle αUS
e = αQS

e /C = αF /C (cf. (3.58) and (3.65)). Changing this in (3.218), yields

αUS
e = −C

wc0

(
H

(2)
1 + iH

(2)
0

)
4U (1 + iK∗

t ) i
exp

[
K∗

t lR
B

− i
(

2K∗
t τ − 2K∗

t

B
xc

)]
, (3.219)

The bound circulation Γb = Γb(τ) is obtained based on the Kutta-Jukowski theorem and the
unsteady effective angle as Γb = UπαUN

e B (cf. (3.47) and (3.57)). Taking this into account and
changing for Theodorsen function (cf. (3.52)) into (3.219), the bound circulation reduces to

Γb = wc0πBH
(2)
1

4 (1 + iK∗
t ) i

exp
(

K∗
t lR
B

+ i2K∗
t τ

)
. (3.220)

In the preceding expression, the term 2K∗
t /Bxc and the sign under the exponential in (3.219)

are neglected. These terms account for the phase between the circulation at the particle release
locations and velocity fluctuations at point xc. This phase is obsolete for the present purpose.

The discrete circulation shed in the wake due to change of angle of the airfoil during time
Δτin = ΔtinU/B is Γin

F = Γin
F (τ) = Γb(τ − Δτin) − Γb(τ). Taking this into account and

discretizing the non-dimensional time as τ = jΔτ , the following relation is obtained:

Γin
F,j = wc0πBH

(2)
1

4 (1 + iK∗
t ) i

exp
(

K∗
t lR
B

)
[exp (−i2K∗

t Δτin) − 1] exp (i2K∗
t jΔτin) . (3.221)

for j = {1, . . . , Ns}. Similarly, for the out-of-phase motion in (3.217), i.e. Γin
FA

= Γin
F and

Γin
FB

= −Γin
F , the following relation is obtained:

Γin
F,j = uc0πBH

(2)
1

4 (1 + iK∗
t ) exp

(
K∗

t lR
B

)
[exp (−i2K∗

t Δτin) − 1] exp (i2K∗
t jΔτin) . (3.222)

Both (3.221) and (3.222), represent the relation between the inflow circulation Γin
F and gust

amplitudes for in-phase wc0 and out-of-phase motion uc0 of the airfoils, respectively. These
expressions can be written in a reduced form as

Γin
F,j = Γin

F 0 exp (i2K∗
t jΔτin) , (3.223)

which is similar to (3.211) for non-dimensional time. The amplitude of the circulation is the
same for vertical or longitudinal sinusoidal gusts with similar prescribed amplitudes uct0 =
wct0. Neglecting the phase, the final closed-form solution for the circulation amplitude Γin

F 0 =
Γin

F 0(Δτin) yields

Γin
F 0 =

∣∣∣∣∣∣
wct0πBH

(2)
1

4 (1 + iK∗
t ) i

exp
(

K∗
t lR
B

)
[exp (−i2K∗

t Δτin) − 1]
∣∣∣∣∣∣

=
∣∣∣∣∣∣
uct0πBH

(2)
1

4 (1 + iK∗
t ) exp

(
K∗

t lR
B

)
[exp (−i2K∗

t Δτin) − 1]
∣∣∣∣∣∣ .

(3.224)

Discrete inverse method

Harding and Bryden [130] introduced a discrete inverse method for the solution of the math-
ematical model. In this method, the strength of the wake vortex sheet in (3.212) and (3.213) is
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discretized on discrete particles by utilizing the discrete Biot-Savart relation (cf. (3.172)). The
assumptions (i) and (ii) are enforced by specifying the inflow particles’ position apriori at the
mean chord line, uniformly distributed at distance ΔxF . For the configuration in Fig. 3.14, the
discrete velocities at xc at step j yield

uc,j =
Nip+j−1∑

k=j

Zu,jk

(
Γin

FA,k − Γin
FB ,k

)
,

wc,j =
Nip+j−1∑

k=j

Zw,jk

(
Γin

FA,k + Γin
FB ,k

)
,

(3.225)

where j ∈ {1, . . . , �Ns/Δp�} and Nip ∈ N are number of inflow particles considered in the
spatial range of summation for the inverse method linv

v . The matrices Zu and Zw are obtained
by using (3.172), considering that at each step j, the velocities are influenced only by Nip

number of particles. Thus, these matrices are of size in R
�Ns/Δp�×�Ns/Δp�+Nip , and are obtained

as follows:

Zu,jk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lR

4π

[
(xc − xF,k)2 + l2

R

4

] , for j ≤ k ≤ j + Nip − 1,

0, otherwise;

Zw,jk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− (xc − xF,k)

2π

[
(xc − xF,k)2 + l2

R

4

] , for j ≤ k ≤ j + Nip − 1,

0, otherwise.

(3.226)

The circulation can be obtained for prescribed velocities, uct and wct, by reversing (3.225) as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Γin
FA,k − Γin

FB ,k =
Ns∑
j=1

Z+
u,kjuct,j

Γin
FA,k + Γin

FB ,k =
Ns∑
j=1

Z+
w,kjwct,j

, (3.227)

where Z+
u and Z+

w are the pseudo-inverse matrices of Zu and Zw, respectively, as no unique
inverse is feasible since the system is overdetermined. The Moore-Penrose method is utilized
for the pseudo-inverse operation. The system in (3.227) is solved as simultaneous equations at
each time-step. [130] further relate the circulation Γin

F to the airfoil angles αF .

The inverse method is given herein to verify the closed-form solution derived in (3.224). Fur-
thermore, it is noted that the prescribed velocities in the inverse method by (3.227) do not
need to be sinusoidal. In fact, they can be arbitrary functions, as experimentally validated by
Harding et al. [131]. Thus, the inverse method is more flexible than the analytical; however,
the latter is preferred for sinusoidal functions as it is more computationally efficient and avoids
the error in least-squares fit in the pseudo-inverse operation. This error in the inverse method
for sinusoidal velocity fluctuations can be reduced, up to a certain extent, by taking longer linv

v

than the spatial length of summation lv of the CFD domain (cf. Fig. 3.14).
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3.8 Summary
The theoretical foundation of various aspects of modeling in the field of bridge aerodynamics
was addressed in this chapter. The wind-structure interaction was formulated as a coupled
model, constituted of a structural and an aerodynamic model. Without loss of generality, the
structural model of the deck was defined using the linear theory as it is of secondary importance
for this work. To increase computational efficiency, the order of the structural system was
reduced using the modal representation.

Next, the stochastic wind field was represented by discrete points with defined spatial and
temporal correlation, using the spectral representation. At these points, wind time-histories
can be then generated as multivariate stationary Gaussian processes. These time-histories
represent an input for the aerodynamic models that replicate the buffeting forces.

Having a model for the free-stream turbulence, the modeling of the wind forces acting on a
bridge deck was approached in two manners: using CFD and semi-analytical models. Before
defining the semi-analytical models for bridge decks, the analytical models for a flat plate were
briefly revisited as the basic principles in bridge aerodynamics stem from these analytical mod-
els. Two main assumptions were considered as pivotal points: linearity and quasi-steadiness.
Mainly based on these two assumptions, twelve semi-analytical models were defined, of which
ten are implemented in a computer code. Moreover, a simple method for computation of the
buffeting forces based on the FFT was introduced as a part of the CMBM model.

Further, the 2D CFD model was formulated based on the vorticity transport equation including
boundary conditions of an immersed body and free-stream turbulence as an initial condition.
Formulated as such, it is convenient to discretize the CFD model using the VPM that yields
favorable results at reasonable computational costs, despite unresolved turbulent scales and
lack of turbulence modeling. The free-stream turbulence was discretized using the VTG, in
which the circulation of the inflow particles is obtained from a generated velocity field.

The laminar Pseudo-3D VPM was then revisited as an extension of the 2D VPM that accounts
for the 3D structural behavior while modeling the fluid in 2D strips along the span. Based on
this method and the VTG method for free-stream turbulence, a novel velocity-based turbulent
Pseudo-3D VPM was presented. It was shown, in an analytical manner, that the free-stream
turbulence remains correlated in the CFD domain between the fluid strips for points down-
stream of particle release locations.

Finally, methods for determination of the static wind coefficients, flutter derivatives and aero-
dynamic admittance for random free-stream were recalled. In this sense, a new method for
determination of the aerodynamic admittance for deterministic free-stream was introduced.
The method was based on modeling the wakes of two flapping airfoils by inflow particles, yield-
ing sinusoidal gusts along the centerline. Moreover, a closed-form expression was derived that
relates inflow particles’ circulation to a prescribed gust amplitude.

In the next chapter, the aerodynamic models formulated herein are evaluated using a categorical
modeling approach. Verification of the novel methods is performed in Ch. 5.
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Chapter 4

Comparative Methodology

4.1 Introduction
The CFD and semi-analytical models presented in the previous chapter can be classified as
mathematical models as these models are derived from physical laws and assumptions. This
chapter presents a comparative methodology for the comparison of aerodynamic models. The
methodology is constituted of two parts and it deals with model comparison in both qualitative
and quantitative manner. In the first part, a categorical modeling approach is applied to the
aerodynamic models to evaluate them qualitatively. The output of the aerodynamic models is
then compared in a quantitative manner in the second part using comparison metrics for time-
histories. Although some studies refer to such procedures as verification and validation (cf.
e.g. [241, 243, 268]), the term "comparative" is used herein as it is more general. In this sense,
verification can be viewed as a comparison with a benchmark analytical model (i.e results), while
validation as a comparison with an experimental model (i.e results). Before presenting both
individual parts of the comparative methodology, a brief overview of comparison and assessment
of mathematical models is given herein, from a general point of view and irrespective of the
field of application.

Comparison and assessment of mathematical models require consideration of the complete
modeling process. The modeling process is comprised of setting up a mathematical model,
introducing input parameters for the specific problem, and calculation of the results performed
analytically or numerically. In each of these stages of the modeling process, different types of
uncertainties can arise resulting in loss of model quality. Therefore, it is necessary to identify
possible sources of uncertainty influencing the final model. Generally speaking, three types of
sources of uncertainties can be distinguished (cf. e.g. [243, 268]): (i) model inputs, (ii) numerical
approximation, and (iii) model form. The first two sources of uncertainties are related to
practical aspects of modeling such as errors in numerical approximation, programming mistakes,
and parameter uncertainty. The source of uncertainty related to the model form originates
from violating the basic physical assumptions of models, i.e. conceptual errors. This type
of uncertainty requires careful treatment and intrinsic knowledge of the physical assumptions
implied in the mathematical models since violating basic model assumptions influences the
complete modeling process, and therefore, is of critical importance for the practical use of
models.

The task of assessment of models based on their physical assumptions, i.e. by taking into
account only their mathematical constructions independently of a specific engineering example,
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requires tools of abstract mathematics supporting the idea of finding universal properties of
models. The universal properties of models, such as model complexity or model robustness, are
properties that are common for all mathematical models, without any particular engineering
field or application. Several modeling methodologies exploring the idea to work with tools of
abstract mathematics, such as graph theory [170], abstract Hilbert spaces [93, 94], abstract
algebraic approach [197, 237], have been proposed in recent years. Recently, an approach for
model evaluation based on category theory was proposed by Gürlebeck et al. [125]. Although
it is clear, that any mathematical formalism can be chosen to serve as a basis for a more formal
modeling approach, in this monograph, the abstract category theory-based modeling approach
is utilized and further developed. The motivation for choosing this approach is twofold, namely:
(i) the abstract nature of category theory supports the idea of assessment of models only
based on their mathematical constructions regardless of the engineering field of application; (ii)
although categorical constructions are naturally abstract, it is straightforward to keep track
of their real physical and engineering interpretations in the category theory-based modeling
methodology. To the author’s knowledge, a real-world application of the category theory-based
modeling methodology has not been presented yet.

A practical interpretation of the results obtained by the application of the category theory-based
modeling methodology requires a quantitative characteristic. The quantitative characteristic
should indicate clearly the influence of particular modeling assumptions, identified on the ab-
stract level, on the final result in engineering practice. For this purpose, the term system
response quantity (SRQ) of interest is utilized herein, which is typically regarded as the out-
come of the modeling process [243]. As an example from the field of bridge aeroelasticity, a
typical SRQ can be the deck displacements for buffeting analyses or the stiffness/damping of
the system when the aerodynamic stability is of interest.

In most of the comparative studies in the field of bridge aerodynamics (cf. Sec. 2.5.4), the
SRQ is usually selected to be either the aerodynamic force or the aeroelastic displacements.
For model assessment in the time domain, this effectively constitutes a comparison of time-
histories. Thus, a comparison is conducted typically in two manners: (i) quantitatively, in terms
of a global quantity such as the RMS or peak; and (ii) qualitatively, in terms of time-histories
or power spectral densities. However, each comparative study is carried out case-by-case since
a unified procedure for quantitative comparison of time-histories in bridge aerodynamics is not
available. Moreover, with the development of nonlinear aerodynamic models (cf. e.g. [47, 86,
356, 360]), the assumption of aerodynamic linearity is no longer posed. Thus, this provides a
need for quantification of the discrepancies in the nonlinear and non-stationary features of the
time-histories such as multi-frequency output for a single-frequency input, complex hysteresis
behavior (cf. Fig. 4.1) and high skewness and kurtosis of the output PDF for a Gaussian input.

The literature on methods for comparing time-histories is vast. Without being exhaustive,
former studies can be found in field of mechanical systems [152], cavitation in fluid-structure
interaction [307], seismology [180], geophysics [351], economics [28], shock of floating platforms
[322], crash simulations in vehicle designs [275], etc. The commonality of all methods is that
the similarity of the time-history is measured by an absolute or relative metric. Hence, these
metrics are used to quantify the discrepancies in certain signal features such as magnitude,
phase, frequency content, PDF, etc. For this purpose, various metrics have been developed
based on global and local quantities such as peak, RMS error, averaged time-delay, statistical
divergences, coefficient of determination, coefficient of correlation, etc. A comprehensive review
of metrics available is given by Hora and Campos [138]. Generally, the selection of metrics for
comparison is based on the field of application as different signal features are of interest.
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Figure 4.1: Linear and nonlinear aerodynamic forces acting on a bridge deck due to sinusoidal input
motion.

In light of the previous overview of qualitative and quantitative aspects of the modeling process,
a comparative methodology is presented in this chapter to provide a basis for the comparison
of aerodynamic models. The methodology involves two levels of comparison: qualitative and
quantitative. First in Sec. 4.2, the aerodynamic models presented in the previous chapter are
evaluated in a qualitative manner utilizing the categorical modeling approach. An extension of
the categorical modeling approach is further presented to adapt this approach for the present
purpose. This extension entails a definition of model completeness and model comparability.
The final outcome of the qualitative evaluation is a structure that clearly distinguishes which
model is better based on its assumptions (i.e. universal model properties).

Having evaluated the aerodynamic models on an abstract level, the effect of model assumptions
on a particular SRQ can be studied in a quantitative manner. For this purpose, a unified set
of comparison metrics for time-histories is presented in Sec. 4.3. The metrics are tailored to
quantify global and local discrepancies of two time-histories, which are of interest when two
aerodynamic models are compared in the time domain with identical input. A total of nine
metrics are constructed on a uniform basis. Seven of these metrics are adapted from former
studies and recast to facilitate the current application, including peak, RMS, phase, magnitude,
PDF, wavelet and frequency-normalized wavelet metrics. Moreover, two additional metrics are
introduced to quantify the discrepancies in possible non-stationary and quadratic nonlinear
parts of the signals by testing stationarity with wavelet-based surrogates and wavelet-based
bispectrum, respectively.

4.2 Aerodynamic modeling: A categorical perspective

The goal of this section is to extend and apply the categorical modeling approach to the field
of bridge aerodynamics. Initially, some preliminaries from category theory are briefly recalled.
Then, the fundamental concept of the categorical modeling approach for mathematical models
is outlined. To this end, a novel extension is presented in terms of model comparability and
model completeness. Finally, the aerodynamic models presented in Ch. 3 are employed to serve
for a real-world application of the categorical modeling approach.
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4.2.1 Preliminaries from category theory
The categorical preliminaries presented herein are based on the excellent works by Adowey [5]
and, perhaps more accessible for engineers, Spivak [306]. For complete information on category
theory, the reader is referred to these works.

Generally speaking, category theory can be seen as an abstract theory of functions studying
different mathematical structures (objects) and relations between them. The definition of a
category is the starting point in category theory, which is defined as follows:

Definition 4.1 (Category [5]). A category consists of the following data:

(i) Objects: A1, A2, A3, . . .

(ii) Arrows: g1, g2, g3 . . .

(iii) For each arrow g, there are given objects:

dom(g), cod(g)
called the domain and codomain of g. One writes:

g : A1 −→ A2

to indicate that A1 = dom(g) and A2 = cod(g).

(iv) Given arrows g1 : A1 −→ A2 and g2 : A2 −→ A3, i.e. with:

cod(g1) = dom(g2)

there is given an arrow:
g2 ◦ g1 : A1 −→ A3

called the composite of g1 and g2.

(v) For each object A, there is given an arrow 1A : A −→ A called the identity arrow of A.

These data are required to satisfy the following laws: g1 ◦ (g2 ◦ g3) = (g1 ◦ g2)◦g3 (associativity)
and g ◦ 1A1 = g = 1A2 ◦ g for all g : A1 −→ A2 (unit).

A category is anything that satisfies this definition; thus, very general objects can be put
together to form a category by specifying relations between objects via the arrows. With
this, a category can be considered as an abstract algebra of functions (i.e. arrows), with the
composition operation ◦ as primitive.

The next logical step would be to establish relations between the objects of the categories.
These "relations" or, more formally, mappings can be defined by the notion of a functor as:

Definition 4.2 (Functor [5]). A functor F : C1 −→ C2 between categories C1 and C2 is a
mapping of objects to objects and arrows to arrows, in such a way that:

(i) F (g : A1 −→ A2) = F (g) : F (A1) −→ F (A2);

(ii) F (1A1) = 1F (A1);

(iii) F (g1 ◦ g2) = F (g1) ◦ F (g2).
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That is, F respects domains and codomains, identity arrows, and composition.

As seen in the following, the objects and arrows within the categorical modeling approach are
practically sets. Finally, the following objects may be included in some categories:

Definition 4.3 (Initial and terminal objects [5]). In category C, an object:

(i) 0 is initial if for any object A there is an unique mapping

0 −→ A;

(ii) 1 is terminal if for any object A there is an unique mapping

A −→ 1.

Having defined functors and categories separately, one could think that functors can be used
to relate two categories in terms of product. Thus, the following definitions are defined:

Definition 4.4 (Product of categories [5]). The product of two categories C1 and C2, written
as

C1 × C2

has objects of the form (A1, A2), for A1 ∈ C1 and A2 ∈ C2, and arrows of the form:

(g1, g2) : (A1, A2) −→ (A′
1, A′

2)

for g1 : A1 −→ A′
1 ∈ C1 and g2 : A2 −→ A′

2 ∈ C2. Composition and units are defined
componentwise, that is

(g′
1, g′

2) ◦ (g1, g2) = (g′
1 ◦ g1, g′

2 ◦ g2)
1(A1,A2) = (1A1 , 1A2).

There are two obvious projection function

C1
π1←− C1 × C2

π2−→ C2,

defined by π1(A1, A2) = A1 and π1(g1, g2) = g1, and similarly for π2.

Definition 4.5 (Functor category [5]). Given the categories C1 and C2, then a category which
has as objects functors F : C1 −→ C2, and as arrows the natural transformations between two
of such functors is called a functor category CC2

1 = Funct(C1, C2).

4.2.2 Categorical approach to modeling
Before employing the categorical language to aerodynamic models, a precise definition of what
is considered a mathematical model is necessary. For this purpose, the definition of a mathem-
atical model by Babuska and Oden [13] is utilized, which reads:

Definition 4.6 (Mathematical model [13]). A collection of mathematical constructions that
provide abstractions of a physical event consistent with a scientific theory proposed to cover
that event.
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This definition implies that first assumptions are made regarding some physical event (i.e.
phenomenon), based on which a model is constructed using mathematical formulations.

The concept of the categorical approach to mathematical models for engineering application
was introduced by Gürlebeck et al. [125]. Hence, the approach explained in the following is
mainly based on their work. Consider a category Model1 that contains mathematical models
utilized to model a specific physical phenomenon, such as the aerodynamic forces arising from
motion and free-stream turbulence. To formally introduce the mathematical models as objects
of a category, the following definition is constructed:

Definition 4.7 (Objects of a category of mathematical models [125]). Let Model1 be a category
of mathematical models describing a given physical phenomenon. Then for all objects of Model1
the following assumptions hold:

(i) objects are finite sets – set of assumptions of a mathematical model, denoted by SetA,
where A is a corresponding mathematical model;

(ii) arrows are relations between these sets;

(iii) for each set of assumptions and its corresponding model exists a mapping SetA
S�→ A;

(iv) all objects are related to mathematical models acting in the same physical domain.

Further remarks can be made be on the assumptions in the preceding definition. First, having
finite sets of model assumptions as objects in the category is one possible way to approach
mathematical models. Alternatively, the models can be directly represented by mathematical
expressions (equations). However, in this case, it will be more difficult to distinguish models,
since the same set of assumptions can be formalized differently in terms of final equations. For
e.g., the LU model in terms of impulse or indicial functions (cf. (3.83), (3.84) and (3.85)).
Second, assumption (ii) allows clear relations between models in terms of model assumptions
and thus, mathematical models. As seen in the following, this can be used to formulate the
definition of model complexity. Finally, the mapping S in (iii) allows for the model complexity
to be based solely on its assumptions and independent of the input parameters. With this, the
relations between the models is independent of particular values of input parameters. In some
cases, the mapping S can be invertible leading to a unique reconstruction of a mathematical
model from its set of assumptions. However, this is not possible in a general case.

The relations between objects in the category Model1 (cf. Definition 4.7) are given by the
following definition:

Definition 4.8 (Complexity of mathematical models [125]). Let A1 and A2 be mathematical
models in a category Model1. The model A1 has higher complexity than model A2 iff SetA1 ⊂
SetA2, but SetA2 �⊂ SetA1. Consequently, two models are called equal iff SetA2 = SetA1.

The definition implies that model complexity can only be a binary relation in a category
of models and is considered to be the universal model property. Defined in such a way, the
complexity of models is neither related to the definition of complexity typically used in computer
science (complexity of an algorithm) nor to the definition of complexity used for a statistical
model, where the number of parameters is served as a complexity measure. Thus, the introduced
complexity definition represents in a unique way the complexity of a mathematical model in
general, based on the difference in the underlying physical assumptions.
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Alternatively, the sets of assumptions between two models do not have to adhere to Defini-
tion 4.8, i.e. one cannot precisely say which model is more complex than the other. Thus,
to refine the structure of the category of mathematical models for the two cases in which the
models are or are not complexity-related, one can introduce two types of categories with total
or partial orders:

Definition 4.9 (Partially ordered models [125]). Let Model1 be a category of mathematical
models with n objects, and let X be the set of all physical assumptions used in this category.
Assume that objects of Model1 can be ordered according to Definition 4.8 as SetAj

⊂ SetAk

for j < k. Then the category Model1 contains totally ordered models iff X = SetA1 ∪ SetA2 ∪
. . . ∪ SetAn and SetAn = X, otherwise, the category Model1 contains partially ordered models.

Finally, the categorical approach also accounts for coupled problems in engineering such as the
fluid-structure interaction. In such cases, a coupled model, comprised of two or more partial
models, is necessary. Thus, a coupled model is defined based on Definitions 4.4 and 4.5 as:

Definition 4.10 (Objects of a category of coupled models [125]). Consider two categories of
mathematical models Model1 and Model2. Then the coupling of models from these categories
constitutes a category Model12 with objects satisfying the following conditions:

(i) objects are finite sets – set of assumptions of a coupled mathematical model, denoted
again by SetA1, where A1 is a corresponding coupled mathematical model, and arrows are
relations between these sets;

(ii) set of assumptions SetA12 of a coupled mathematical model is defined by

SetA12 := F1 (SetA1) ∪ F2 (SetA2) ,

where SetA1 and SetA2 are sets of assumptions of mathematical models from Model1
and Model2, correspondingly, F1 and F2 are functor categories Funct(Model1Model12)
and Funct(Model2Model12), respectively. Moreover, the following statements for SetA
are true

a) (SetA1 ∪ SetA2) ⊂ SetA12 ; b) SetA12 �⊂ (SetA1 ∪ SetA2) .

(iii) a coupled mathematical model A12 is a pair (A1, A2), i.e. Model12 provides the structure
of a category of coupled mathematical models.

This definition corresponds to the following diagram

A1 A12 = (A1, A2) A2

SetA1 SetA12 SetA2

F1(S1) F2(S2)

S1 S2S12

F1 F2

Practical meaning of this definition is the following: property (i) implies that a coupling of
mathematical models produces again a mathematical model, meaning that complexity definition
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can be used again to order coupled models now; and property (ii) underlines that the set of
assumptions of a coupled model is obtained by actions of functors on the sets of assumptions
of models being coupled, and not by a simple unification of these sets.

4.2.3 Extension of the categorical approach to modeling*
Before applying the categorical approach to the problems in bridge aerodynamics, several ad-
vancements are made to make the approach more suitable for the task at hand. First, a
definition of a simplest and most complex model is introduced as follows:

Definition 4.11 (Simplest and most complex models). Consider a category of mathematical
models Model1 with n objects. Let X be the set of all physical assumptions used in this cat-
egory. Let {A1, A2, . . . , An} be the set of all models associated with the sets of assumptions from
Model1. Then, the model An is the simplest model in Model1 iff SetAn = X; additionally,
the model A1 is the most complex model in Model1 iff SetA1 ⊂ SetAj

⊂ X ∀j = 2, . . . , n.

Combining this definition with Definition 4.9 and Definition 4.3, the following corollary is im-
mediately obtained:

Corollary 4.1. In totally ordered categories of mathematical models the simplest and the most
complex models exist, and they represent the initial and terminal objects, respectively.

By using the definition of complexity (cf. Definition 4.8), a comparison of different models
can be performed. Particularly, the effect of specific assumptions on a selected SRQ can be
evaluated. Such comparison works perfectly in the case of totally ordered categories of models.
However, if a given category contains only partially ordered models, then models that are not
under the complexity relation cannot be compared directly. To illuminate this point, consider,
for e.g., the LU and QS semi-analytical aerodynamic models, and let the deck displacement be a
SRQ. By studying the SRQ from both models, one observes discrepancies which are due to the
assumptions of linearity or quasi-steadiness. However, a precise specification of the assumption
causing the discrepancy in the SRQ is not possible, since the models are not complexity-related
to each other. To overcome this problem and to allow a clear comparison of model assumptions
in practice, the following definition is introduced:

Definition 4.12 (Comparability of mathematical models). Let A1, A2 and A3 be models from
a category of mathematical models Model1. The models A1, A2 and A3 are called directly
comparable iff they are complexity-related. Further, the models A1, A2 are called relatively
comparable w.r.t. model A3 iff A1 ∪ A2 (the union implies the union of the corresponding sets
of assumptions) and A3 are complexity-related, i.e.

(SetA1 ∪ SetA2) ⊆ SetA3 or SetA3 ⊆ (SetA1 ∪ SetA2).

In the preceding definition, the direct comparability is simply the application of complexity
definition, and in a totally ordered category, all models are directly comparable. The relative
comparability practically implies that for a comparison of two models, which are not complexity-
related, a third model is required, which is either simpler or more complex than both of the
models. From the point of view of a diagrammatic representation of models, the relative
comparability addresses the branching point in the diagram. It is important to note that, in
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case of the relative comparability, one cannot draw a conclusion which model outcome is of
higher quality based on a simpler model, rather only study the effect of excluding assumptions
from the set of assumptions of the simpler model.

When comparing two models, the effect of the assumptions on a selected SRQ needs to be
evaluated quantitatively. Typically, measures, such as mean squared error or L2 error, are used
to quantify the model output quality. Since a specific choice of the measure is problem de-
pendent, such measures can be more generally referred to as a comparison metric. From bridge
aerodynamics perspective, the time-dependent aerodynamic response or forces are commonly
used as SRQ; thus, the comparison metrics quantify the discrepancies in the time-histories of
these quantities. The actual form of these comparison metrics for time-histories is discussed in
detail in Sec. 4.3. Generally, a comparison requires a selection of a reference model, based on
which the relative effect of excluding/adding an assumption w.r.t a selected SRQ is studied.
Depending on the reference model, two types of comparison can be distinguished, forward and
backward, both defined by the following:

Definition 4.13 (Forward and backward comparison). Let a comparison metric M quantify
the difference of a SRQ between the models A1 and A2, where A1 is chosen to be the reference
model. The following types of comparison can be defined:

(i) forward comparison, if SetA2 ⊆ SetA1, and the comparison metric M is denoted as
MA1,A2

SRQ ;

(ii) backward comparison, if SetA1 ⊆ SetA2, and the comparison metric M is denoted as
MA1,A2

SRQ .

The comparison metrics can be considered in a deterministic or probabilistic fashion. By
taking the parameter and numerical uncertainty of the models into account, the comparison
metric can be considered as a random variable with a corresponding probability distribution.
Hence, the effect of assumptions on a selected SQR will be also considered in a probabilistic
manner. Moreover, sensitivity analysis can be performed w.r.t. a certain comparison metric to
better understand the influence of parameter and numerical uncertainty on the effect of model
assumptions. It is noteworthy to mention that a validation metric, which is commonly used in
the verification and validation [241], is, in fact, a special case of a comparison metric. In the case
of a validation metric, deterministic or probabilistic, the experimental results are always chosen
to be the reference. Moreover, conclusions if a reference model, simpler or more complex, is an
appropriate representation of reality cannot be drawn, based only on the categorical modeling
approach. This requires appropriate validation with experimental results for each particular
case-study.

From practical point of view, it is beneficial to introduce the following definition:

Definition 4.14 (Model completeness). Let A be a model from a category Model1. The
model A is called complete w.r.t. a certain physical phenomenon iff its corresponding set of
assumptions SetA allows to describe that phenomenon without any additional modification.

In practice, model completeness implies a subdivision of models in a given category into (dis-
crete) subcategories of models w.r.t. physical phenomena these models are able to describe,
based on the physical mechanisms they account for. Such a clear structure simplifies compar-
ative analysis of models, since it narrows the set of models for a specific physical phenomenon
of interest prior to comparison, depending on specific purposes of the analysis.
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4.2.4 Aerodynamic modeling via categorical approach*
The coupled model for wind-bridge interaction is described based on the categorical modeling
approach as a real-world application of an abstract concept. Two partial models constitute
the coupled model for wind-bridge interaction: fluid model in terms of aerodynamic forces and
a structural model. Both of these models are defined in R

2. Considering a R
2 instead of R3

domain is itself an assumption (i.e. strip assumption). Nevertheless, defining both partial
models in R

2 is compliant with (iv) from Definition 4.7 and is sufficient for the demonstration
of the concept of aerodynamic modeling via categorical approach.

First, the structural model SM from (3.5) is considered to be an object of category StrutModel.
Second, all thirteen aerodynamic force models defined in Ch. 2 are included in the category
AeroModel, i.e. {ST, LST, QS, LQS, LU, MBM, CMBM, CQS, MQS, HNL, MNL, NLU, CFD}.
According to Definition 4.10, sets of assumptions in category CoupModel are obtained as:

SetC := T (SetSm) ∪ F (SetA), (4.1)

where SM is the structural model and A can be any model from AeroModel. The assumption
of linearity in the structural model SM can have a significant influence on the structural beha-
vior along with the aerodynamic model assumptions. This is particularly evident at high wind
speeds and in the post-flutter regime in terms of limit cycle oscillations [10, 49, 236]. However,
the main interest of this study is the aerodynamic models; thus, only the sets of assumptions
for the models in AeroModel are defined. Before proceeding with the constriction of the sets
of assumptions, the following remark is made:

Remark 4.1. Sets of assumptions introduced in Definition 4.7 are assumed to be written by
the help of a natural language. An alternative way would be listing directly mathematical form-
alization of the assumptions. However, it would lead to a more complicated construction, since
strongly speaking, the formalized assumptions do not necessarily form sets. To make the applic-
ation more transparent, the formalized assumptions are listed and referenced as sets of assump-
tions, implying that each formalized assumption corresponds to the same assumption written in
a natural language.

The CFD model (cf. (3.184)) is formulated by assuming the fluid is incompressible and ho-
mogeneous, with conservative body forces. Thus, the set of assumptions takes the following
form:

SetCFD :=
{

∂ρ

∂t
= 0, ∇ρ = 0, ∇ × fbody = 0

}
, (4.2)

where fbody is the body force vector. The origin of the aerodynamic coefficients in the semi-
analytical models is dependent on the model, CFD or experimental, from which they are ob-
tained and its input. Since the semi-analytical models are basically "phenomenological" models,
their predictive capabilities are limited by their mathematical constructions and the informa-
tion contained in the aerodynamic coefficients. Thus, the aerodynamic coefficients are based on
and valid for certain input properties of the model they are obtained from, such as frequency
content and amplitude (motion or gust) and Reynolds number. Depending on the range of ap-
plication, the aerodynamic coefficients can be assumed insensitive to variations of these input
parameters in some cases (e.g., Reynolds number dependency for bridge decks), while in others
not (e.g., Reynolds number dependency for cables). Herein, it is assumed that all aerody-
namic coefficients are obtained from the CFD model, meaning that a semi-analytical model is a
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reduced-order model from the Navier-Stokes equations. Hence, SetCFD is a subset of the sets of
assumptions corresponding to all semi-analytical models. The validity of the 2D Navier-Stokes
equations and the Vortex Method and how well they represent a realistic situation is not in the
scope of the present discussion. Nevertheless, if the aerodynamic coefficients are validated with
experimental data in a statistical sense, as it has been conducted in many instances in bridge
aerodynamics for the vortex method (cf. Sec. 2.5.3), it is reasonable to assume that the CFD
model is a close approximation of the reality. Therefore, the set of assumptions for the NLU
model (cf. (3.151)) is constructed as a superset of SetCFD as

SetNLU := SetCFD ∪ {f v = 0; fnoi = 0; f(t) = f(a(t))} , (4.3)

where f v and fnoi are vectors representing the forces due to vortex-shedding and interior noise,
respectively. The third assumption indicates that the forces are time-invariant due to input a =
a(t) including the wind fluctuations and structural motion. Although the higher-order indicial
functions account for a portion of aerodynamic nonlinearity and fading fluid memory, they
cannot replicate the complete aerodynamic behavior simulated by the Navier-Stokes equations.
Hence, the NLU model does not account for the forces due to vortex shedding and interior noise.
The term "interior noise" is used here to allude to aerodynamic phenomena which can be chaotic
such as wake instability, laminar-turbulent transition (Reynolds number), local separation and
reattachment. The physical relation between the interior noise and the aerodynamic forces is
not well-established and can yield time-variant output (aerodynamic forces) for time-invariant
input (motion or incoming gusts). This cannot be captured by the NLU model (cf. Wu and
Kareem [362] for discussion). Therefore, the relation in the mathematical constructions between
the CFD and NLU models is not as clear as the subsequent relations between the semi-analytical
models.

The LU model (cf. (3.83)) includes the fluid memory in a linear sense. Therefore, SetLU can
be formulated as a superset of SetNLU, yielding

SetLU := SetNLU ∪ {f = f |αs} , (4.4)

Herein, the linearization implies that the first-order kernel is equal to the corresponding indicial
function ΦI = A1Φ, for A1 being coefficient that accounts for the quasi-steady asymptotes,
while the products involving higher-order kernels are neglected. The coefficient A1 for the
corresponding indicial functions can be easily obtained by comparing (3.83) and (3.151).

Despite having similar complex dynamic properties in terms of eigenfrequencies and modes
with the LU, the CMBM model (cf. (3.140)) interpolates the aerodynamic transfer matrix at
certain reduced frequencies Kcj (i.e. reduced velocities Vrcj), for j ∈ {1, . . . , 3} corresponding
to the complex eigenfrequencies. With this, the CMBM model accounts for an averaged fluid
memory at the complex eigenfrequencies. For the LU model, the reduced velocity Vr represents
an interval [0, ∞), while for the MQS model, Vrcj are case-dependent coefficients, and therefore,
Vrcj ⊂ Vr. This means that the CMBM model is a special case of the LU model; thus, SetCMBM
is a superset of SetLU and it yields

SetCMBM := SetLU ∪ {Vr = Vrc} . (4.5)

Practically, this means that the aerodynamic stiffness and damping matrices (cf. (3.76) and
(3.77)) are interpolated at each complex frequency as Kae = Kae(Vrcj), C = Cae(Vrcj), re-
spectively. As an example, this was shown in (3.139) for the lift force due to vertical motion.
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The MQS model considers the averaged fluid memory only in the motion-induced forces by inter-
polating the flutter derivatives at a specific reduced velocity Vrcj for j ∈ {1, . . . , 3} (cf. (3.142)).
Theoretically, this reduced frequency can be selected in a similar way as the CMBM model,
although the complex eigenfrequencies are generally unknown. However, the complex mode
shapes φj and eigenfrequencies λj for the MQS model are assumed to be similar to the ones for
the system in still air, ψj and ωj. Hence, SetCMBM is a subset of SetMQS, which is constructed
as follows:

SetMQS := SetCMBM ∪
{
ΦLu = 1; ΦLw = 1; ΦMu = 1; ΦMw = 1; λj = ωj; φj = ψj

}
, (4.6)

for j ∈ {1, . . . , 3}. Plugging these assumptions in (3.140), it can be easily shown that (3.142)
can be obtained, taken that the modal displacements are real for a system in still air.

While the MBM model (cf. (3.128)) accounts for the fluid memory in a similar fashion as the LU
model, it neglects the aerodynamic coupling by ignoring the cross products in (3.83). Hence,
SetMBM is formulated as a superset of SetLU as

SetMBM := SetLU ∪ {ΦDhḣ = 0; ΦDαα̇ = 0; ΦDα̇α̈ = 0; ΦLpṗ = 0;

ΦLαα̇ = 0; ΦLα̇α̈ = 0; ΦMpṗ = 0; ΦMhḣ = 0}.
(4.7)

The MNL model (cf. (3.149)) accounts for the aerodynamic nonlinearity and averaged fading
fluid memory by selecting a specific reduced velocity Vrc for the approximation of the aero-
dynamic hysteresis. Accounting only for a specific reduced velocity makes the MNL model a
special case of the NLU model. For the MNL model, it is additionally assumed that the forces
are independent of the origin of the effective angle. By origin, it is meant whether this angle
is computed from wind fluctuations, motion or as a combination of the two. Thus, SetMNL is
obtained as follows:

SetMNL := SetNLU ∪
{

Vr = Vrc; f
(

w

U + u

)
= f

(
ḣ

U − ṗ

)
= f

(
mBα

U − ṗ

)}
. (4.8)

In such way, the frequency-domain counterparts of the higher-order kernels in (3.151) can be
approximated by a frequency-independent polynomial, yielding (3.149).

Neglecting the hysteretic behaviour of the aerodynamic coefficients in the MNL model, the
CQS model is independent of the derivative of the effective angle of attack α̇e (cf. (3.145) and
(3.149)). With this, the corresponding set of assumptions for the CQS model yields

SetCQS := SetMNL ∪
⎧⎨
⎩

Nc∑
k,l

Aklα
k
e(ωc)α̇e

l(ωc) =
Nc∑
k

Akαk
e(ωc)α̇e

0(ωc)
⎫⎬
⎭, (4.9)

where the Ak coefficients can be obtained as Nc degree polynomial of the integral term in (3.145).

The QS model (cf. (3.70)) is a special case of the CQS model, where instead of a specified
reduced velocity Vrc, it is assumed that the system is mapped to an equivalent state at infinite
time. Thus, we formulate SetQS as a superset of SetCQS as

SetQS := SetCQS ∪ {Vrc → ∞} , (4.10)

meaning that the correction coefficients (cf. (3.145)) are unity under the quasi-steady assump-
tion, i.e. Q∗

j = 1. Precisely, the variable coefficient Vrc is assumed to be the limit case towards
infinity. Therefore, Vrc → ∞ is a subset of the variable coefficient Vrc.
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Although the HNL model (cf. (3.147)) is partially able to replicate the nonlinear behavior while
accounting for the fluid memory in the high-frequency range, this model cannot be considered
as fully nonlinear nor fully unsteady. Therefore, the only semi-analytical model, having a set
of assumptions as a subset of SetHNL, is the NLU model. This yields

SetHNL := SetNLU ∪
{
Vr → ∞ for αl

e; f = f |αl
e

for αh
e

}
. (4.11)

The mathematical relations between (3.151) and (3.147) can be obtained utilizing Volterra
frequency-response functions (cf. Carassale et al. [47] for detail relations).

The LQS model (cf. (3.71)) is linear and neglects the fluid memory; hence, SetLQS is obtained
as

SetLQS :=SetMQS ∪ {Vrc → ∞}
=SetQS ∪ {f = f |αs}
=SetHNL ∪

{
f = f |αs for αl

e; Vr → ∞ for αh
e

}
.

(4.12)

By setting Vrc → ∞, the frequency-independent coefficients in the MQS attain to their quasi-
steady value, which can be obtained simply by comparing (3.71) and (3.142). Since the LU
model is more widely used than the MQS model, it is noteworthy to mention that the LQS
model can be directly obtained from the frequency-domain formulation of the LU model by the
asymptotic values of the flutter derivatives in (3.123). The linearization is performed using the
same analogy as in (3.67).

Disregarding the motion-induced forces, generally leads to an inaccurate prediction of the aero-
dynamic forces, especially for high wind velocities. As the ST model (cf. (3.66)) accounts for the
aerodynamic nonlinearity and does not include the motion-induced forces, SetST is constructed
as a superset of SetQS as

SetST := SetQS ∪
⎧⎨
⎩αe = αs + α + φ = αs + φ;

φ = arctan
(

w + ḣ + mBα̇

U + u − ṗ

)
= arctan

(
w

U + u

)⎫⎬
⎭.

(4.13)

The LST model (cf. (3.69)) neglects the motion-induced forces and fluid memory in the buffeting
forces. Correspondingly, SetLST is formulated as a superset of SetMBM, SetLQS, and SetST as

SetLST :=SetLQS ∪
⎧⎨
⎩(C ′

D − CL) ḣ + mDBα̇

U − ṗ
= 0; C ′

Dα = 0; (C ′
L + CD) ḣ + mLBα̇

U − ṗ
= 0;

C ′
Lα = 0; C ′

M

ḣ + mMBα̇

U − ṗ
= 0; C ′

Mα = 0
⎫⎬
⎭

=SetMBM ∪
{
ΦLpṗ = 0; ΦLhḣ = 0; ΦMαα̇ = 0; ΦMα̇α̈ = 0

}
=SetST ∪ {f = f |αs} .

(4.14)

Based on sets of assumptions used for the models in category AeroModel (i.e. from (4.2)
to (4.14)), the following diagram can be constructed:
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LST ST

QS

CQS

LQS

HNL

MQS

NLU

MBM

LU MNL

CFD

CMBM

g3

g2

g4

g9g8

g6

g12 g13

g14

g7

g11

g5

g1

g10

g15

g16

By using Definitions 4.8, 4.9 and 4.11, the following conclusions can be drawn from the diagram
of category AeroModel: (i) AeroModel is a category with partially ordered models; (ii) the
CFD model is the most complex aerodynamic model since SetCFD ⊂ SetA, where A is any
model in the category AeroModel; (iii) the NLU model is the most complex semi-analytical
aerodynamic model since SetNLU ⊂ SetA, where A is any model in the category AeroModel,
except the CFD model; (iv) the LST is the simplest aerodynamic model since SetLST = X,
where X are all aerodynamic assumptions considered in the category AeroModel.

Additionally, we see from the diagram that each arrow gi between models increases complexity.
With the increase of the model complexity, one can study the effect of the underlying assump-
tions in the models based on a selected SRQ. Taking into account Definition 4.12, and the fact
that AeroModel is a category with partially ordered models, it is evident that a direct com-
parison of SRQ for any two models from CoupModel is not possible. E.g., a direct comparison
of LU and QS models is not possible, since the former includes the linear fluid memory, whilst
the latter neglects the fluid memory and is nonlinear. This point will be further elaborated in
Ch. 6 for one of the applications.

Depending on the wind characteristics, structural properties, and deck shape, several phenom-
ena may occur during the wind-bridge interaction such as vortex-induced vibrations, buffeting
response, and aeroelastic instabilities. Although all models in CoupModel account for the
fluid-structure up to a certain extent, not all are complete w.r.t. all of these phenomena.
Herein, Definition 4.14 is used w.r.t. the aeroelastic phenomenon classical flutter for the mod-
els of CoupModel. To precisely define the term classical flutter in bridge aerodynamics, the
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definition given by Simiu and Scanlan [301] is utilized, which reads: "[Classical flutter] implies
an aeroelastic phenomenon in which two degrees of freedom of a structure, rotation, and ver-
tical translation, couple together in a flow-driven, unstable oscillation." From this definition, it
is clear that a model that considers concurrently the aerodynamic and structural behavior is
required to simulate flutter. Since the partial differential equations on the structural side for
model SM (cf. (3.5)) are decoupled (this is a coupling of degrees of freedom, not mathematical
models), the coupling occurs on the aerodynamic side due to the self-excited forces.

The assumption which permits for an aerodynamic model to account for classical flutter is the
disregard of aerodynamic coupling. This assumption is also implied by the disregard of the self-
excited forces. The sets of assumptions which include this particular assumption are SetMBM
(cf. (4.7)), SetST (cf. (4.13)) and SetLST (cf. (4.14)). Consider a category of aerodynamic
models FlutterModel, which set of assumptions X does not contain the assumption that
the aerodynamic coupling is neglected. The category FlutterModel can be obtained as a
sub-category from AeroModel by a functorial mapping as follows:

FlutterModel I�→ AeroModel. (4.15)

The models included in FlutterModel are a sub-collection of the models from AeroModel, i.e.
{LQS, QS, MQS, CMBC, LU, HNL, CQS, MNL, NLU, CFD}. Subsequently, it is straightforward
to define a category CoupModelF that contains a coupled model C, which is obtained in
similar manner as in (4.1), with the difference that the aerodynamic model A can be any model
from FlutterModel instead of AeroModel. Finally, it can be stated that the models in
CoupModelF are complete w.r.t. classical flutter phenomenon.

4.3 Comparison metrics for time-histories*
For the aerodynamic models in the categorical diagram of the preceding section, the SRQ of
interest is generally based on time-dependent quantities such as the response and forces. In this
case, the SRQ generally represents a particular signal feature in terms of phase, magnitude,
frequency-content, etc. This section presents a unified set of nine comparison metrics time-
histories. All metrics are constructed to quantify global and local discrepancies in the signal
features of interest in bridge aerodynamics.

Various signal features (local or global) can attain magnitudes of a different order. Therefore, it
is beneficial to construct the comparison metrics in such a manner that their range of values is in
the interval between zero and one. To facilitate this, the comparison metrics for time-histories
are defined in a unified manner by the following:

Definition 4.15 (Comparison metric for time-histories). Let a = a(t) and b = b(t), t ∈ [0, T ]
be output time-histories of time-dependent models A1 and A2 calculated at the same spatial
position. A comparison metric MA1,A2

SRQ that quantifies the difference of a SRQ, based on a and
b, is defined as:

MA1,A2
SRQ (a, b) := exp(−εA),

where A = A(a, b) is the relative exponent and ε > 0 is a sensitivity parameter. The following
properties apply:

(i) MA1,A2
SRQ = 1, for equal SRQ for a and b;

(ii) 0 < MA1,A2
SRQ < 1, for finite difference of a SRQ for a and b,
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(iii) MA1,A2
SRQ = 0, for infinite difference of a SRQ for a and b or when a particular signal

property is available for a, while not available for b and vice versa.

From this definition, the relative exponent A for each metric accounts for the discrepancies of
a particular feature of the time-histories, while the sensitivity parameter ε > 0 is introduced
to adjust the sensitivity of different metrics. What is meant by signal property in (iii) is e.g.
when one signal is stationary, while the other. Thus, quantification of the discrepancies in for
the non-stationary parts is obsolete.

A total of nine metrics are presented, including: (i) phase Mϕ, (ii) peak Mp, (iii) RMS Mrms,
(iv) magnitude Mm, (v) PDF Mpdf, (vi) wavelet Mw, (vii) frequency-normalized wavelet Mwf ,
(viii) stationarity Ms, and (ix) wavelet-based bispectrum Mb metrics. The first seven metrics
are adapted from former studies and recast to facilitate the current application, while the last
two are introduced as new.

As noted in the previous section, the term "validation metrics" is used by some authors instead
of comparison metrics in case of time-histories as well (cf. e.g. [242, 275, 322]). The reason
for this is that the comparison is conducted w.r.t. experiments. Moreover, the comparison
(or validation) metrics are sometimes related to metrics in terms of statistical distance meas-
ures [322]. Herein, such relation is not implied, since some properties of the distance such as
identity, symmetry and triangular inequality pose additional constraints that do not have a
particular advantage for the present application.

In the following, all of the metrics are defined by their relative exponent and are tailored
according to the underlying physics of wind-bridge interaction. When introducing the metrics,
the incentives for targeting the particular signal feature are also discussed from a perspective
of bridge aerodynamics.

4.3.1 Phase metric
The phase metric accounts for the mean phase discrepancy between two signals. A time-lag
between the input wind fluctuations or motion and the output aerodynamic forces is a typical
representation of the fluid memory [356]. Various studies have proposed different approaches
to evaluate the phase (cf. e.g. [116, 307]). Herein, the phase metric introduced by Sarin et
al. [275] is used, as its definition using an exponential function is compliant with the unified
manner for comparison metrics adopted in this study. Thus, the relative exponent yields

Aϕ := tlag

Tc

, (4.16)

t

a, b

tlag tlag

tδ

Rab

Figure 4.2: Determination of mean time delay between two signals (black a = a(t) and gray b = b(t),
left), based on cross-correlation (right).
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t

a, b

max |a|
max |b|

arms brms

Figure 4.3: Illustration of the global quantities: RMS and absolute peak of two signals (black a = a(t)
and gray b = b(t)) used for the corresponding metrics.

where mean time delay tlag is obtained from the cross-correlation of the two signals Rab as

tlag = arg max
tδ

〈a(t)b(t + tδ)〉 = arg max
tδ

Rab(tδ), (4.17)

which is schematically depicted in Fig. 4.2. The normalization time Tc is time that is considered
to be a significant delay between the signals; hence, it is case-dependent, as discussed later.

Since the cross-correlation is practically sliding the two signals on top of each other, tlag corres-
ponds to the time for which the integral product of both signals is the largest. Hence, the tlag
represents a time-shift for which the signals would have the largest similarity in a linear stat-
istical sense, i.e. it represents a mean phase. For signals with different frequency modulations,
the phase metric might not carry a sensible meaning.

4.3.2 Peak metric
The peak values of the aeroelastic response are the design criteria for bridges. Thus, how well
the aerodynamic models are able to replicate the peak value is of major importance. This is
of particular interest for nonlinear aerodynamic models as the peak value may not be directly
related to the statistical moments of the forces/response, despite the input wind being Gaussian.

The relative exponent for the peak metric is based on the absolute maximum value of the
signals (cf. Fig. 4.3) and is defined as

Ap := |max |a| − max |b||
max |a| . (4.18)

4.3.3 Root mean square metric
The utility of the RMS for time-histories is due to its physical interpretation as it is closely
related to the signal energy. Moreover, for Gaussian signals with zero mean, the RMS equals
the variance, and hence, it is sufficient to compare the PDFs. The relative exponent for the
RMS metric is obtained as the relative difference of the RMS of both signals w.r.t. the RMS
of the reference signal (cf. Fig. 4.3), yielding

Arms :=

∣∣∣∣∣∣
√

1
T

∫ T

0
[a(t)]2 dt −

√
1
T

∫ T

0
[b(t)]2 dt

∣∣∣∣∣∣√
1
T

∫ T

0
[a(t)]2 dt

. (4.19)
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In many assessment studies of aerodynamic models in bridge aerodynamics, the RMS of the
response time-histories has been utilized as a basis for comparison (cf. e.g. [61, 245, 359]). It
has been shown to be useful, particularly when comparing linear aerodynamic models in the
frequency and time domain for a Gaussian free-stream turbulence [245]. However, for nonlinear
models, comparing only the RMS of the aerodynamic forces/response does not provide complete
information on the discrepancies for all time-history features.

4.3.4 Magnitude metric
The peak and RMS metrics are based on a global and averaged amplitude discrepancies, re-
spectively. To further study the differences of the magnitude in a time-localized manner, a
relative magnitude metric is required. A straightforward way to determine the local amplitude
discrepancies would be to compute the RMS deviation of the signals’ amplitude and normalize
w.r.t. the RMS of the reference signal. In the field of economics, such a comparison coefficient
is commonly known as Theil’s coefficient of inequality [28]. However, a simple subtraction of
two signals might result in large values if the signals are phase-shifted or in the presence of
noise, which would unrealistically portrait the situation. In bridge aeroelasticity, such local
discrepancies can be a result of vortex shedding and/or interior noise, which entails chaotic
aerodynamic phenomena such as wake instability, laminar-turbulence transition, local separa-
tion and reattachment (cf. e.g. [362]).

Sarin et al. [275] propose to preprocess the original time-histories utilizing the dynamic time
warping algorithm to alleviate some of the local phase-shifts and very high-frequency compon-
ents. Utilizing the dynamic time warping, the peaks of the signals are aligned in a nonlinear
fashion by stretching, but not scaling. Taking this into account, the relative exponent for the
magnitude metric yields the following:

Am :=

√√√√ 1
Nw

Nw∑
j=1

(aw,j − bw,j)2

√√√√ 1
Nw

Nw∑
j=1

(aw,j)2

, (4.20)

where aw,j and bw,j for j ∈ {1, . . . , Nw} are the warped versions of the original discretized time-
histories ak and bk for k ∈ {1, . . . , Ns}, respectively, and Nw is the number of warped steps,
which is not necessarily the same with the number of time-steps Ns of the original discretized
signals.
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Figure 4.4: Effect of dynamic time warping: example of original (left) and warped (right) time-
histories of two harmonic signals with distinct phase-shift and additional Gaussian noise.
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Figure 4.5: Effect of dynamic time warping: accumulated cost matrix O of the dynamic time warping
algorithm for two signals in Fig. 4.4, including the optimal warping path (thick black line).

To illustrate the effect of dynamic time warping, consider two biharmonic signals with distinct
phase-shift for each harmonic and additional Gaussian noise (cf. Fig. 4.4, left). The dynamic
time warping algorithm consists of initially computing an accumulated cost matrix Ojk =
min(Oj−1,k−1, Oj,k−1, Oj−1,k)+d(xj, yk) for j, k ∈ {1, . . . , Ns}, based on a local distance measure
d(aj, bk) such as for e.g. Euclidean distance [232]. A sequence of pairs of indices An = [j, k] is
sought which minimizes a cumulative cost Oc = ∑Nw

1 O[An]. The sequence Aj is the optimal
warping path, which is subjected to the following constraints: (i) An is monotonically increasing,
(ii) An progresses one step at a time, (iii) the boundary values are A1 = [1, 1] and ANw =
[Ns, Ns]. The lower the cumulative cost, the more the signals are similar to each other, and
visa-versa. For the particular example, the accumulated cost matrix and optimal warping path
(the black line) are shown in Fig. 4.5. Based on the ordered pair of indices in An, the values
of the discrete signals aj and bk are correspondingly ordered, resulting in warped signals which
can be directly compared w.r.t. the isolated magnitude discrepancies (cf. Fig. 4.4, right). The
cumulative cost is an indicator of the amount of shifting of the signals to obtain their warped
counterparts. However, this is not taken into account within the magnitude metric as it is
assumed that Oc corresponds to the phase and local frequency shifts, which are not of interest
for this metric.

4.3.5 Probability density function metric
In regions with large flow separation, the statistical description of the local pressure distribution
can differ significantly from a Gaussian, despite Gaussian free-stream turbulence (cf. e.g. [126,
161]). As a result, the higher-order moments of the PDF, such as skewness and kurtosis, can
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Figure 4.6: PDF metric: estimated PDFs of two normalized (standard score) signals (left); integra-
tion area (right).

attain high values. Such non-Gaussian features can occur in the local pressure variation on
rooftop cladding [126] as well as the tail of the PDF of the buffeting forces acting on bridge
decks. The distortion between the input and output PDF is a property of nonlinear models;
hence, it represents an important signal feature to be quantified in bridge aerodynamics and
aeroelasticity.

In statistics, two PDFs are compared by utilizing statistical distance measures, commonly re-
ferred to as statistical divergence. There are a number of statistical divergences which quantify
the discrepancy between the PDFs, such as the Kullback-Leiber divergence, Jensen–Shannon di-
vergence, Hellinger distance (cf. e.g. [250] for a summary). Herein, the Bhattacharyya distance
dB is utilized to formulate the PDF metric as it is commonly used to measure the overlapping
degree of PDF [238], and it can be easily related to the formulation in Definition 4.15. Assum-
ing the signals a and b are random variables, the relative exponent of the PDF metric is defined
as follows:

Apdf := dB(a, b) = − ln
∫ ∞

−∞

√
Pe,an(s)Pe,bn(s)ds. (4.21)

where Pe,an and Pe,bn are estimates of the PDFs of the standardized signals (standard score) an

and bn, respectively. For εPDF = 1, the PDF metric yields

Mpdf =
∫ ∞

−∞

√
Pe,an(s)Pe,bn(s)ds = BC(an, bn), (4.22)

where BC = BC(an, bn) is the Bhattacharyya coefficient which can take values in the range
0 ≤ BC ≤ 1, which is in a similar fashion as the constructed comparison metrics. Formulated as
such, the PDF metric can be related to Hellinger’s distance and Rényi divergence (i.e. relative
Rényi entropy) (cf. [238] for details). The integration area in (4.22) for a Gaussian and uniform
distribution is schematically depicted in Fig. 4.6.

In (4.21) and (4.22), the standard scores of the signals are used to asses the discrepancies in
the third and higher-order standardized moments of the PDF. This is done to avoid redund-
ancy in the metrics to some extent, as the first and second-order moments are included in
the RMS metric. The estimated PDFs, Pe,an and Pe,bn , are obtained by nonparametric kernel
density estimation, utilizing the Gaussian kernel and the Improved Sheather-Jones algorithm
for bandwidth selection introduced by Botev et al. [34] (including a matlab code). Alternat-
ively, the estimated PDFs can be modeled by parametric approaches utilizing for e.g. Hermite
polynomials [126].
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4.3.6 Wavelet metric
The time-frequency representation can unveil the frequency content at each time-instance of the
signal. One of the methods to represent a signal in the time-frequency plane is the continuous
wavelet transform. Several studies have utilized the wavelet transform to quantify the discrep-
ancies in the time-frequency plane for the two time-histories (cf. e.g. [152, 180, 322]). Jiang et
al. [152] used the wavelet coherence and phase map to discuss the goodness-of-fit between two
time-histories, while Teferra et al. [322] constructed a single value metric based on the squared
difference of the wavelet coefficients.

The time-frequency plane is of significant importance in bridge aerodynamics and aeroelasticity
as it reveals particular features of the aerodynamic forces and response, such as stationary and
non-stationary frequency content, aerodynamic coupling, modal contribution, and local "bursts"
of signal energy, etc. Hence, the interpretation in the time-frequency plane has been extensively
utilized in wind engineering (cf. e.g. [127, 160]).

To obtain the time-frequency representation, the wavelet transform of a signal a is

Wa(sc, t) = 1√
sc

∫ ∞

−∞
a(t1)Ψ

(
t − t1

sc

)
dt1, (4.23)

where Wa = Wa(sc, t) are the complex wavelet coefficients, sc is the scale parameter, Ψ = Ψ(t)
is the mother wavelet and its conjugate-complex is Ψ. Herein, the Morlet wavelet, normalized
w.r.t. the wavelet energy [150], is utilized and is given as follows:

Ψ = π−1/4 exp(−i2πfcet − t2/2), (4.24)

where fce is the central frequency of the wavelet which is crucial for defining the time and
frequency resolution and should be adjusted accordingly [171]. For the Morlet wavelet, the
Fourier frequency f is related to the scale parameter as f = fce/sc. The squared magnitude
of the wavelet coefficients (i.e. the scalogram) reveals the frequencies where the energy is
concentrated in a time-localized manner. As the interpretation in this work is based on the
time-frequency instead of the time-scale representation, the wavelet coefficients are based on
the frequency in the following, i.e. Wa = Wa(f, t).

The relative exponent of the wavelet metric is obtained as a normalized RMS deviation of the
magnitude of the wavelet coefficients yields

Aw :=

√∫ T

0

∫ ∞

0
[|Wa(f, t)| − |Wb(f, t)|]2 dfdt√∫ T

0

∫ ∞

0
|Wa(f, t)|2 dfdt

. (4.25)

By obtaining the wavelet metric in such a manner, the discrepancies between the two sig-
nals in the time-frequency plane are quantified (cf. Fig. 4.7). From a practical aspect, it is
important that the properties of the wavelet transform, such as the mother wavelet, central
wavelet frequency, and the frequency range, remain the same for both signals. Moreover, for the
wavelet-based metrics, the integration of the time-frequency plane should encompass an area
which neglects the wavelet end effects [171, 327], commonly referred to as the cone of influence
(COI). In case of the Morlet wavelet [327], the COI yields

COI :
{

fce

f
√

2
≤ t ≤ T − fce

f
√

2
. (4.26)
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Figure 4.7: Wavelet metric: absolute wavelet coefficient of two signals (bottom) and the correspond-
ing domain of integration shown on the frequency (top-left) and time (top-right) marginals.

4.3.7 Frequency-normalized wavelet metric
The wavelet metric incorporates the total discrepancy in the time-frequency plane. To further
study whether this discrepancy is due to the amplitude or frequency difference, the frequency-
normalized wavelet metric is introduced by normalizing the instantaneous wavelet amplitude
w.r.t. the frequency marginal. The relative exponent for this metric is given as

Awf := 1
T

∫ T

0

√√√√∫ ∞

0

[ |Wa(f, t)|
Wfa(t) − |Wb(f, t)|

Wfb(t)

]2

df

√√√√∫ ∞

0

[ |Wa(f, t)|
Wfa(t)

]2

df

dt, (4.27)

where the normalization factor, e.g. for signal a, is

Wfa(t) = max
f

|Wa(t, f)| . (4.28)

Practically, this metric quantifies the distortion in the shape of the local spectrum, which is
of particular interest for aerodynamic models resulting in multiple-frequency output for single-
frequency input. A metric normalized w.r.t. the magnitude marginal can be constructed in a
similar fashion [180]; however, this metric is not considered herein, since it is deemed to be a
redundant addition to the magnitude metric.

4.3.8 Stationarity metric*
To quantify and compare the non-stationary part of the two time-histories is of particular
interest for mechanical systems that can exhibit nonlinear or divergent behavior. Despite
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having a stationary input, stable nonlinear mechanical models can result in a non-stationary
output in terms of amplitude and frequency. Such manifestation in aeroelasticity is related
to the amplitude-dependent aerodynamic forces due to strong stationary wind gusts and large
oscillations (cf. e.g. [84, 86]). Moreover, the local turbulence effects can lead to a non-stationary
hysteresis behavior for a sinusoidal input motion as noted by Zhang et al. [375] in a numerical
study (cf. Fig. 4.1). Non-stationary amplitude modulations in the response and forces are also
present during flutter or even in terms of frequency modulation during post-flutter limit cycle
oscillations, as seen later in the chapter involving applications from bridge aerodynamics.

Herein, to evaluate the discrepancies in non-stationary parts of the time-histories, a stationarity
metric is introduced that yields the following relative exponent:

As :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

→ ∞ if Υs(a) �= Υs(b)
= 0 if Υs(a) = Υs(b) = 0,

=

√∫ T

0

∫ ∞

0

[∣∣∣W F
a (f, t)

∣∣∣ −
∣∣∣W F

b (f, t)
∣∣∣]2

dfdt√∫ T

0

∫ ∞

0

∣∣∣W F
a (f, t)

∣∣∣2 dfdt

if Υs(a) = Υs(b) = 1.

(4.29)

where Υs is a binary indicator of signal non-stationarity, while W F = W F (f, t) represents the
filtered non-stationary part of the wavelet coefficients. To determine whether the signal is non-
stationary and if so, to filter the non-stationary part of the wavelet coefficients, a local and a
global method based on surrogates and hypothesis testing are utilized (cf. [32, 221]). In the
following, these methods are briefly revisited and combined in a two-step process.

A surrogate of a signal is obtained by manipulating the original time-histories to satisfy the null
hypothesis while retaining most of the properties such as the power spectrum or PDF. There
are various ways of obtaining suitable surrogates based on the null hypothesis, which were
summarized recently by Lanchester et al. [185]. Since the null hypothesis, in this case, is that
the signal is stationary, the Fourier-based surrogates have shown to be adequate (cf. [221, 264]).
A Fourier-based surrogate of a signal a = a(t) is obtained by randomizing the phase of its
Fourier transform â = â(f) while retaining the modulus at each frequency and then applying
the inverse Fourier transform. With this, the surrogate signal asur = asur(t) is obtained as

asur(t) =
∫ ∞

−∞
exp(i2πft) |â(f)| exp[iϕR(f)]df, (4.30)

where ϕR = ϕR(f) is a uniformly distributed random phase as

ϕR ∼ U [−π, π). (4.31)

It is clear that (4.30) is similar as (3.34) that was utilized for generation of a univariate sta-
tionary Gaussian process.

When performing hypothesis testing, a Nsur number of surrogates is required yielding the
ensemble

{asur,1(t), asur,2(t), . . . , asur,Nsur(t)} . (4.32)

The first step is to determine whether the signal is stationary by comparing it to surrogate data
utilizing discriminating statistics, based on the statistical distance between the local and global
spectrum. If the discriminating statistic of the original signal σ2

da
falls out of the one-sided
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confidence interval of the probability density of the discriminating statistic of the surrogates
σ2

dsur
, the null hypothesis is rejected for the original signal. This is formulated as

Υs(a) =
⎧⎨
⎩0 if Pr(σ2

dsur
≤ σ2

da
) ≤ CL; "stationary",

1 if Pr(σ2
dsur

≤ σ2
da

) > CL; "non-stationary",
(4.33)

where CL corresponds to the confidence level. The discriminatory statistic σdsur is, in fact, a
random variable for which an estimated parametric PDF is obtained, such as the Gaussian
or Gamma density, for an ensemble of surrogates in (4.32). For a single time-history, the
discriminatory statistic is obtained based on the divergence d = d(t) between the local and
global wavelet-based spectrum as follows:

σ2
d = Var [d(t)] . (4.34)

A combination of the Kullback-Leiber divergence and log-spectral deviation is utilized herein
for the distance since it has shown to be adequate for both cases of amplitude and frequency
modulation (cf. [32] for discussion). For the signal a, this distance is

dLSD+KL
a (t) =

{∫ ∞

0

[
W 2

a,n(f, t) − SW
a,n(f)

]
log

W 2
a,n(f, t)

SW
a,n(f) df

}{
1 +

∫ ∞

0

∣∣∣∣∣log W 2
a (f, t)

SW
a (f)

∣∣∣∣∣ df

}
,

(4.35)
where the W 2

a = W 2
a (f, t) and SW

a = SW
a (f) are the scalogram (i.e. local spectrum) and wavelet-

based spectrum (i.e. global spectrum), respectively, while W 2
a,n = W 2

a,n(f, t) and SW
a,n = SW

a,n(f)
are their normalized versions, respectively. The wavelet-based spectrum is obtained as

SW
a (f) = 1

T

∫ T

0
W 2

a (f, t)dt, (4.36)

In the second step, if a signal is determined to be non-stationary (cf. (4.33)), the non-stationary
part of the wavelet coefficients W F

a = W F
a (f, t) is filtered using a threshold scalogram based on

stationary surrogates (cf. [221]). This yields the following:

W F
a (f, t) =

⎧⎨
⎩

0 if W 2
a (f, t) ≤ max

t
W 2

a,tr(f, t),
Wa(f, t) if W 2

a (f, t) > max
t

W 2
a,tr(f, t),

(4.37)

where W 2
a,tr = W 2

a,tr(f, t) is a threshold scalogram. Herein, the maximum of the threshold
scalogram is considered w.r.t. the time marginal instead of a localized value as by McCullough
and Kareem [221]. The reason for this is that the threshold peak can occur at any time, under
the stationarity assumption. Assuming normality of the scalogram, the threshold is obtained
based on the surrogate scalograms as

W 2
a,tr =

〈
W 2

sur

〉
+ g∗

s

√√√√√√√
Nsur∑
j=1

(
W 2

sur,j −
〈
W 2

sur

〉)2

Nsur − 1 (4.38)

where g∗
s is a factor depending on the probability of exceeding the threshold and W 2

sur is the
scalogram of the surrogates, which represents an ensemble for (4.32).

It should be noted that it can be determined whether the signal is stationary only with the
local method in (4.37); hence, the global method in the first step (cf. (4.33)) can be considered
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redundant. However, the computation of the standard deviation of the surrogate scalograms
in (4.38) requires either retaining all surrogate scalograms in computer memory or their re-
computation once 〈W 2

sur〉 is determined. Hence, utilizing the two-step process can help to
reduce computational memory when obtaining Ms for stationary signals. Moreover, to filter
the complete stationary part of the signal for finely discretized time marginal, a large number
of surrogates is required. Otherwise, local spurious peaks may be still present in the filtered
scalogram, which would result in a sensitive stationarity metric. As shown in the fundamental
application, detecting stationarity with a global binary test followed by a local quantification
of the non-stationary parts alleviates this problem for a reasonable number of surrogates.

4.3.9 Bispectrum metric*
The higher-order spectrum has been proven to be a useful tool to detect nonlinearities in
mechanical systems [103, 150], plasma physics [174], neuronal networks [202], and intermittent
effects of turbulence [333]. From a bridge aerodynamics perspective, a single harmonic motion
with large amplitudes can result in a force with multiple harmonics as a result of a nonlinear
relationship between input-output [86, 139, 204]. To detect and quantify the nonlinearities up
to the second-order in the aerodynamic forces, Wu and Kareem [358] utilized the Fourier-based
bispectrum. Herein, the wavelet-based bispectrum is used to formulate the bispectrum metric
and quantify the discrepancies in the second-order nonlinearities between the two time-histories.
The main advantage of utilizing the wavelet-based instead of the Fourier-based bispectrum is
that it can detect intermittent nonlinearities and the statistical error is reduced, as discussed
by Jamsek et al. [150].

Analogous to the Fourier bispectrum, van Milligen et al. [333] introduced the wavelet bispec-
trum. For a signal a, the wavelet bispectrum BW a = BW a(f1, f2) is obtained from the wavelet
coefficients (cf. (4.23)) as

BW a(f1, f2) =
∫

TB

Wa(f1, t)Wa(f2, t)Wa(f3, t)dt, (4.39)

where f3 = f1 + f2 and TB is the integration time interval of interest. Since the wavelet
bispectrum is a complex quantity, it can be expressed in terms of amplitude GB = GB(f1, f2)
and biphase ϕB = ϕB(f1, f2), yielding

BW a = GBa exp(iϕBa). (4.40)

The instantaneous biphase can be obtained from (4.39) and (4.40) as

ϕBa(f1, f2, t) = ϕW a(f1, t) + ϕW a(f2, t) − ϕW a(f3, t), (4.41)

where ϕW = ϕW (f, t) is the phase for the wavelet coefficients in (4.23).

The bispectrum in (4.39) can indicate whether there is nonlinear interactions (i.e. quadratic
phase coupling) between the f1 and f2 harmonics, yielding non-trivial values of the bispectrum
magnitude at the f2−f1 and f2+f1 frequency couples. In addition to non-trivial magnitude, the
condition ϕBa = 0 for the biphase in (4.41) is necessary to be satisfied at these frequency pairs
for quadratic phase coupling to occur [102]. lf this condition is not satisfied, the normalized
bispectrum, i.e. bicoherence (Fourier- or wavelet-based), can yield in non-trivial value despite
the absence of nonlinearities in the signal. This is particularly true for synthetically generated
signals with a constant phase, such as broadband forces/response, for which the bispectrum
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Figure 4.8: Wavelet-based bispectrum phase randomization: effect of the randomization factor βB

on the bispectrum amplitude for false the detection of quadratic-phase coupling (ϕB �= 0) .

can have multiple peaks corresponding to the discrete frequencies or natural signal frequencies.
Therefore, further adjustment of the bispectrum is required to detect the quadratic nonlinearity.

Herein, a slightly modified quadratic-phase coupling detector is utilized, based on the phase-
randomized bispectrum introduced by Kim and Powers [173] for the Fourier-based and by Li
et al. [202] and Scully et al. [292] for the wavelet-based bispectrum. The phase-randomized
bispectrum BR

W a = BR
W a(f1, f2) is obtained as follows

BR
W a(f1, f2) =

∫
TB

GBa(f1, f2, t) exp
[
iϕR

B(f1, f2, t)ϕBa(f1, f2, t)
]

dt, (4.42)

where
ϕR

B = ϕR
B(f1, f2, t) ∼ U [−βB, βB) (4.43)

is the uniform random biphase for βB being the randomization factor. From (4.42), it can be
deduced that if ϕB = 0, the exponential term amounts to 1, while, if ϕB �= 0, the random value
ϕR

B can considerably reduce the bispectrum. This reduction depends on the randomization
factor βB. In previous studies (cf. e.g. [292]) this factor is taken as βB = π; however,
this does not offer insight into how the phase-randomized bispectrum behaves. Considering a
bispectrum amplitude GB and biphase ϕB that are constant in time, and are not necessarily
zero, the influence of the βB factor on the resultant phase-randomized bispectrum amplitude
GR

B is shown in Fig. 4.8. It can be seen that the larger βB factor is, the faster GR
B attenuates

towards zero for biphase angles deviating from zero. Moreover, there is a "ripple" effect after GR
B

reaches zero. Theoretically, there should be no deviation of the biphase ϕB from zero in case
of quadratic phase coupling; however, noise can affect the bispectrum [99] and thus, the angle
ϕB can take small values. Although it would be the most appropriate to select the βB factor
based on the level of noise, in this study this factor is selected as βB = 10π. This corresponds
to an angle of ϕB = 2π/βB = 0.2 rad, for which it is assumed that quadratic phase coupling is
present, i.e. when GR

B first intercepts the x axis (cf. Fig. 4.8).

The phase-randomized bispectrum is still affected by noise and, additionally, due to the ripple
effect of the biphase randomization. In addition a zero biphase, i.e. ϕB = 0, the amplitude
of GR

B should be also significant to indicate that the quadratic phase coupling between two
harmonics is not due to noise [102]. In order to obtain a statistically significant estimation of
the BR

w , a surrogate method can be employed. The generation of surrogates can be conducted
in a similar fashion as for the stationarity metric, by manipulating the original signal proper-
ties. For the wavelet bispectrum, Fourier-based surrogates cannot be utilized as stationarity is
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not assumed; thus, more advanced surrogates should be utilized such as the wavelet iterative
amplitude adjusted Fourier transform surrogates (cf. e.g. [185]). However, these surrogates are
computationally very demanding; therefore, the surrogate bispectrum map is obtained simply
by destroying the biphase information in the original bispectrum directly [292]. This can be
done by simply including a surrogate random biphase in (4.42) as

BR
W sur(f1, f2) =

∫
TB

GBa(f1, f2, τ) exp
[
iϕR

B(f1, f2, t)ϕR
B,sur(f1, f2)

]
dt, (4.44)

where
ϕR

B,sur = ϕR
B,sur(f1, f2) ∼ U [−π : −βsur, βsur : π) (4.45)

is the random surrogate biphase for 0 < βsur < π. Again, a Nsur number of surrogates is
required to test a null hypothesis, yielding the ensemble

{
BR

W sur,1, BR
W sur,2, . . . , BR

W sur,Nsur

}
. (4.46)

The null hypothesis for the surrogate bispectrum amplitude map is that the signal does not
exhibit quadratic phase coupling. Hence, the biphase ϕR

B,sur should not amount to zero. This
is controlled by the random factor βsur. Li et al. [202] obtain the surrogate random biphase
ϕR

B,sur by adding to the initial biphase ϕBa a time-varying random phase within the [π, π)
interval. In this study, ϕR

B,sur is taken to be constant as it is a more critical case for which the
bispectrum can result in false detection of nonlinearities. This creates a bispectrum surrogate
map which is based on the original phase-randomized bispectrum BR

W and additionally ensuring
that the biphase ϕBa does not amount to zero by the factor βsur. Since the factor βB assures
quadratic phase coupling, the factor βsur should complement in a way; hence, it is obtained
as βsur = 2π/βB. In this manner, the wavelet bispectrum is filtered for non-zero biphase and
insignificant amplitude, corresponding to the ripples (cf. Fig. 4.8).

Similarly as for the stationarity metric and again assuming normality, the threshold bispectrum
amplitude map GR

Ba,tr = GR
Ba,tr(f1, f2) yields

GR
Ba,tr =

〈
GR

Bsur

〉
+ g∗

b

√√√√√√√
Nsur∑
j=1

(
GR

Bsur,j −
〈
GR

Bsur

〉)2

Nsur − 1 , (4.47)

where g∗
b is a factor depending on the probability of exceeding the threshold.

The filtered phase-randomized bispectrum amplitude GF
W a = GF

W a(f1, f2) can be obtained from
the phase-randomized bispectrum amplitude as

GF
Ba(f1, f2) =

⎧⎨
⎩0 if GR

Ba(f1, f2) ≤ max GR
Ba,tr(f1, f2),

GR
Ba(f1, f2) if GR

Ba(f1, f2) > max GR
Ba,tr(f1, f2).

(4.48)

Although the noise level is frequency-dependent [333], the maximum value of GR
Ba,tr is taken

for filtering as a threshold, since spurious peaks could remain for finely discretized frequencies.
This would result in a very sensitive bispectrum metric. Moreover, the bispectrum for signals
without quadratic phase coupling should be zero anyway. Alternatively, the values at each
individual frequency pair can be taken; however, this requires a larger number of surrogates,
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Figure 4.9: Detection of quadratic-phase coupling in signals using phase randomization and surrog-
ates: from original bispectrum amplitude GB, containing false and true frequency couples, to filtered
GF

B, containing only true frequency couples.

which is of high computational cost. The explained process for detection of quadratic-phase
coupling is illustrated in Fig. 4.9.

Finally, the relative exponent for the wavelet-based bispectrum metric is defined as

Ab :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

→ ∞ if Υb(a) �= Υb(b),
= 0 if Υb(a) = Υb(b) = 0,

=

√∫ ∞

0

∫ ∞

0

[
GF

Ba(f1, f2) − GF
Bb(f1, f2)

]2
df1df2√∫ ∞

0

∫ ∞

0

[
GF

Ba(f1, f2)
]2

df1df2

if Υb(a) = Υb(b) = 1,

(4.49)

where Υb is binary and it indicates whether there is a quadratic phase coupling in a signal as

Υb(a) =
⎧⎨
⎩0 if max GF

Ba(f1, f2) = 0; "linear",
1 if max GF

Ba(f1, f2) > 0; "nonlinear".
(4.50)

From (4.49), it can be gathered that the bispectrum metric quantifies the discrepancies in the
nonlinear portion of the two time-histories, should both contain quadratic phase coupling. In
practice, the integration in (4.49) is only about the part of the bispectrum that is encompassed
by the inner triangle (IT), to avoid the redundant part of the bispectrum. Depending on the
sampling frequency fs, the region of the IT [103] is defined as follows:

IT :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f2 ≤ f1 for 0 ≤ f1 ≤ fs

2 ,

f2 ≤ fs

2 − f1 for fs

4 ≤ f1 ≤ fs

2 .

(4.51)
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4.4 Summary
In summary, a methodology for comparison of aerodynamic models was introduced in this
chapter. The methodology is constituted of two parts. The first part entails a categorical mod-
eling approach to evaluate the complexity of the models based on their aerodynamic assump-
tions in a qualitative manner. The second part includes comparison metrics for time-histories
that can quantify the effect of aerodynamic model assumptions on a SRQ for complexity-related
aerodynamic models in the time domain for identical input wind time-histories.

Initially, the categorical modeling approach was briefly revisited and extended in terms of
defining comparison metrics, model comparability and completeness. Utilizing the advant-
ages offered by this approach, complexity relations for the aerodynamic models presented in
the previous chapter were formalized. The outcome is a clear and organized diagram which
distinguishes which model is more complex, and hence, better, based on its mathematical con-
struction. This diagram represents a fundamental basis of the presented methodology for model
comparison and quantification of the effect of model assumptions on a selected SQR. Moreover,
model completeness of the aerodynamic models w.r.t. the classical flutter phenomenon has
been defined, resulting in a subcategory of models. Such a clear structure narrowed a set of
aerodynamic models from a category which accounts for multiple aerodynamic phenomena.

As a subsequent step, a set of comparison metrics for time-histories was presented to quantify
the discrepancies of particular signal features. All of the metrics were constructed in a unified
manner, tailored for comparative studies of time-domain aerodynamic models. Nine metrics
were considered, including seven adapted from previous studies based on the phase, peak, RMS,
magnitude, PDF, wavelet, frequency-normalized wavelet; and two newly introduced, based on
the stationarity and bispectrum. With this set of metrics, the difference in a time-dependent
SRQ for two complexity-related aerodynamic models can be quantified in a judicious manner.

In the next two chapters, the methodology for comparison of aerodynamic models is applied in
a quantitative manner, first to fundamental applications and then to real-world problems from
bridge aerodynamics. Since the diagram of mathematical models already provides a qualitative
sense of model quality for the aerodynamic models, it will be mostly used to identify the
aerodynamic assumptions and provide information on model comparability, i.e. whether two
models can be compared or not. Thus, the practical application of the methodology is more
related to the comparison metrics as they supply a result of a quantitative character.
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Chapter 5

Fundamental Applications

5.1 Introduction

Before using the introduced framework for practical applications from the field of bridge aerody-
namics, individual parts of the framework are applied to fundamental problems in this chapter.
The motivation is to verify and study their behavior for problems with simple or analytical
solutions. Initially, the performance of the comparison metrics for time-histories is studied
for generic signals in Sec. 5.2. By modifying particular signal property, the sensitivity of the
comparison metrics is observed to develop a general conception of their response.

Section 5.3 presents a verification of the free-stream turbulence for both deterministic and
random gusts. In the case of random free-stream, specific SRQs such as the velocity field,
turbulence intensity, length scales, spectra, and PDFs are compared against their prescribed
values. Moreover, it is ensured that span-wise coherence and correlation are maintained for the
presented turbulent Pseudo-3D VPM. This is of major importance for the Pseudo-3D buffeting
analysis conducted in the next chapter for a long-span bridge. In the case of the deterministic
free-stream, the gust quality is assessed including the predictive capabilities of the derived
closed-form solution that relates the target gust amplitudes and inflow circulation. Parametric
studies are performed for both deterministic and random free-stream turbulence to provide
guidelines for the choice of numerical and physical parameters.

Finally, a complete analysis of a flat plate is conducted in Sec. 5.4, which includes verification of
the aerodynamic coefficients and aeroelastic response against their analytical counterpart. The
aerodynamic coefficients that are of interest are the static wind coefficients, flutter derivatives
and aerodynamic admittance for both random and deterministic free-stream. For the latter
case of the aerodynamic admittance, the complete complex form is obtained, which was not
previously possible for the random free-stream. The aeroelastic response from buffeting and
flutter analyses is compared to the response for the analytical flat plate model in both frequency
and time domain. Constructed as such, this study represents the first complete verification of
the VPM for buffeting analyses.

To ensure reproducibility of the results, the choice of the numerical parameters is as explicit as
possible, although, in some instances, tedious.
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5.2 Comparison metrics: Generic signals
As a part of the first fundamental application, the comparison metrics for time-histories presen-
ted in Sec. 4.3 are applied to for four generic signals, aj = aj(t) for j ∈ {1, . . . , 4}. The goal
is to study their behavior w.r.t. a reference signal ar = ar(t) by modification of certain signal
features.

The reference signal is given as follows

ar = A1 cos (ω1t) + A2 cos
(

ω2t + π

3

)
+ �r. (5.1)

The generic signals are labeled corresponding to the particular signal feature that is being
modified, yielding the following four signals:

• Signal 1 - Phase shift

a1 = A1 cos (ω1t + ϕ1) + A2 cos
(

ω2t + π

3 + ϕ2

)
+ �1; (5.2)

• Signal 2 - Amplitude scaling

a2 = 2A1 cos (ω1t) + 2A2 cos
(

ω2t + π

3

)
+ �2; (5.3)

• Signal 3 - Frequency modulation

a3 = A1 cos (ω1t) + A2 cos
(

ω2t + A3t
2 + π

3

)
exp(−ξ1t) + �3; (5.4)

• Signal 4 - Nonlinearity

a4 = A1 cos (ω1t) + A2 cos
(

ω2t + π

3

)
+ A1 + A2

2 cos (ω1t) cos (ω2t + ϕ3) exp(−ξ2t) + �4.

(5.5)

Initially, the following parameters are considered: A1 = 1, A2 = 1.3, ω1 = 2×2π, ω1 = 2.8×2π,
ϕ1 = π, ϕ2 = π/6, A3 = (ω3 − ω2)/T , ω3 = 3.6 × 2π, ϕ3 = π/3, ξ1 = ξ2 = 0, T = 100 s is the
signal length with a sampling frequency fs=100 Hz, and � = �(t) is a white noise with a zero
mean and signal-to-noise ratio amounting to 10.

The parameters for computation of the comparison metrics are given in Tab. 5.1. For the local
stationarity analysis, selecting two hundred surrogates has shown to be sufficient (cf. [32]). A

Metric parameter Value
Normalization time: Tc 2π/ω2
Central wavelet frequency: fce 3ω1/(2π)
Confidence level: CL 95 %
Surrogates - Stationarity: Nsur 200
Exceedance - Stationarity: g∗

s 2
Surrogates - Nonlinearity: Nsur 100
Exceedance - Nonlinearity: g∗

b 2

Table 5.1: Comparison metrics for generic signals: metric parameters.
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hundred surrogates is commonly appropriate for the threshold bispectrum map (cf. [292]). The
normalization Tc time is case-dependent and should be related to the main harmonics of the
signal. For the chosen generic signals, it is prescribed to correspond to the second harmonic.
The resulting comparison metrics are given in Fig. 5.1, while in Fig. 5.2, the normalized wavelet
coefficients are depicted for all the signals except for the phase shift signal a1, since they are
similar as for the reference one ar. The following discussion for each signal is based on these
two figures.

Signal 1 - Phase shift

The first signal is constructed to study the effect of phase shift since a time lag is a common
manifestation of the fluid memory in the unsteady aerodynamic models. As expected, the
phase metric Mar,a1

ϕ results in a low (cf. Fig. 5.1, top-left). Moreover, the magnitude metric
obtained using the warped signals results in a value of Mar,a1

m = 0.88. For comparison, this
metric amounts to a value of 0.27 for unwarped signals, which is unrealistic as the signals are
only phase-shifted (the original and warped signals for this particular case are also shown in
Fig. 4.4 from Sec. 4.3.4). Due to the added noise, the wavelet metrics amount to Mar,a1

w =
Mar,a1

wf = 0.96, which is slightly less than 1. The reference ar and the phase shift signal a1 are
similar considering the features accounted in the remaining comparison metrics.
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Figure 5.1: Comparison metrics for generic signals w.r.t. a reference signal: phase shift Mar,a1

(top-left); amplitude scaling Mar,a2 (top-right); frequency modulation Mar,a3 (bottom-left); and non-
linearity Mar,a4 (bottom-right).
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Figure 5.2: Comparison metrics for generic signals: normalized wavelet amplitude |W (f, t)| for the
reference War (top-left); amplitude scaling Wa2 (top-right); frequency modulation Wa3 (bottom-left);
nonlinearity Wa4 (bottom-right). The dashed-dot line indicates the cone of influence COI.

Signal 2 - Amplitude scaling

Comparing the second signal to the reference, the behavior of the comparison metrics due to
amplitude discrepancy is analyzed. The signal amplitude of a2 is two times larger than the
amplitude for ar. Increasing the amplitude in such way, affects the RMS Mar,a2

rms , magnitude
Mar,a2

m , peak Mar,a2
p , and wavelet metric Mw (cf. Fig. 5.1, top-right). With exception of

the magnitude metric, the rest of the metrics amount to Mar,a2
rms

∼= Mar,a2
p

∼= Mar,a2
w

∼= 0.4,
which is logical as a discrepancy of 100 % yields exp(−1) ∼= 0.37. The magnitude metric
resulted in a higher value due to the warping of the signal using the dynamic time warping
algorithm. Another particularity is that the value of the frequency normalized wavelet metric is
Mar,a2

wf
∼= 1. This is due to the fact that both signals have the same relative frequency content,

as it can be seen from the absolute value of the wavelet coefficients in Fig. 5.2. As anticipated,
no discrepancies are detected by the phase, PDF, stationarity and bispectrum metrics, i.e.
Mar,a2

ϕ = Mar,a2
pdf = Mar,a2

s = Mar,a2
b = 1.

Signal 3 - Frequency modulation

The third signal is devised to investigate the effect of frequency modulation. Practically, the
signal x3 contains a linear chirp, which can also be observed in the wavelet coefficients (cf.
Fig. 5.2). Since the stationarity null hypothesis (cf. (4.33)) is accepted for ar and rejected for
a3, the stationarity metric amounts to Mxr,x3

s = 0. The magnitude Mar,a3
m and wavelet-based
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Figure 5.3: Comparison metrics for generic signals: filtered non-stationary wavelet amplitude
|W F (f, t)| for the reference |W F

xr
| (top-left); frequency modulation |W F

x2 | (top-right); damped fre-
quency modulation |W F

x∗
3
| (bottom-left); difference ||W F

x3 | − |W F
x∗

3
|| (bottom-right). The dashed-dot

line indicates the cone of influence COI.

metrics, Mar,a3
w and Mar,a3

wf , result in substantially lower values than 1, while the peak and
RMS metrics are Mar,a3

p = Mar,a3
rms

∼= 1. This further reinforces the claim why multi-criteria
assessment is required beyond discussions based on averaged or global features of the signals.
Unlike the previous example, the wavelet metric Mar,a3

wf has similar value as its frequency-
normalized version Mar,a3

w , which brings the conclusion that the discrepancies in Mar,a3
wf are

due to relative frequency modulation, rather than amplitude modulation. Although the mean
phase metric amounts to Mar,a3

ϕ < 1, quantifying the mean phase between a stationary and
frequency modulated non-stationary signal is obsolete, as noted in the preceding section. The
frequency modulation did not result in appreciable deviation of the PDF; hence, Mpdf

∼= 1.

To further investigate the stationarity metric for two non-stationary signals, the frequency-
modulated harmonic in (5.4) is additionally damped by a factor ξ1 = 0.025 and the resulting
signal is denoted as x∗

3. Figure 5.3 depicts the filtered non-stationary part of the normalized
absolute wavelet coefficients |W F | of the signals ar (top-left), a3 (top-right), a∗

3 (bottom-left),
and the difference ||W F

a3
|−|W F

a′
3
|| (bottom-right). It can be observed that there are some spurious

peaks for the reference signal, despite the fact that the univariate test correctly accepted the
null hypothesis (cf. (4.33)). This is the reason why the two-level process is employed for the
stationarity metric. For the frequency-modulated signal a3 and additionally damped signal a∗

3,
the stationarity null hypothesis was rejected and the effect of the linear and damped linear
chirp can be seen in the filtered wavelet coefficients. The discrepancy in the non-stationary
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Figure 5.4: Comparison metrics for generic signals: phase-randomized bispectrum amplitude
GR

B(f1, f2) and filtered phase-randomized bispectrum amplitude GF
B(f1, f2) for the reference GF

Ba1

(top-left), nonlinearity GR
Ba4

(top-right), nonlinearity GF
Ba4

(bottom-left); damped nonlinearity GF
Ba∗

4
(bottom-right). The dashed-dot line indicates the inner triangle IT.

part for a3 and a∗
3 is quantified based on (4.49). Hence, the stationarity metric amounts to

Ma3,a∗
3

s = 0.48 for these two signals.

Signal 4 - Nonlinearity

In the last case, the difference of the nonlinearity in terms of quadratic phase coupling is
explored between the reference ar and nonlinear signal a4. The wavelet bispectrum metric
amounts to Mar,a4

b = 0 (cf. Fig. 5.1, bottom-right) as the reference signal is linear and a4 is
nonlinear due to multiplication of the harmonics at ω1 and ω2. The filtered wavelet bispectrum
of the reference signal is trivial (cf. Fig. 5.4, top-left), while the filtered bispectrum is not
(cf. Fig. 5.4, center-right). Hence, it is clear that the corresponding frequency couples at
(f1, f2) = (2, 2.8 − 2) and (f1, f2) = (2.8, 2) are due to nonlinear interaction of ω1 and ω2 for
the signal a4. Moreover, the magnitude of the wavelet coefficients indicates two additional
frequencies at 0.8 Hz and 4.8 Hz (cf. Fig. 5.2, bottom-right). Thus, most of the metrics which
involve signal amplitude indicated discrepancies.

130



5.2. Comparison metrics: Generic signals

0.0 2.0 4.0 6.0
10−6

10−5

10−4

10−3

10−2

10−1

100

f1 [Hz]

G
R B
/
m
a
x
G

R B
a
4
[-
] a4(ξ2 = 0.000)

a∗4(ξ2 = 0.025)
Threshold a4
Threshold a∗4

Figure 5.5: Comparison metrics for generic signals: phase-randomized bispectrum amplitude for non-
linearity GR

Ba4
(f1, 0.8) and damped nonlinearity GR

Ba∗
4
(f1, 0.8) signals, including the filtering threshold.

an [-]

P
a
n
,P

e,
a
n
[-
]

−3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
Par,n

Pa4 ,n

Pe,ar,n

Pe,a4 ,n
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The filtering of the nonlinear part of the signal is demonstrated in Fig. 5.4, where the unfiltered
(cf. Fig. 5.4, top-right) and filtered (cf. Fig. 5.4, bottom-left) wavelet bispectrum are depicted.
It is clear that the additional noise of the bispectrum is removed by utilizing the presented
surrogate method (cf. (4.48)). To quantify a discrepancy in the nonlinear portions of two signals,
a signal a∗

4 is constructed based on (5.5) by introducing a damping coefficient of ξ2 = 0.025.
The wavelet bispectrum amplitude of a∗

4 is shown in Fig. 5.4 (bottom-right), and additionally,
a plane of the wavelet bispectrum amplitude at f2 = 0.8 Hz is given in Fig. 5.5. Both of these
figures indicate a difference in the wavelet bispectrum magnitude. Using (4.39) for the partial
area of the IT (separated by the white dashed-dot line in Fig.5.4), the wavelet bispectrum
metric amounts to Ma4,a∗

4
b = 0.46. The filtering threshold can be also observed in Fig. 5.5.

Further, by modifying a4 in (5.5) for ϕ3 = 0, the filtered bispectrum amplitude resulted in
zero values as the condition of ϕB = 0 is not satisfied. Hence, no quadratic phase coupling is
detected. In this case, the filtered wavelet bispectrum is not shown as it is similar to ar.

Further, the PDF metric amounts to Mar,a4
pdf = 0.86, indicating a discrepancy in the PDFs.

Figure 5.6 depicts the histogram and the corresponding estimated PDFs using kernels of the
normalized versions of the signals ar and a4. It is apparent that the PDF of the signal a4,n

is asymmetric, which is due to the quadratic part of (5.5). It can be argued that for such a
discrepancy, the PDF metric should be more sensitive. This can accounted for by adjusting the
sensitivity parameter εpdf > 1 (cf. Definition 4.15). For e.g., Mar,a4

pdf = 0.74 for εpdf = 2.
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5.3 Free-stream turbulence
Here, the flow fields of the CFD model for random and deterministic free-stream turbulence are
verified. The verification is conducted for a CFD domain that does not contain an immersed
body. In particular, the objectives of this section are to:

i) verify the flow field and conduct parametric studies for the 2D random free-stream tur-
bulence for von Kármán spectra (cf. Sec. 3.6.2),

ii) study the span-wise correlation for the novel Pseudo-3D VPM presented in Sec. 3.6.4,

iii) study the flow field for the deterministic free-stream turbulence presented in Sec. 3.7.4,
in terms of predicted amplitude and frequency content,

iv) verify the derived closed-form analytical solution for prediction of deterministic gust amp-
litudes (cf. 3.224) with its discrete inverse counterpart (cf. (3.227)).

5.3.1 Random gusts
Thorough investigation and parametric studies on the free-stream turbulence statistics for an-
isotropic turbulence based on the ESDU spectra have been performed by Prendergast [257] and
the research group at the Technical University of Denmark [134, 261]. Herein, the turbulent
statistical properties for the isotropic and anisotropic von Kárman spectra are investigated in
2D first, to understand the behavior of the flow field. Parametric studies are then performed to
identify the sensitivity of relevant numerical parameters. Based on these findings, the discussion
is continued for the Pseudo-3D case.

Two cases of free-stream turbulence are considered with isotropic and anisotropic properties.
For these cases, the prescribed statistical (physical) properties of the free-stream turbulence
and numerical parameters are given in Tab. 5.2. Additionally, the numerical discretization
parameters are given in Tab. 5.3. How some of these parameters are selected will be discussed
in the following. A reference dimension of B = 31 m is selected that corresponds to a body
chord as the final goal of using the free-stream turbulence is to study its effect on an immersed
body. For easier discussion, the turbulent properties are distinguished as:

• Target - prescribed statistics, denoted by the subscript t,

• Generated - properties that are sampled on the ladder (cf. Fig. 3.10 from Ch. 3), prior
to conversion into particles (cf. (3.181) and (3.182)),

• Simulated - properties that are tracked down within the CFD domain.

Flow field: 2D

Preliminary, a trial run is performed for the isotropic case with a wide trial domain (ld/B ×
lh/B = 90 × 90) in order to investigate the spatial behavior of the turbulence energy along the
centerline of the domain x = (x, 0, 0). Figure 5.7 presents an instantaneous particle map and the
turbulence intensity along the centerline. Three different regions of the flow are distinguished,
namely: (i) convergent region - where the kinetic energy converges; (ii) convection region - in
which the particles are convected without major interaction and (iii) mixing free-flow region
- where there is a mixing of rotational and free flow. It is observed that the longitudinal
turbulence energy peaks at x/B ≈ 1 and then a constant decay is noted. The vertical turbulence
intensity peaks further downstream at x/B ≈ 20 and it remains relatively constant up to
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Turbulent case Physical parameter Value

Isotropic

Wind speed: U 30 m/s
Longitudinal intensity: TIut 6 %
Vertical intensity: TIwt 6 %
Longitudinal length scale: Lut/B 1.75
Vertical length scale: Lwt/B 0.87
Reynolds number: Re 1.03×105

Turbulent Reynolds number: ReLu 1.79×105

Coherence coefficient: cx = (Cx, Cy, Cz) (3, 5, 10)

Anisotropic

Wind speed: U 30 m/s
Longitudinal intensity: TIut 11 %
Vertical intensity: TIwt 6 %
Longitudinal length scale: Lut/B 3.48
Vertical length scale: Lwt/B 0.48
Reynolds number: Re 1.03×105

Turbulent Reynolds number: ReLu 3.59×105

Coherence coefficient: cx = (Cx, Cy, Cz) (3, 5, 10)

Table 5.2: Random free-stream turbulence: prescribed physical parameters for the two turbulent
cases for reference dimension B = 31 m.

Numerical parameter Value
Domain length: ld/B 21
Domain height: lh/B 21
Reduced time-step Δτ = ΔtU/B 1.65×10−2

Total time: τ = tU/B 677
Core radius: ε/B 9.7×10−3

Poisson grid: Nx × Nz 511 × 511
P3M neighboring cells: Nr 3
Particle release factor: Δp = Δtin/Δt 4
Particle band height: lG/B 18
Span-wise increment: Δy/B 0.16
Number of strips: Nstr 6
Correction factor: βin 0.7 (0.65)

Table 5.3: Random free-stream turbulence: numerical parameters for reference dimension B = 31
m. The value of the correction factor βin is given for the isotropic case, while the value in brackets is
for the anisotropic case.

x/B ≈ 60, after which it starts to reduce slowly due to the free-space boundary condition.
Similar observations are noted by Rasmussen et al. [261], who reported that the reduction
of vertical turbulent energy starts to decay at approximately x = 3.5lG. To accommodate a
uniform turbulence field and sufficiently developed wake, a domain with 10B upstream distance
from the leading edge and 10B behind the trailing edge is considered appropriate. Thus, the
selected domain (ld/B × lh/B = 21 × 21) is marked by the red box on the particle map in
Fig. 5.7. All further analyses are conducted for the selected domain.

Figure 5.8 depicts a sample of the time-histories from the generated velocity components at the
ladder xg = (0.5B, 0, 0) and simulated velocities at the center of the domain xc = (10.5B, 0, 0),
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Figure 5.7: Random free-stream turbulence, 2D: sample particle map (top); normalized turbulence
intensity TI/TIt along the centerline z/B = 0 (bottom) for the isotropic case. The test domain size
is ld/B × lh/B = 90 × 90, while the red box on the particle map indicates the selected domain.

τ [-]

u
c/
U

[-
]

100 120 140 160 180 200
−8

−4

0

4

8
Generated
Simulated

τ [-]

w
c/
U

[-
]

100 120 140 160 180 200
−8

−4

0

4

8

Figure 5.8: Random free-stream turbulence, 2D: sample generated (at xg = (0.5B, 0, 0)) and simu-
lated (at xc = (10.5B, 0, 0)) time-histories of the longitudinal u (left) and vertical w (right) fluctuations
for the isotropic case.

while Fig. 5.9 depicts instantaneous magnitude of the fluctuating velocity for the selected
domain. From the latter figure, it appears that the fluctuating velocity is simply convected by
the mean wind speed, i.e. Taylor’s hypothesis holds. Due to this hypothesis, the time-histories
should appear relatively similar with a phase-shift corresponding to the distance between the
particle band and xc. This is not the case herein as the generated velocity is not divergence-free;
however, similar amplitude and frequency content may be observed and the following discussion
shows that the turbulence statistics are mostly retained.

The target, generated (at xg) and simulated (at xc) turbulence intensities are given in Tab. 5.4.
Good correspondence can be observed for the isotropic case, while a reduction in longitudinal
turbulence energy is noted for the anisotropic case. By converting the ladder velocities into
circulation by (3.182), the divergent-free condition is imposed, which results in loss of turbulent
kinetic energy. This is also noted for ESDU spectra with anisotropic turbulence [135, 257, 261].
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Figure 5.9: Random free-stream turbulence, 2D: sample fields of fluctuating velocity magnitude ‖u∗‖
for the isotropic case at τ = 88.0, 89.9, 91.7, 93.6, 95.4, 97.3 (from left to right, top to bottom), i.e. the
time shift between consecutive snapshots corresponds to a convection distance of approximately one
length scale Lu/B ≈ 1.75 due to mean wind speed.

The results obtained herein for the isotropic case suggest that the loss of turbulent kinetic
energy is minor. Further, mostly uniform turbulence intensity is noted across the selected
domain, particularly in the area of expected motion and wake of a body (cf. Fig. 5.10).
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Case Parameter TIu [%] TIw [%] Luτ /B [-] Lux/B [-] Lwτ /B [-] Lwx/B [-]

Isotropic
Target 6.0 6.0 1.74 1.74 0.87 0.87
Generated 6.0 6.1 1.70 / 0.99 /
Simulated 5.9 5.8 1.70 1.69 1.09 1.10

Anisotropic
Target 11.0 6.0 3.48 3.48 0.48 0.48
Generated 11.0 5.89 2.79 / 0.61 /
Simulated 7.65 6.45 2.06 2.12 0.98 1.01

Table 5.4: Random free-stream turbulence, 2D: turbulent intensities and length scales for the gener-
ated (at xg = (0.5B, 0, 0)) and simulated (at xc = (10.5B, 0, 0)) velocities compared w.r.t prescribed
quantities. The temporal length scales Lτ are obtained from the fluctuating time-histories at xg or
xc, while the spatial length scale for the simulated velocity Lx is obtained from signals at points along
the centerline z/B = 0.
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Figure 5.10: Random free-stream turbulence, 2D: spatial distribution of normalized turbulence
intensity for the horizontal TIu/TIut (left) and vertical TIw/TIwt (right) fluctuations for the isotropic
(top) and anisotropic (bottom) cases.

The normalized PSDs of the generated and simulated wind velocities are compared to the von
Kármán PSDs in Fig. 5.11 for both isotropic and anisotropic cases. All PSDs are normalized
w.r.t. target length scales and target variances of the corresponding fluctuating components.
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Figure 5.11: Random free-stream turbulence, 2D: PSDs of the generated at xg (left) and simulated
at xc (right) velocities for the isotropic longitudinal (top), isotropic vertical (center-top), anisotropic
longitudinal (center-bottom) and anisotropic vertical (bottom) fluctuations. These are further com-
pared to the prescribed von Kármán spectra, while the sampling cutoff represents a Nyquist frequency
fsg for particle release factor Δp = 4, i.e. the Nyquist frequency of the generated velocity.
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Normalizing the PSDs in such a way, vertical shifts in the spectra correspond to a discrepancy
in the turbulent energy (i.e. intensity), lateral shifts to a discrepancy in the length scales,
while any other distortion means discrepancy of the relative frequency content w.r.t. the target
quantities. As expected, the generated PSDs matches the target spectra. The sampling cutoff
frequency corresponds to the Nyquist frequency of the generated velocity. Below the sampling
frequency, the PSDs of the simulated wind velocities for the isotropic case correspond well with
the target ones for both velocity components with a minor relative discrepancy in the lowest
frequencies for the vertical component. In the anisotropic case, the spectral distribution is
retained for the PSD of the longitudinal velocity component; however, a vertical shift is noted.
This means that imposing the divergence-free condition, the velocities are simply averaged
without disturbing the relative frequency content. Better correspondence is noted for the PSD
of the vertical component than the longitudinal, with deviation from the target spectrum in
the low-frequency range.

Further, the turbulent length scales of the generated (at xg) and simulated (at xc) are given
in Tab. 5.4. The simulated length scales are computed as a function of time Lτ (cf. (2.9)) and
as a function of the spatial coordinate Lx (cf. (2.6)). In the isotropic case, the generated and
simulated longitudinal length scales correspond good to the target one, while minor overestim-
ation is noted for the vertical ones. In the anisotropic case, the length scale for the longitudinal
component is somewhat underestimated for both the generated and simulated case, while the
lateral is overestimated. Overestimation of such magnitude for the generated length scales has
been previously reported (cf. Rossi et al. [267]), and is generally connected to the computation
of the length scale in terms of the noise threshold of the autocorrelation. For the simulated
length scales, there is an additional "averaging" due to the conversion of ladder velocities into
particle. In fact, this averaging can be seen for both turbulence intensities and length scales.
Since the discrepancy in the length scales is not up to an order of magnitude, it is not visible
in the PSDs. For both cases, Taylor’s hypothesis is generally valid as there is a good corres-
pondence for the spatial and temporal length scales (Lt ≈ Lx). The validity of this hypothesis
can also be quantitatively evaluated from Fig. 5.12, where the coefficient of correlation R∗ (or
normalized cross-correlation R) is depicted w.r.t. the reduced dimensional time τ and normal-
ized spatial dimension x/B. As established in Sec. 3.6.4, Taylor’s hypothesis is the basis for
the span-wise correlation in the Pseudo-3D method with free-stream turbulence.

The histogram estimate PDFs of the wind fluctuations are important for the buffeting forces as
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Figure 5.12: Random free-stream turbulence, 2D: spatial correlation R∗
x and autocorrelation R∗

τ

coefficients of the simulated velocity fluctuations at xc for the isotropic (left) and anisotropic (right)
cases.

138



5.3. Free-stream turbulence

−5 −4 −3 −2 −1 0 1 2 3 4 5
10−4

10−3

10−2

10−1

100

un, wn [-]

P
u
n
,P

w
n
[-
]

un
wn
N (0,1)

−5 −4 −3 −2 −1 0 1 2 3 4 5
10−4

10−3

10−2

10−1

100

un, wn [-]

P
u
n
,P

w
n
[-
]

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

un, wn [-]

P
u
n
,P

w
n
[-
]

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

un, wn [-]

P
u
n
,P

w
n
[-
]

Figure 5.13: Random free-stream turbulence, 2D: histogram estimate PDFs of normalized (standard
score) simulated velocity fluctuations Pun and Pwn for the isotropic (left) and anisotropic (right) cases,
compared a standard normal distribution N (0, 1). The bottom figures provide better representation
of the tail of the PDF as logarithmic scale is used for the ordinate.

Gaussian input would result in Gaussian output only for linear aerodynamic models. Figure 5.13
depicts the PDFs of the standard score wind fluctuations for both cases. It is observed that
both fluctuating components for both cases generally follow the normal probability distribution
N (0, 1), even in the tail of the distribution which is visible in the logarithmic representation
(cf. Figure 5.13, bottom). However, the Kolmogorov-Smirnov test for normality rejected the
null hypothesis at 5 % significance level, which may be attributed to three factors, namely:
(i) the conversion from ladder velocities to circulation, (ii) artificial energy above the cutoff
frequencies and (iii) due to the non-Gaussianity of 2D turbulence (cf. Boffeta and Ecke [30] for
discussion). Further investigations are required to support the latter statement as the current
numerical resolution does not resolve all turbulent scales and no closure model is implemented.
The generated velocity is determined to be Gaussian (not shown).

Parametric studies

Next, parametric studies are conducted w.r.t. four numerical parameters: circulation correction
factor βin, particle release factor Δp, core radius ε, and particle band height lG. Additionally, the
effect of Reyolds number as a physical parameter is studied. The discussion is mainly based on
the PSDs of the velocities for the isotropic case. Before continuing with the parametric studies,
a remark is made regarding the computation of a PSD, its smoothing, and representation.

The "full" PSD of a signal, i.e. without any smoothing, can contain significant noise, which
makes it difficult to interpret the results. To be able to make a meaningful interpretation, the
PSDs need to be smoothened. Typically, Welch’s method is used for 8 averaging segments with
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Figure 5.14: Random free-stream turbulence, 2D: effects of smoothing (left) and normalization
(right) on the representation of the PSD of the simulated vertical fluctuations for the isotropic case.
The "Full" PSD is obtained without any smoothing; the Welch spectrum corresponds to a smoothened
spectrum with 8 averaging segments and 50 % overlap (C1) and 20 averaging segments and 50 %
overlap (C2); Berzier curves are fitted to the Welch C2 spectrum. The unnormalized spectrum (right)
is corresponding to the normalized spectrum in Fig. 5.11 (right, center-top).

a 50 % overlap (as shown previously in Fig. 5.11). While this is sufficient for representation
of a single PSD for comparison with an analytical curve, further smoothing is required for
comparison of several PSDs. Rasmussen et al. [261] suggested to sub-sample the full spectrum
and subsequently use Bezier curves. The sub-sampling is required as the Bezier curves require
the computation of factorial; thus, a large number of points results in numerical instability.
Herein, the Bezier curves are fit to a smoothened Welch spectrum using 20 averaging segments
with a 50 % overlap, which is the minimum number of segments that resulted in a Bezier curve
without numerical instability. The smoothing process is depicted in Fig. 5.14 (left), where the
Welch C1 corresponds to 8 averaging segments, while Welch C2 to 20 averaging segments with
50 % overlap. Moreover, by normalizing the PSD with the frequency, the discrepancy in the
whole frequency range is illuminated. For e.g., the unnormalized PSD of the vertical component
for the Welch C1 in Fig. 5.14 (right), appears to be in better correspondence with von Kármán
spectra than normalized PSD shown in Fig. 5.11 (top-right).

First, the effect of the circulation correction factor βin is considered. Generally, βin can take
values from 0.6 up to 1, depending on the target spectra and the hight of the particle lad-
der [257]. Figure 5.15 depicts the PSDs for varying this factor for the isotropic case. Modifying
this factor proportionally scales the global turbulent energy in a uniform manner for the whole
frequency content for both fluctuating components. Thus, this factor is directly connected
to the turbulence intensity. Figure 5.16 depicts the turbulence intensity along the centerline
x = (x, 0, 0), for both isotropic (left) and anisotropic (right) cases. In the isotropic case, the
turbulence intensity for both components converges for values of βin approximately amounting
to βin = 0.7. The reason for the factor βin not having a value of one is due to the "smudging"
effect of the vortices when they are generated from a velocity ladder, as the circulation Γp only
for a single cell tends to the approximated one Γa. This was shown by Prendergast [257], who
used the corner point velocities of a square grid instead of a ladder to replicate a circular vortex
and concluded that in case the grid is larger than 3×3 cells, the factor βinπ/2 → 1. Further-
more, Chawdhury and Morgenthal [51] used the method for conversion of ladder velocities into
particles to reproduce a wake behind a bluff body where the velocities sampled on the ladder
are obtained from the solution of the Navier-Stokes equation. The factor βin is reported to
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Figure 5.15: Random free-stream turbulence, parametric studies: effect of circulation correction
factor βin on the PSDs of longitudinal Su (left) and vertical Sw (right) simulated velocities for the
isotropic case.
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Figure 5.16: Random free-stream turbulence, parametric studies: effect of circulation correction
factor βin on the turbulence intensity of longitudinal TIu (blue) and vertical TIw (red) simulated
velocities for the isotropic (left) and anisotropic (right) cases along the centerline z/B = 0.

be around 0.6 to match the reproduced flow turbulence properties. In the anisotropic case, it
can be seen that for βin=0.65 (i.e. βinπ/2 → 1) the vertical turbulence intensity converges to
the prescribed value, while for the lateral component the turbulence intensity is found to be
reduced to 70 %, as noted in Tab. 5.4.

Second, the effect of particle release factor Δp is studied. From the PSDs shown in Fig. 5.17,
it can be gathered that there is an artificial rise of energy at a particular frequency that
corresponds to the Nyquist frequency of the generated velocity, fsg. Based on the particle
release factor, this frequency is

fsg = 1
2ΔpΔt

. (5.6)

Of course, setting Δp = 1 would result in no artificial rise of energy. However, this means
higher computational demand as a larger number of time-steps are needed for the generation of
the time-histories, i.e. �Ns/Δp� (cf. Sec. 3.6.2). Moreover, the number of inflow particles Nip

increases as they are injected at a higher rate and with a larger number of particles per seeding
step due to the smaller cell size, i.e. Δc = UΔpΔt. For e.g., 240 particles are injected every
4-th simulation step for Δp = 4, while 480 particles are injected every 2-nd simulation step for
Δp = 2. Selecting Δp = 4 is considered to balance the accuracy and numerical efficiency for
the particular turbulent properties.
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Figure 5.17: Random free-stream turbulence, parametric studies: effect of particle release factor
factor Δp on the PSDs of longitudinal Su (left) and vertical Sw (right) simulated velocities for the
isotropic case. The dashed lines in corresponding colors depict to the Nyquist frequency fsg obtained
as in (5.6). The black dashed line correspond to the core cutoff frequency fsε (cf. (5.9)) for the baseline
Δc/ε = 6.6.
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Figure 5.18: Random free-stream turbulence, parametric studies: effect of the ratio between the
cell size and core radius Δc/ε on the PSDs of longitudinal Su (left) and vertical Sw (right) simulated
velocities for the isotropic case. The dashed lines in corresponding colors depict the core cutoff
frequency fsε obtained as in (5.9). The black dashed line correspond to the core cutoff fsg frequency
(cf. (5.6)) for Δp = 4.

Third, the influence of the core radius examined. As the core radius ε is used to resolve the
numerical instabilities by mollifying the particles’ velocity (cf. (3.173)), it is logical to relate
it to the particle spacing and the average distance between a vortex and velocity sampling
point of interest. Under Taylor’s hypothesis, the inflow particles are assumed to be advected
only by the mean flow; thus, the average particle spacing is equal to the cell size Δc. The
results of a parametric study for different Δc/ε is depicted in Fig. 5.18. It can be observed that
reducing this ratio, a loss of turbulent kinetic energy starts to be significant at lower frequencies.
The relationship between the core radius and a particular cutoff frequency fsε, for which the
smoothing is considered to be significant, depends on the type of mollified kernel used. For
the Gaussian core, a distance of 2ε between a velocity sampling point and a vortex particle
would result in a reduction of ≈2 % of velocity (similarly as the 98 % interval for Gaussian
distribution). Taking that for a vortex at the center of the quadratic cell (cf. Fig. 3.10 from
Ch. 3), the induced velocity at a sample point positioned on the inner circle of the cell should
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not be reduced less than 98 %, the ratio

Δc/2
ε

= 2 (5.7)

can be obtained. This ratio is more conservative than the ratio proposed by Prendergast [257],
which corresponds to a distance equivalent to the radius of the outer circle of the quadratic
cell. Hence, significant smoothing can be expected for wavelengths smaller than the distance
Δc/2 (i.e. the inner radius of the cell). The Nyquist frequency for this wavelength yields

fsε = Δc/2
2U

. (5.8)

Plugging this into (5.7) yields the relation between core cutoff frequency and core radius

fsε = U

8ε
. (5.9)

The core radius cutoff frequencies are represented by the dashed lines in Fig. 5.18. Above these
frequencies, it can be seen that there is a significant smoothing. It is also interesting to note
that for Δc/ε = 13.2, there is an artificial increment. This is a consequence of the particle
release factor corresponding to fsg (cf. (5.6)), which is represented by the black dashed line in
Fig. 5.18. Similarly, for all Δp cases in Fig. 5.17, the smoothing below fsε (black dashed line)
is a consequence of the selected core radius. Generally, both fsε and fsg should correspond to
frequencies that are not of interest for the analysis. In this case, fsε is set corresponding to
Δc/ε = 6.6 and is generally governed by the panel length of the immersed body.

Forth, the consequence of varying the particle band height lG is investigated. Naturally, the
domain size is also changed to accommodate higher particle bands. For the ratios lG/B = 8,
lG/B = 12 and lG/B = 20, the dimension of the quadratic domain corresponds to ld/B =
11, ld/B = 17 and ld/B = 28, respectively. The simulated velocity is tracked at position
x = 0.625lG downstream from the particle band height to assure similar convergence of the
turbulent energy as in Fig. 5.7. Figure 5.19 depicts the PSDs for varying lG/B ratio. Only
minor increments in the low frequencies of the longitudinal fluctuations can be observed. Similar
findings were reported by Rassmusenn et al. [261] for the ESDU spectra.

Finally, the effect of the Reynolds number is considered by varying the kinematic viscosity ν.
The PSDs of the velocity fluctuations for three Reynolds numbers are depicted in Figure 5.20.
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Figure 5.19: Random free-stream turbulence, parametric studies: effect of particle band height lG/B
on the PSDs of longitudinal Su (left) and vertical Sw (right) simulated velocities for the isotropic case.
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Figure 5.20: Random free-stream turbulence, parametric studies: effect of turbulent Reynolds num-
ber ReLu on the PSDs of longitudinal Sw (left) and vertical Sw (right) simulated velocities for the
isotropic case.

It can be observed that for ReLu = 1.8 × 103 (i.e. Re = 1.03 × 103) there is additional loss
of turbulent energy, compared to the cases with higher Reynolds numbers. It is reasonable
to state that this is a consequence of the increased role of turbulent viscosity. No significant
difference in the PSDs of the velocities is noted for Reynolds number with orders of magnitude
104 and 105.

Flow field: Pseudo-3D

The correlation of wind fluctuations between strips in the turbulent Pseudo-3D VPM repres-
ents an essential part. Thus, the span-wise correlation and coherence are studied between six
strips for the isotropic and anisotropic cases with the numerical parameters noted previously
in Tab. 5.2. Two coherence models are used as a target for generation of the ladder velocities,
and are denoted as:

• VC - Vickery coherence model (cf. (3.25)),

• MC - Modified coherence model (cf. (3.198)).

These two types of coherence models along with the two cases of turbulence make a total of
four cases which will be the topic of discussion of this section. The span-wise correlation and
coherence are studied for points that lie on a horizontal line, i.e. there is no vertical separation
z = 0. Thus, the target coherence is similar for both input coherence models.

Figure 5.21 depicts the span-wise correlation coefficient R∗
y = R∗(y) for of the first strip w.r.t.

the rest of the strips for the simulated velocity at the center of the fluid domain, xc = (0, y, 0)
(cf. Fig. 3.12 from Ch. 3 for graphical representation of two slices). The span-wise correla-
tion coefficient of the simulated velocities is further compared to the one from the generated
fluctuations at the ladder. Since there is no vertical separation, the generated span-wise cor-
relation coefficient is identical for the VC and MC models. At a point close to the particle
band (y/B = 2.5), R∗

y of the simulated velocities for the MC model yields good results for both
vertical and longitudinal fluctuations. Utilizing the VC model, there is a reduction in R∗

y for
both fluctuating components. In the anisotropic case, excellent agreement of R∗

y is noted the
vertical velocity for both VC and MC, while there is a partial loss for the longitudinal one. For
points further downstream, a loss of correlation is observed only in the longitudinal fluctuating
components for both VC and MC models in both isotropic and anisotropic cases. Nevertheless,
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Figure 5.21: Random free-stream turbulence, Pseudo-3D: span-wise correlation coefficient of the
generated velocity at the grid and simulated velocity along the centerline z/B = 0 for the longitudinal
R∗

uy (left) and vertical R∗
wy (right) components in the isotropic (top) and anisotropic (bottom) cases.

Blue color corresponds to VC target coherence model, while red color corresponds to the MC target
coherence model for the generated velocity.

this loss is not substantial. This and the fact that the correlation of the vertical fluctuations
is constant downstream is a consequence of Taylor’s hypothesis. It is important to note that,
the simulated correlation coefficients for all cases maintain the exponential shape of decay.

As noise may affect the correlation coefficient, coherence is a more reliable measure to study
how the strips are correlated with each other. In particular, the magnitude-squared coherence
(from here on referred to as coherence) is used as a basis of discussion as it is straightforward to
be obtained from Welch PSD for random signals. In a similar manner as in the previous section,
Berzier curves are used to smoothen the magnitude-squared coherence for easier comparison.
Initially, the coherence of the generated velocity at the ladder is verified for points with only
lateral separation xg = (−10.5B, y, 0). Figure 5.22 depicts the generated coherence of all slices
for VC and MC models in the case of isotropic turbulence. Good correspondence is observed
for all strips, without any particular difference between them due to the principle of geometric
similarity (cf. Sec. 3.3.1). Further, there is no difference in which target coherence model (VC
or MC) is used for the generated velocity. Since the wind generation is a standard method,
similar results were obtained for the anisotropic case (not shown).

Figure 5.23 depicts the span-wise coherence of the simulated velocities at the center of the strip
xc = (0, y, 0) for both isotropic (top) and anisotropic (bottom) cases. In both turbulent cases,
the simulated coherence for the vertical fluctuation component (cf. Fig. 5.23, right) yielded
better results than for the longitudinal one (cf. Fig. 5.23, left). Two reasons seem plausible
for this. First, the vertical velocity governs the circulation spectrum, and thus, the circulation
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Figure 5.22: Random free-stream turbulence, Pseudo-3D: span-wise coherence of the generated
velocity at the grid for the longitudinal cohuu (left) and vertical cohww (right) components in the
isotropic case, obtained using Berzier curves and Welch PSD. Each line corresponds to the coherence
of the first strip w.r.t. rest of the strips.
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Figure 5.23: Random free-stream turbulence, Pseudo-3D: span-wise coherence of the simulated
velocity in the CFD domain at xc = (10.5B, y, 0) for the longitudinal cohuu (left) and vertical cohww

(right) components in the isotropic (top) and anisotropic (bottom) cases. The coherence is obtained
using Berzier curves and Welch PSD. Each line correspond to the coherence of the first strip w.r.t.
rest of the strips.

cross-spectrum, which could be seen from the limiting version of the point spectrum Slim
Γ derived

in Sec. 3.6.4 (cf. (3.195)). Second, there is a stronger decay of R∗ (cf. Fig. 5.21) for the lateral
component and thus, simulated coherence is reduced for the point xc. This will be discussed
later. Similarly, as for the correlation coefficient, the simulated coherence yields better results
if the ladder velocities are generated using the MC model. This is particularly true for the
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5.3. Free-stream turbulence

isotropic case (cf. Fig. 5.23, top), while the difference in the simulated coherence is minor
for both VC and MC models in the anisotropic case (cf. Fig. 5.23, bottom). Moreover, the
discrepancies in the simulated coherence are similar for both turbulent cases for the MC model.
This is not the situation for the VC model since the anisotropic case yield better results than
the isotropic. Nevertheless, it is important to note that the shape of the simulated coherence
is maintained for all cases w.r.t. the target.

Figure 5.24 depicts the coherence of the simulated velocities between the first and third slice for
three points along the centerline xg = (0, y, 0) in the isotropic case. A decay can be observed in
the simulated coherence of the longitudinal velocity for the MC. This explains the discrepancy
for the coherence of the simulated longitudinal velocity for the MC model in Fig. 5.23 (left).
No such consistent trend can be observed for the VC model and thus, the coherence loss is
suspected to be due to numerical uncertainty. In case of the vertical velocity, no decay is
noted for both VC and MC models, which is in line with the observation from the correlation
coefficient in Fig. 5.21.

To further illuminate the reason why the MC yields better results than the VC for the simu-
lated velocities, the coherence of the circulation at xg = (0, y, 0) is depicted in Fig. 5.25 for the
isotropic case. This circulation coherence is obtained after converting the grid velocities into
particles and prior to their release into the CFD domain. In the case of the MC model (cf.
Fig. 5.25, left), it can be seen that the target coherence of the circulation is similar as for the
velocities i.e. the principle of geometric similarity applies. On the other hand, the target coher-
ence of the circulation is different for each slice for the VC model, i.e. the principle of geometric
similarity does not apply. This was noted previously in Sec. 3.6.4. Larger relative discrepancies
can be observed for the VC (cf. Fig. 5.25, right) than for the MC model (cf. Fig. 5.25, left).
The suspected reason is the numerical noise that is introduced during the conversion from grid
velocities into particles (i.e. enforcing divergence-free condition) is relatively high for low abso-
lute values of the target circulation coherence. The values of the target coherence (up to 0.15)
are relatively low in the case of the VC model compared to the MC model.

Finally, a parametric study is conducted for different Reynolds numbers for the isotropic case
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Figure 5.24: Random free-stream turbulence, Pseudo-3D: span-wise coherence of the simulated
velocity in the CFD domain at the first xc1 = (x, 0, 0) and third strip at xc3 = (x, 2Δy, 0). The
velocities are sampled at three downstream locations of the particle release band in the CFD domain
for the longitudinal (left) and vertical (right) components in the isotropic case. Blue color corresponds
to the VC target coherence model, while the red color corresponds to the MC target coherence model
for the generated velocity.
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Figure 5.25: Random free-stream turbulence, Pseudo-3D: generated span-wise coherence of the
inflow circulation cohΓΓ for the MC (left) and VC (right) target coherence model of the ladder velocity.
The thick lines represent the target circulation coherence, which in the case of the MC model is a
single (black) line due to the principle of geometric similarity. In the case of the VC model, the target
circulation coherence of the first strip w.r.t. the rest is different for each strip and is denoted by a
thick line in the corresponding color.
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Figure 5.26: Random free-stream turbulence, Pseudo-3D: influence of Reynolds number on the sim-
ulated span-wise coherence of the simulated velocity in the CFD domain at the first xc1 = (10.5B, 0, 0)
and third strip at xc3 = (10.5B, 2Δy, 0) for the longitudinal (left) and vertical (right) fluctuations for
the isotropic case and MC model.

for the MC model. Figure 5.26 depicts the results for the coherence of the simulated velocities
between the first and third slice at points xc1 = (0, 0, 0) and xc3 = (0, 2Δy, 0), respectively.
Minor loss of coherence for the longitudinal velocity can be seen for lower Reynolds numbers,
while the coherence of the vertical velocity appears to be insensitive.

In summary, with the presented turbulent Pseudo-3D VPM method, a significant part of the
correlation between strips is retained for both MC and VC models. The MC model yields
better results than the VC model for the simulated velocity, particularly for the isotropic case.
The discrepancy is not as significant for the anisotropic case. It is important to note that this
is a purely numerical consequence for the CFD velocities and it has nothing to do with the
underlying physics, i.e. which target coherence model better describes the natural turbulence.
Thus, there is no difference in the generated coherence. Further, it is noteworthy to mention
that the coherence within the CFD domain is not reported in the studies dealing with bridge
vibration due to turbulent wind (cf. e.g. [172, 326]).
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5.3. Free-stream turbulence

5.3.2 Deterministic gusts
In this section, the flow field including a sinusoidal gust with prescribed amplitude and frequency
is verified for the introduced numerical active turbulence generator, without a body in the
CFD domain. Later this method is used to determine the aerodynamic admittance of bridge
decks under sinusoidal gusts. First, the derived analytical closed-form solution (cf. (3.224))
for circulation amplitude prediction is verified with the discrete inverse solution (3.227). With
this, the circulation amplitude of the inflow particles can be prescribed for a selected sinusoidal
gust amplitude. Next, the flow field across the CFD domain is investigated to study and ensure
that the simulated velocity behaves as prescribed along the centerline, i.e. to test the planar
wake and non-interference of the wakes assumptions (cf. assumptions i) and ii) from Sec. 3.7.4).
Finally, parametric studies are performed for numerical and physical parameters.

The general configuration of the numerical active turbulence generator was presented previously
in Fig. 3.14 (cf. Sec. 3.7.4 from Ch. 3). Two cases are studied, in which the fictitious airfoils are
assumed to be oscillating out-of- and in-phase, generating longitudinal and vertical sinusoidal
gusts, respectively. In the following, these two cases are recalled as the "out-of-phase" and the
"in-phase" case. For each case, the prescribed (physical) are given in Tab. 5.5. Further, the
selected numerical parameters are given in Tab. 5.6. The particle release factor Δp is selected
as such to accommodate either 30 particles per gust length or a minimum of Nip=200 particles
for the spatial range of summation lv. With this condition, the particle release factor amounts
to 12 ≤ Δp ≤ 21 for the prescribed reduced velocity range of 2≤ Vrt ≤50.

For easier discussion, a prescribed gust property is denoted by the subscript "t", the gust
amplitude by the subscript "0", and the velocity along the centerline by the subscript "c".

Circulation amplitude

Initially, the given closed-form solution for the analytical method (cf. (3.224)) for the compu-
tation of the circulation of the amplitude of the inflow particles Γin

F 0 is verified with the inverse
one (cf. (3.227)). Figure 5.27 depicts the normalized circulation amplitude for the selected
reduced velocity range. The results correspond well between both methods, except at Vrt = 2,
where issues were noted in the pseudo-inverse procedure for the inverse method.

Turbulent case Physical parameter Value

Out-of-phase

Wind speed: U 30 m/s
Longitudinal amplitude: uct0/U 5 %
Vertical amplitude: wct0/U 0 %
Airfoil distance: lR/B 1
Reduced velocities: Vr 2-50
Reynolds number: Re 1×104

In-phase

Wind speed: U 30 m/s
Longitudinal amplitude: uct0/U 0 %
Vertical amplitude: wct0/U 5 %
Airfoil distance: lR/B 1
Reduced velocities: Vr 2-50
Reynolds number: Re 1×104

Table 5.5: Deterministic free-stream turbulence: prescribed physical parameters for the two turbulent
cases for reference dimension B = 31 m.
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Numerical parameter Value
Domain length: ld/B 21
Domain height: lh/B 10.5
Vorticity support: lv/B 20.5
Reduced time-step Δτ = ΔtU/B 5×10−3

Total time: τ = tU/B 22 − 550
Core radius: ε/B 5.5×10−3

Poisson grid: Nx × Nz 1023 × 511
P3M neighboring cells: Nr 4
Particle release factor: Δp = Δtin/Δt 12 − 21

Table 5.6: Deterministic free-stream turbulence: numerical parameters for reference dimension B =
31 m. The value of the particle release factor Δp is based on the reduced velocity Vr.
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Figure 5.27: Deterministic free-stream turbulence: verification of closed-form analytical solution
(cf. (3.224)) with the inverse method (cf. (3.227)) for prediction of the circulation amplitude Γin

F 0. The
vertical and longitudinal components correspond to the out-of- and in-phase cases, respectfully, which
are computed separately.

Flow field

Figure 5.28 depicts time-histories of the velocity fluctuations and their corresponding FFTs at
point xc = (5B, 0, 0) at Vrt = 16 for both cases. Clear sinusoidal signals can be observed for
the longitudinal and vertical velocity fluctuations. In the in-phase case, there is a longitudinal
component in addition to the vertical fluctuations. However, the amplitude of this component
is an order of magnitude lower than the amplitude of the vertical fluctuations. Theoretically,
for an in-phase motion of the airfoils, there should not be a longitudinal component. Moreover,
the vertical fluctuation amplitude is slightly underestimated.

To study the origin of these discrepancies, Figs. 5.29 and 5.30 present three instantaneous
particle maps and instantaneous magnitude of the fluctuating velocity at Vrt = 16, for both
cases. The snap-shots corresponding to the minimum, zero and maximum velocity at xc, as
indicated on the time-histories in Fig. 5.28. It can be observed that the particles are not con-
vected along a horizontal line, particularly for the in-phase case. The planar-wake assumption
is more reasonable for the out-of-phase case, as the instability of one wake is counteracted by
the other. On the contrary, this instability is enhanced in the in-phase case. Thus, the dis-
crepancies in the gust amplitudes and the secondary fluctuating components are a consequence
of violating the planar wake and non-interference assumptions. The sinusoidal variation of

150



5.3. Free-stream turbulence

τ [-]

u
∗ c
/
U

[-
]

0 40 80 120 160
−0.06

−0.03

0.00

0.03

0.06

0 4 8 12 16 20 24
0.00

0.02

0.04

0.06

Vr [-]

û
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Figure 5.28: Deterministic free-stream turbulence: sample velocity time-histories, uc and wc (left),
and their corresponding FFTs, ûc and ŵc (right), for the out-of-phase (top) and in-phase (bottom)
cases at gust tracking point xc = (5B, 0, 0). The indicated full circles on the time-histories correspond
to the instantaneous snapshots in Figs. 5.29 and 5.30.

the velocity for the out-of-phase case is only between the wakes, while for the in-phase case
there is variation outside this region (cf. Fig. 5.29 and 5.30, right). Figure 5.31 depicts the
instantaneous particle maps of three reduced velocities. As expected, this discrepancy is more
prominent for lower reduced velocities in the neighborhood of the particle release locations due
to the variation of the circulation over shorter gust-lengths. Nevertheless, it is important that
the body is positioned in the region between the two wakes to avoid particles entering the body.

For the computation of the aerodynamic admittance, it is important that the body is immersed
in a uniform sinusoidal gust, while the gust amplitude is of minor significance as the aerody-
namic forces are considered to be linear. In order to correctly position a section within the
domain, it is of interest to study the gust uniformity and its harmonic component. Thus, a
relative quality parameter Q is introduced. This parameter quantifies the energy of a fluctuat-
ing velocity at a single prescribed frequency ft, relative to the total energy of both fluctuating
velocities. The gust quality for the out-of-phase and in-phase cases, respectively, is defined
based on the PSDs of the longitudinal Su = Su(x; f) and vertical Sw = Sw(x; f) velocities as

Qu = Su (ft)∫∞
0 [Su (f) + Sw (f)] df

, Qw = Sw (ft)∫∞
0 [Su (f) + Sw (f)] df

. (5.10)

Therefore, the gust quality Q and relative gust amplitude ratios, u0/ut0 and w0/wt0, are the
SRQ of interest for the flow field involving deterministic gusts.

Figure 5.32 depicts the influence of the reduced velocity on flow quantities of interest along the
centerline xc = (xc, 0, 0) for both cases. After the particle release location, there is a certain
length, in which the gust amplitudes converge (cf. Fig. 5.32, left). This convergence length is
longer for the in-phase case and is also dependent on the reduced velocity. In the out-of-phase
case, the gust amplitudes generally agree well with the prescribed ones. In the in-phase case,
the situation is slightly different. Beyond the convergence length, the gust amplitudes begin

151



CHAPTER 5. FUNDAMENTAL APPLICATIONS

x/B [-]

z
/
B

[-
]

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x/B [-]

z
/
B

[-
]

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x/B [-]

z
/
B

[-
]

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x/B [-]

z
/
B

[-
]

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x/B [-]
z
/
B

[-
]

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x/B [-]

z
/
B

[-
]

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

||u∗||/U [-]

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Figure 5.29: Deterministic free-stream turbulence: instantaneous particle maps (left) and fluctuating
velocity magnitude fields ‖u∗‖ (right) for the out-of-phase case at τ = 13.5, 17.5, 21.5 (top to bottom)
for Vrt = 16. The instantaneous snapshots correspond to the indicated full circles in Fig. 5.28 for the
out-of-phase case (top).

to "wobble", which is probably due to the distortion of the particle path (cf. Fig. 5.31). For
gust lengths which are longer than half of the domain (i.e. Vrt ≥ 10), the convergence length is
not reached and this behavior is not observed. The prediction of the magnitude of oscillation
is within the ±20 % range, taking the "wobbling" into account in the region of 2 < xc/B < 10.
Eighty percent of the prescribed gust amplitude is achieved at Vrt = 45, i.e. wc0/wct0 = 0.8.

The gust quality Q is more important than the prediction of gust amplitude for the aerodynamic
admittance. Figure 5.32 depicts the quality parameters for the out-of-phase (top-right) and in-
phase (bottom-right) case. It can be observed that the quality decays for points which are
further downstream of the particle release locations for the in-phase case, which is due to
violation of the planar wake assumption. Nevertheless, for a quality parameter more than 0.9,
it can be assumed that the gust is considered as sinusoidal and most of the fluctuating energy
is concentrated at a single vertical frequency, which is the situation for the out-of-phase case.
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Figure 5.30: Deterministic free-stream turbulence: instantaneous particle maps (left) and fluctuating
velocity magnitude fields (right) for the out-of-phase case at τ = 13.5, 17.5, 21.5 (top to bottom) for
Vrt = 16. The instantaneous snapshots correspond to the indicated full circles in Fig. 5.28 for the
in-phase case (bottom).
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Figure 5.31: Deterministic free-stream turbulence: instantaneous particle maps of various reduced
velocities for the out-of-phase (left) and in-phase (right) cases.
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Besides sufficient gust quality and amplitude uniformity along the centerline, it should be
ensured that these quantities are uniform along the depth of the section. Figure 5.33 depicts
the deviation of the gust amplitude along the height w.r.t. the one at the centerline for three
vertical profiles. Moreover, the gust quality is included in the figure. The difference in the
amplitude is appearing mostly for the out-of-phase case nearby the particle release locations
and is more prominent for low reduced velocities. This is in line with the previous observations
based on the velocity vector field (cf. Fig. 5.29). For the in-phase case, the deviation of the
gust amplitude is even less obvious. Generally, the deviation of the gust amplitude along the
height is relatively mild for both cases. The discrepancies of gust quality along the height are
somewhat larger than the gust amplitudes. It can be observed that there is a certain band
w.r.t. the centerline, for which the quality is relatively constant (cf. Fig. 5.33). This band
reduces for vertical profiles, positioned further downstream of the particle release locations. It
is important that the section is within the limits of this band for the aerodynamic admittance
is computed.

Stapountzis [309] introduces a non-dimensional gust intensity to quantify the relation between
the gust amplitude and oscillation amplitude of the airfoils u∗

c0/(UαF 0), valid for both com-
ponents separately. In the case of the analytical method for the solution of the mathematical
model, this relation is in closed-form. For the inverse method, the input variable is the gust
intensity, uct0 or wct0, while αF 0 is obtained from the circulation (cf. Eqs. (3.227)), as noted by
Harding and Bryden [130]. The input variable in the CFD model is the airfoil amplitude αF 0,
since it is directly related to the circulation amplitude Γin

F 0, while the simulated gust intensity
uc0 or wc0 is the output variable. Figure 5.34 depicts the non-dimensional gust intensities for
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Figure 5.32: Deterministic free-stream turbulence: relative gust amplitude (left) and quality (right)
for various reduced velocities for the out-of-phase (top) and in-phase (bottom) cases along the center-
line z/B = 0.
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Figure 5.33: Deterministic free-stream turbulence: relative gust amplitude for out-of-phase case
u0/uc0 (top); gust quality for out-of-phase case Qu (center-top); relative gust amplitude for in-phase
case w0/wc0 (center-bottom); gust quality for in-phase case Qw (bottom). The quantities of interest
are plotted for various reduced velocities and are sampled at three profiles downstream (see title).
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Figure 5.34: Deterministic free-stream turbulence: dimensionless gust intensity uc0/(UαF 0) for
the inverse and analytical solution of the mathematical model and the CFD model. The vertical
and longitudinal components correspond to the out-of- and in-phase cases, respectfully, which are
computed separately.

the CFD and mathematical model, the latter solved using the inverse and analytical methods.
For the CFD model, the point for the gust amplitude is selected such to ensure a gust quality
above Q ≥0.9 and the inflow particles are not crossing the centerline. Thus, the tracking point
for the simulated velocity is selected as xc/B=2 for Vrt ≤4; xc/B=5.5 for 4 < Vrt ≤ 16; and
xc/B=10 for Vrt <16. Generally, good correspondence is obtained for the models, with small
discrepancies for very low reduced velocities and for gust lengths which are significantly longer
than the domain length for the in-phase case.

Parametric studies

Parametric studies are conducted for one numerical and three physical parameters. The nu-
merical parameter considered is the domain length ld, while the physical parameters considered
are the gust amplitudes uct0 and wct0, and airfoil distance lR and Reynolds number Re.

First, the influence of the domain length is depicted in Fig. 5.35. It can be observed that
only the vertical gust amplitudes for high reduced velocities are in better correspondence with
the prescribed values for increasing ld/B ratio. This is expected as there is sufficient vorticity
support to describe the whole gust length. The rest of the numerical parameters (e.g. particle
release factor or core radius) are expected to influence the gust quality and amplitude in a
similar fashion as discussed in the previous section for random free-stream (cf. Sec. 5.3.1).
Thus, the lowest reduced frequency should be larger than the one corresponding to the Nyquist
frequency for the generated velocity fsg or core cutoff frequency fsε (cf. (5.6) and (5.9)).

Second, the influence of gust amplitude is shown in Fig. 5.36. The quality of the vertical
gusts decays more rapidly for higher gust amplitudes. It is also expected that for high gust
amplitudes, the wake is significantly distorted.

Third, from Fig. 5.37 it can be gathered that increasing the lR/B ratio increases the vertical
gust quality for high reduced velocities. However, for very large lR/B ratios, the quality of the
gust is expected to be reduced due to the high circulation amplitudes required for a specific gust
amplitude. This would effectively contribute to the violation of the planar wake assumption.

Finally, Fig. 5.36 depicts the influence of Reynolds number. No particular influence of the
viscosity is observed on the gust amplitude nor quality for selected gust lengths.
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Figure 5.35: Deterministic free-stream turbulence, parametric studies: effect of domain length on
the relative gust amplitude (left) and quality (right) for the out-of-phase (top) and in-phase (bottom)
cases along the centerline y/B = 0. Reduced velocities considered: Vrt = 5 (blue), Vrt = 16 (red),
Vrt = 45 (green).
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Figure 5.36: Deterministic free-stream turbulence, parametric studies: effect of gust amplitude on
the relative gust amplitude (left) and quality (right) for the out-of-phase (top) and in-phase (bottom)
cases along the centerline y/B = 0. Reduced velocities considered: Vrt = 5 (blue), Vrt = 16 (red),
Vrt = 45 (green).
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Figure 5.37: Deterministic free-stream turbulence, parametric studies: effect of airfoil distance on
the relative gust amplitude (left) and quality (right) for the out-of-phase (top) and in-phase (bottom)
cases along the centerline y/B = 0. Reduced velocities considered: Vrt = 5 (blue), Vrt = 16 (red),
Vrt = 45 (green).
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Figure 5.38: Deterministic free-stream turbulence, parametric studies: effect of Reynolds number on
the relative gust amplitude (left) and quality (right) for the out-of-phase (top) and in-phase (bottom)
cases along the centerline y/B = 0. Reduced velocities considered: Vrt = 5 (blue), Vrt = 16 (red),
Vrt = 45 (green).
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5.4 Flat Plate
The aerodynamics of an infinitely thin flat plate represents a simple, yet a benchmark study
for verification of the aerodynamic forces and response in the linear range. The potential flow
solution for the linear aerodynamic forces presented in Sec. 3.4 can be used for verification of
the CFD model for an appropriate Reynolds number.

The main goal of this section is to verify the CFD model (cf. (3.184)) in a synergistic manner
for both laminar and turbulent free-stream. Having verified the turbulent free-stream, the aero-
dynamic coefficients and results from aeroelastic analyses are compared against their analytical
counterparts. Particular aspects that relate to the novel contribution of this work are:

i) verification of the complex aerodynamic admittance for deterministic free-stream turbu-
lence (cf. Sec. 3.6.2),

ii) verification and comparison of the aerodynamic admittance for random free-stream based
on von Kármán spectra (cf. Sec. 3.7.3),

iii) verification of the presented FFT method for computation of the unsteady buffeting forces
(cf. Sec. 3.5.7)

iv) verification of the CFD buffeting response with time- and frequency-domain analytical
flat plate model (one-to-one and statistical comparisons),

v) application the comparison metrics to the buffeting response (cf. Sec. 4.3).

In addition to these aspects, a verification is performed for the laminar boundary layer, static
wind coefficients, rational approximation, and critical flutter velocity. The aerodynamic forces
are of main interest for the present work; thus, quantities from fluid dynamics such as the
boundary layer are only briefly discussed.

The simulations performed are for a laminar and turbulent free-stream with a static or dynamic
section depending on the quantity of interest. Thus, the structural and flow physical parameters
are given in Tab. 5.7, while the numerical parameters are given in 5.7. The center of the plate
is positioned at xs = (xs, 0, 0) = (10.5B, 0, 0). These parameters represent the baseline and
are used for the analyses unless noted otherwise. As the plate is very thin, it is expected that
the particles cross the plate due to motion, free-stream turbulence or due to the random walk
in the viscous step. These crossing particles are deleted in a simple manner as adopted by
Morgenthal [226].

5.4.1 Boundary layer
The surface boundary layer of a viscous fluid for an infinitely long flat plate was first analytically
derived by Blasius in his Ph.D. thesis [24, 25] in 1907, who even solved it numerically by hand
for four discrete values. Although the fluid behavior, and thus boundary layer, is not of primary
importance for this study, it can give an overall idea of how well the simulation can replicate
flow around immersed boundaries and what are the Reynolds number effects. With this, an
appropriate Reynolds number can be selected for the aeroelastic analyses that assures potential
flow to some extent and the flat plate analytical model can be used for verification. Thus, the
Reynolds number should be high enough, so that the viscous effects are minimized, and low
enough, so that the aftermath of laminar to turbulent transition is reduced.
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Property type Physical parameter Value

Structural

Plate width: B 31 m
Plate depth: HD/B 1/200
Mass: mh 22.74 t/m
Inertial mass: mα 2.47×103 tm2/m
Vertical frequency: fh 0.1 Hz
Torsional frequency: fα 0.278 Hz
Damping ratio: ξ 0.5 %
Forced oscillation: Vr 2 − 50
Forced oscillation amplitude: α0 = ḣ0/U 3 deg

Laminar free-stream Wind speed: U 20 m/s
Reynolds number: Re 1×104

Random free-stream

Longitudinal intensity: TIu 5 %
Vertical intensity: TIw 5 %
Longitudinal length scale: Lu/B 4
Vertical length scale: Lw/B 2
Turbulent Reynolds number: ReLu 4×104

Coherence coefficient: cx = (Cx, Cz) (3, 10)

Deterministic free-stream

Longitudinal amplitude: uc0/U 0
Vertical amplitude: wc0/U 5 %
Airfoil distance: lR/B 1
Reduced velocities: Vr 2 − 50

Table 5.7: Flat plate: prescribed physical parameters for all analyses. These parameters represent
the baseline and are used unless noted otherwise.

Numerical parameter Value
Domain length: ld/B 21
Domain height: lh/B 21
Number of panels: Npan 402
Panel length: Δlpan/B 5×10−3

Reduced time-step: Δτ = ΔtU/B 5×10−3

Core radius: ε/B 5.5×10−3

Poisson grid: Nx × Nz 1023 × 1023
P3M neighboring cells: Nr 4
Vorticity support: lv/B 20.5
Particle release factor (deterministic): Δp = Δtin/Δt 12-21
Particle release factor (random): Δp = Δtin/Δt 4
Particle band height: lG/B 18
Correction factor: βin 0.7

Table 5.8: Flat plate: prescribed numerical parameters for all analyses. These parameters represent
the baseline and are used unless noted otherwise.

The boundary layer profile can be obtained from a third-order differential equation as

gg′′ + 2g′′′ = 0, (5.11)
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Figure 5.39: Flat plate: boundary layer at center of the plate xs = (xs, 0, 0) for various Reynolds
numbers (left); boundary layer at top and bottom surface at three locations for Reynolds number
Re = 1 × 104 (right). The analytical result is according to the Blasius solution.
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Figure 5.40: Flat plate: averaged longitudinal velocity field 〈u〉 for laminar free-stream at Reynolds
number Re = 1 × 103 (left); Re = 1 × 104 (center); Re = 1 × 105 (right).

where g = g(μ) = u(μ)/U , the similarity parameter μ is

μ = z

√
U

νxs

, (5.12)

and the prime denotes differentiation w.r.t. μ.

The boundary layer is computed at three Reynolds numbers Re ∈ {1×103, 1×104, 1×105}. To
reduce the statistical error due to the viscous step, the results are averaged for a reduced time
equivalent to one chord i.e. τ = 1. Figure 5.39 (left) depicts the results at the center of the
plate for all Reynolds numbers. Good correspondence can be observed for Re = 1 × 104, while
small overshooting is present for Re = 1 × 103. As expected, the boundary layer is unstable for
Re = 1 × 105 and completely deviated from the Blasius profile due to laminar to turbulence
transition. Figure 5.39 (left) depicts the results for the top and bottom surface at the center,
front and back quarter points of the plate for Re = 1×104. Based on this and the velocity field
depicted in Fig. 5.40, it can be concluded that the symmetry of the flow is mostly preserved.
Figure 5.41 shows instantaneous particle maps of all Reynolds numbers. Unlike for the lower
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Figure 5.41: Flat plate: instantaneous particle maps of horizontal plate (αs = 0) at Reynolds number
Re = 1 × 103 (top); Re = 1 × 104 (center); Re = 1 × 105 (bottom).

Reynolds numbers, coherent structures formed by vortex blobs transmit along the plate for
Re = 1 × 105 indicating breaking of the boundary layers. Similar results have been obtained
using the Vortex methods first by Chorin [64] nearly 40 years ago, and then by Walther [342]
and Morgenthal [226].

Based on the previous discussion and results, the Reynolds number of Re = 1 × 104 is selected
as a baseline for the aeroelastic analyses and verification. The aerodynamic coefficients are
determined for all three Reynolds numbers.

5.4.2 Static wind coefficients
The initial step to verification of the aerodynamics is the static wind coefficients for varying
angle of attack. The linear hypothesis for a thin flat plate, used to obtain the analytical slopes
of the lift and moment coefficients (cf. Sec. 3.4 and (3.49)), is valid for small angles of attack.
For large angles of attack, the flow completely separates from the top surface leading to "dead
air" in the wake [9]. This results in a peak of the lift coefficient, i.e. stall (cf. Fig. 3.6 from
Sec. 3.5), in which region the lift coefficient is nonlinear. As the purpose of the present analysis
is verification, in which the analytical flat plate model is valid, only the linear range is of interest.
Early experiments conducted by Zahm et al [372] indicate that this range is 6 deg< αs < 6 deg
for a flat plate with HD/B ≈ 50 at Re ≈ 1.5 × 105 (calculated by the author).

Figure 5.42 depicts the lift and moment coefficients for varying static angle of attack at the
selected Reynolds numbers for averaging time τ = 75. Generally, a linear trend and good
correspondence can be observed with the theoretical lift and moment slopes of 2π and 0.5π,
particularly for the at Reynolds numbers of 1 × 104 and 1 × 105. The lift slope is determined
as C ′

L ∈ {2.34π, 1.94π, 2.00π}, while the moment slope is C ′
M ∈ {0.50π, 0.46π, 0.48π} corres-

ponding to the Reynolds number Re ∈ {1 × 103, 1 × 104, 1 × 105}, respectively. The highest
discrepancy is found in the increase of the lift slope at 1 × 103. This is not in line with some
numerical (cf. Wang et al. [343] for Re = 3 × 102) and experimental (cf. Suanda et al. [314]
for Re = 4 × 103) studies for insect and birds flights for very low Reynolds number that show
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Figure 5.42: Flat plate: lift CL (left) and moment CM (right) static wind coefficients.

Figure 5.43: Flat plate: instantaneous particle maps of inclined plate (αs = 4 deg, only quarter
plate is shown) at Reynolds number Re = 1 × 103 (left); Re = 1 × 104 (center); Re = 1 × 105 (right).

reduction of the thin-airfoil theory slope. The loss of lift is typically a consequence of separ-
ation at the top surface [9]. For very low Reynolds numbers, the viscous forces delay or even
permit reattachment of the laminar separated bubble, as discussed comprehensively by Shyy
et al. [300]. Figure 5.43 depicts instantaneous particle maps at αs = 5 deg for the three Reyn-
olds numbers. One can observe that there are reattaching vorticial structures for the Reynolds
numbers of order 104 and 105, while that is not obvious for 103. Although the observation
from the particle maps is reasonable and consistent to some extent with previous studies, the
inconsistencies in the lift are believed to be due to the deleting the vortex particles that cross
the plate for Re = 1 × 103. At this Reynolds number, the viscous forces are the strongest, thus,
the particle displacement is the highest in the random walk. In fact, the plate thickness was
constrained by Walther [342] depending on the Reynolds number to reduce the probability of
particles crossing the plate due to the random walk. However, further analyses are required on
this account. In the case of thin airfoils for Re > 3 × 104, most of the experimental studies
show that the stall is delayed with insignificant changes in the lift slope (cf. e.g. [149]). Hence,
the baseline for Re = 1 × 104 is verified with excellent correspondence.

5.4.3 Flutter derivatives
To verify the self-excited forces, the flutter derivatives are compared with Theodorsen’s solution
for a flat plate performing sinusoidal oscillations. The flutter derivatives are determined by the
forced vibration method (cf. Sec. 3.7.2), for the forcing properties given in Tab. 5.7 at three
Reynold numbers Re ∈ {1×103, 1×104, 1×105}. At each reduced velocity, the simulation time
corresponds to 10 periods, yielding averaging time from τ = 20 up to τ = 500. The formulation
of the analytical flutter derivatives given in (3.126) is used for the analytical flutter derivatives
as the apparent mass effect cannot be separated in the forces obtained from the CFD analyses
(cf. Sec. 3.5.5).
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Figure 5.44: Flat plate: instantaneous particle maps of a rotating plate at maximum (top), zero
(center), and minimum (bottom) amplitude for a reduced velocity of Vr = 16. The Reynolds number
is Re = 1 × 104.
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Figure 5.45: Flat plate: sample lift CL (top-left) and moment CM (bottom-left) time-histories, and
their corresponding FFTs, ĈL (top-right) and ĈM (bottom-right), for a rotating plate at reduced
velocity of Vr = 16. The analytical solution is obtained based on Theodorsen function including
apparent mass terms, while the Reynolds number is Re = 1 × 104.

Figure 5.44 depicts three particle maps for the from maximum to minimum rotation angle at
Vr = 16 for Re = 1 × 104. No leading-edge separation vortex is observed, which would violate
the Kutta condition. The leading edge separation is a typical indicator of nonlinearity at high
angles of attack and stall flutter (cf. e.g. Walker [340], McCrosky and coworkers [219, 220] for
comprehensive discussions, or more recently Ramesh et al. [260] who also included CFD results
based on the vortex methods). For these reduced velocities, the lift and moment time-histories

166



5.4. Flat Plate

Vr [-]

H
∗ 1
[-
]

0 10 20 30 40 50
−60

−50

−40

−30

−20

−10

0

Vr [-]

H
∗ 2
[-
]

0 10 20 30 40 50
−10

0

10

20

30

40

50

0 5 10 15
−2

0

2

4

Vr [-]

H
∗ 3
[-
]

0 10 20 30 40 50
−500

−400

−300

−200

−100

0

0 5 10 15
−40

−20

0

Vr [-]

H
∗ 4
[-
]

0 10 20 30 40 50
−8

−6

−4

−2

0

2

Vr [-]

A
∗ 1
[-
]

0 10 20 30 40 50
0

2

4

6

8

10

12

Vr [-]

A
∗ 2
[-
]

0 10 20 30 40 50
−20

−15

−10

−5

0

0 5 10 15
−2

−1

0

Vr [-]

A
∗ 3
[-
]

0 10 20 30 40 50
0

20

40

60

80

100

0 5 10 15
0

5

10

Vr [-]

A
∗ 4
[-
]

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

Re = 1.0× 103

Re = 1.0× 104

Re = 1.0× 105

Analytical

Figure 5.46: Flat plate: flutter derivatives for various Reynolds numbers. The analytical solution is
obtained based on Theodorsen function including the apparent mass terms (cf. (3.126)).

and the corresponding analytical solution based on potential flow (cf. (3.57)) are depicted in
Fig. 5.45 (left). Further, the corresponding FFTs are shown in Fig. 5.45 (right). A clear
sinusoidal force can be observed which agrees well with the analytical forces in both phase and
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Figure 5.47: Flat plate: instantaneous particle map of a horizontal plate under random free-stream
turbulence at Reynolds number Re = 1 × 104.

magnitude. No sub- or super-harmonics; thus, the forces are mostly linear.

The flutter derivatives at the prescribed Reynolds numbers are given in Fig. 5.46 along with
the analytical solution. Generally, good results are obtained that verify the CFD model. To a
certain extent, the correspondence is better for higher Reynolds numbers, although no uniform
pattern is observed between Re = 1 × 104 and Re = 1 × 105. Roughly speaking, monotonic
behavior corresponding to the Reynolds number change is observed for A∗

2, A∗
3 and A∗

4. Instead
of A∗

3, Bruno and Fransos [36] reported the monotonic behavior for H∗
1 and H∗

3 based on the
FVM without sub-grid turbulence modeling for a flat plate with B/HD = 400. However, these
two derivatives seem to be in very good agreement for Re = 1×104 and Re = 1×105; thus, any
discrepancies might be a numerical artifact. Further, the lack of turbulence modeling generally
affects the grid-based methods more than the VPM. As expected, the poorest performance is
observed for H∗

2 , H∗
4 and A∗

4. The latter two are prone to high uncertainty and are not of
significant importance for the flutter analysis (cf. e.g. [217, 287]). Although not compared
in-detail, the deviations are in line with the experimental results for a flat plate by Matsumoto
et al. [217] for B/HD = 20, Starossek [311] for B/HD = 25 by Gu et al. [124] for B/HD = 22.5
with a wind nose. Moreover, the present results are consistent, and in some instances with
better correspondence, compared other CFD studies of flat plates and airfoils, based on both
the VPM (cf. e.g. [2, 226, 341]) and the grid-based methods (cf. e.g. [15, 36, 77]).

5.4.4 Aerodynamic admittance
Having verified the free-stream turbulence in Sec. 5.3, the aerodynamic admittance from CFD
analyses is compared against Sears function (cf. (3.56)) to assure the reliability of the buffeting
forces. Both cases of random and deterministic free-stream turbulence are used to compute the
admittance including a comparison.

Random free-stream turbulence

The static flat plate is subjected to free-stream turbulence with turbulent characteristics and
numerical parameters given previously in Tabs. 5.7 and 5.8, respectively. Figure 5.47 depicts
an instantaneous particle map of the flat plate subjected to turbulence for Reynolds number
Re = 1×104. Turbulent coherent structures appear to propagate along the plate, which were not
observed for laminar free-stream (cf. Fig. 5.41 (center)) at Re = 1 × 104. However, conclusive
statements of the effect of 2D free-stream turbulence on the boundary layer cannot be made
on this account and further investigations are required. Given that the scale of turbulence and
eddies of interest that carrying most of the turbulent energy are relatively large compared to
the boundary layer thickness, the effect of local turbulence is assumed to be insignificant for
the aerodynamic admittance and buffeting response (cf. Hunt [141] for discussion).

The aerodynamic admittance is computed for Reynolds number Re ∈ {1×103, 1×104, 1×105}
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Figure 5.48: Flat plate: PSDs of simulated random free-stream turbulence at xc of the lateral (left)
and longitudinal (right) fluctuations at Reynolds number Re = 1 × 104.
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Figure 5.49: Flat plate: absolute value of the lift |χL| (left) and moment |χM | (right) aerodynamic
admittances for random free-stream turbulence at various Reynolds numbers. Sears function is taken
as analytical solution. The cutoff reduced velocity is Vr = 1, below which there is significant noise.

by a simple division of the PSDs of the buffeting forces and the velocity fluctuations (cf. (3.207)),
as described in Sec. 3.7.3. The velocity fluctuations are obtained at the gust tracking point xc

from a simulation without a section in the CFD domain. The gust tracking point is selected
to be at the stiffness center, i.e. xs ≡ xc. Figure 5.48 depicts the PSDs of the velocity based
on the Welch method and without any filtering (Full) at Re = 1 × 104. The reduced time
for computation of the aerodynamic admittance amounts to τ = 500, which corresponds to
approximately 10 cycles for the lowest frequency of interest (i.e. reduced velocity Vr = 50).
Good correspondence can be seen with the target von Kármán spectra.

Figure 5.49 shows the absolute value of the aerodynamic admittances |χL| and |χM | for the three
cases of Reynolds number, computed using the Welch PSD in (3.207), and the theoretical Sears
admittance (cf. 3.56). Good correspondence can be observed for the high Reynolds numbers
Re ∈ {1×104, 1×105} for the range of reduced velocity above the cutoff Vr = 1, with a deviation
of approximately 10 % that is mainly due to noise. Although the results at Re = 1 × 104 are in
slightly better correspondence with the analytical results for |χL|, no conclusive statements can
be made. Rassmussen et al. [261] used the vortex methods to obtain the admittance for random
free-stream turbulence based on the VTG and ESDU spectra. They reported a deviation of up
to 75 %. The results obtained herein provide better correspondence with the analytical Sears
function. High noise is noted below the cutoff Vr = 1. The results in this range are generally
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unreliable as they are a result of gust lengths shorter than the chord. For these gust lengths, the
local 3D effects are dominant, which cannot be replicated well by the vortex method. However,
for the typical turbulence length scales, the strength of the gusts with such short lengths are
with several orders of magnitude lower (cf. Fig. 5.48) as well as the admittance amplitudes.
Thus, the buffeting forces for these reduced velocities are negligible anyway for applications in
bridge aerodynamics. The low Reynolds number Re = 1 × 103 resulted in scaled for a factor,
which is probably due to the overestimation of the slopes of the static wind coefficients C ′

L and
C ′

M , which was discussed previously.

Deterministic free-stream turbulence

Next, the aerodynamic admittance is computed for a flat plate subjected to vertical sinusoidal
gusts, as introduced in Sec. 3.7.4. The gust and numerical parameters are given in Tabs. 5.7
and 5.8, respectively. Following the flow field verification in Sec. 5.3.2, the stiffness center
xs = (xs, 0, 0) of the flat plate is positioned at xs/B=2 for Vrt ≤4; xs/B=5.5 for 4 < Vrt < 16;
and xs/B=10 for Vrt ≥16. With this, a gust quality above Q ≥0.9 is ensured the section region
and the inflow particles are not crossing the body. Figure 5.50 depicts a sequence of particle
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Figure 5.50: Flat plate: instantaneous particle maps of a horizontal plate under deterministic
(sinusoidal) free-stream gust at maximum (top), zero (center), and minimum (bottom) amplitude for
a gust reduced velocity of Vr = 16. The Reynolds number is Re = 1 × 104.
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maps from a cycle of sinusoidal gust past a flat plate at a prescribed reduced velocity of Vr=16
for Re = 1 × 104. It can be seen that even at the peak velocities (τ=17.5 and τ=25.5), the
inflow particles do cross the body. To obtain the aerodynamic admittance, the actual sinusoidal
gust needs to be tracked down at a specific location xc within the CFD domain. For this case,
the gust is tracked at the stiffness center, i.e. xc ≡ xs, as described in the optional step c) from
Sec. 3.7.4. Hence, the influence of the body on the upstream velocity is not taken into account.
Nevertheless, the analytical flat plate model is based on a potential flow; thus, it does not
account for this effect anyway. Moreover, the tracking location can be positioned arbitrarily
far upstream of the leading edge. This leads to inconsistent results as the influence of the
section depends on the distance between the tracking location and the leading edge. Tracking
the gust at the stiffness center xs is only applicable for CFD analyses, as the simulations with
and without section are reproducible. In experiments, the gust needs to be tracked down at a
point upstream of the leading edge.

A time-histories of the lift and moment fluctuating coefficients at Vr=16 normalized w.r.t. the
gust angle are depicted Fig. 5.51 (left), for Re = 1 × 104. These are further compared to their
analytical counterparts for the Sears function. From the figure, it can be observed that the
forces sinusoidal. The additional high-frequency fluctuations for the CFD model are caused
by the viscous random walk and vortex-shedding. It could be observed that the analytical
time-histories are sort of a least-square fit to the results from the CFD analyses. The FFTs of
the normalized coefficients (cf. Fig. 5.51, right) also depicts a clear harmonic in the forces.

Figure 5.52 (left) depicts the real �(χ) and imaginary �(χ) parts of the complex aerodynamic
admittance obtained from the CFD simulations and the Sears function at Re = 1 × 104. The
aerodynamic admittance is computed based on 10 cycles of sinusoidal gust for each reduced
velocity, yielding simulation time up to τ = 500. Very good agreement can be observed for
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Figure 5.51: Flat plate: sample lift CL (top-left) and moment CM (bottom-left) time-histories,
and their corresponding FFTs, ĈL (top-right) and ĈM (bottom-right), for a horizontal plate under
deterministic (sinusoidal) free-stream gust with a reduced velocity of Vr = 16. The analytical solution
is obtained based on the Sears function, while the Reynolds number is Re = 1 × 104.
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Figure 5.52: Flat plate: real and imaginary parts of the aerodynamic admittances for deterministic
free-stream gusts. The Sears function is taken as an analytical solution.
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Figure 5.53: Flat plate: absolute value of the lift |χLw| (left) and moment |χMw| (right) aerodynamic
admittances for deterministic free-stream gusts at various Reynolds numbers. The Sears function is
taken as an analytical solution.

both real and imaginary parts. As it can be observed from the figure, the gust lags behind
the aerodynamic forces for reduced velocities up to Vr=8. Another important particularity
is that the aerodynamic admittance of the moment and lift force coincide, which effectively
means that the lift force is acting on the front quarter-chord point. A maximum deviation of
10 % for the absolute value of the admittance is obtained for a prescribed reduced velocity of
Vr=2, while the discrepancies are in the range of ±2 % for higher reduced velocities Vr >3.
As noted previously, the range for Vr < 2 is of minor interest in bridge aerodynamics. The
absolute values of the aerodynamic admittances |χLw| and |χMw| are given in Fig. 5.53 for
three Reynolds numbers Re ∈ {1 × 103, 1 × 104, 1 × 105}. Generally, good correspondence is
obtained for all cases, with the best results for Re = 1 × 104. For increasing Reynolds number,
a constant reduction is observed for the moment aerodynamic admittance. No such monotonic
trend for the lift. Surprisingly, no constant overestimation of the aerodynamic admittances is
observed for Re = 1 × 103 as in the case for random free-stream turbulence, despite the high
lift slope. One explanation could be that the inflow particles for the random free-stream mix
with the particles close to the boundary layer causing local effects, while this is not the case for
the deterministic free-stream. However, no conclusive statements can be made on this account
without further investigation.
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Comparison

In what follows, the results obtained in the previous sections are compared. Figure 5.54 depicts
the absolute value of the aerodynamic admittance for a flat plate obtained using the determ-
inistic and random free-stream at Re = 1 × 104. The admittances from both deterministic
and random free-stream (using Welch PSDs) correspond well with Sears admittance, with a
slightly better agreement for the moment admittance from deterministic free-stream turbu-
lence. Significant numerical noise is noted for the aerodynamic admittance if the full PSDs are
used for the random free-stream, without any smoothing. Utilizing deterministic as opposed
to random free-stream turbulence offers several advantages including: (i) the admittance is
obtained in its complex form rather than only the absolute value, (ii) all six components of the
aerodynamic admittance can be obtained separately (cf. (3.208) and (3.209)) instead of only
three (cf. (3.207)) and, (iii) the numerical uncertainty arising from the smoothing in the PSD is
avoided. As a consequence of the latter point, it is difficult to separate the contribution of the
incident part from the shear layer and wake fluctuations of the admittance for the random free-
stream. A drawback of obtaining the admittance using deterministic gusts is the computational
inefficiency since a separate CFD simulation is required at each reduced velocity.

It is important to note that the analogy between deterministic and random free-stream turbu-
lence for the 2D CFD analyses is not the same as the analogy in experiments between gusts
obtained using an active turbulence generator and grid turbulence. Using an active turbulence
generator represents the strip assumption accurately to some extent. Thus, experimental stud-
ies of the aerodynamic admittance of an airfoil or a flat plate corresponded well with the Sears
admittance (cf. Jancauskas and Melbourne [151]), while the asymptote |χ| → 1 at Vr → ∞ is
preserved for bridge decks (cf. e.g. [81, 85, 129]). This is in line with the CFD results obtained
from this work for both deterministic and random free-stream. In the case of experimental
aerodynamic admittance determined for grid free-stream turbulence, the 3D effects can be
dominant. This results in significantly reduced amplitude of the aerodynamic admittance even
at Vr → ∞, as the effects are averaged over the experimental strip of finite length [101, 186].
The 3D effect for random free-strip generally depends on the length in the span-wise direction
and for very long width-to-span ratios, such as long-span bridges, can be insignificant as dis-
cussed by Massaro and Graham [215]. This is discussed later in the conclusion as a part of the
critical remarks. The random free-stream turbulence in the VPM is 2D; hence, the absolute
values of the CFD aerodynamic admittance for both methods are comparable.
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Figure 5.54: Flat plate: comparison of the absolute lift χL (left) and moment χM (right) aerodynamic
admittances for deterministic and random free-stream turbulence. The Sears function is taken as an
analytical solution.

173



CHAPTER 5. FUNDAMENTAL APPLICATIONS

5.4.5 Rational approximation
Before advancing to the CFD buffeting and flutter analyses, two parts of the analytical flat
plate model (i.e. semi-analytical LU model for bridge decks) are verified, namely: the rational
approximation (cf. Sec. 3.5.5) and the FFT-based method for computation of the buffeting
forces (cf. Sec. 3.5.7).

The unsteady effects for a flat plate, modeled by Theodorsen and Sears frequency-dependent
functions, are mapped into the time domain using rational approximation (cf. (3.106), (3.116)).
This can be accomplished either by elementary indicial or impulse functions, as discussed in
Sec. 3.5.5. In the case of indicial functions, the time-domain approximation should correspond
to Wagner and Küssner functions (cf. (3.59)), i.e. to their approximations (cf. (3.62)), for the
self-excited and buffeting forces, respectively.

Figure 5.55 depicts the rational approximation of Theodorsen (left) and Sears (right) functions.
In case of Theodorsen function, good correspondence can be observed for both indicial and
impulse approximation. For both cases, four extra unsteady states are used (Nst = 4 in (3.100)
and (3.112)). The obtained indicial function is further compared to the Jones’ approximate
form (cf. (3.62)) of Wagner function (cf. Fig. 5.56, left), given previously in (3.62) for Φse.
Although Jones’ approximation utilizes only two unsteady terms, the difference is insignificant.
As discussed by Dowell [90], four terms provide better approximation to Theodorsen function.

Difficulties arise when approximating directly Sears function (cf. (3.56)) due to its circulatory
behaviour for low reduced velocities (Vr ≤ 5), which is manifested by "spirals" in both imaginary
and real parts (cf. Fig. 5.55, right). These spirals appear since Sears [293] selected the origin of
the coordinate system (i.e. point at which the gust is acting) to be the middle of the plate, as
noted by Giesing et al. [118]. Therefore, when approximating Sears function directly, values for
Vr ≥ 5 are selected, yielding good approximation for unsteady states Nst = 5 and Nst = 4 for
the indicial and impulse functions, respectively. The corresponding indicial function is given
in Fig. 5.56 (right) and is denoted as "Indicial Approx. Sears". It can be seen that there is a
variation w.r.t. the approximate form of Küssner function (cf. (3.62)) with an unstable origin,
due to the spirals discussed previously.

Alternatively to the analytical Sears function for the gust problem, the rational approximation

Vr [-]

C
[-
]

0 5 10 15 20 25
−0.2

0.0

0.2

0.4

0.6

0.8

Indicial Approx.
Impulse Approx.
Theodorsen

Vr [-]

χ
[-
]

0 5 10 15 20 25
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Indicial Approx.
Impulse Approx.
Sears
Freq. Kussner

Figure 5.55: Flat plate: rational approximation of Theodorsen (3.52) (left) and Sears (3.56) (right)
functions using indicial and impulse function approximation. Blue color denotes the real, while red
color the imaginary part of the functions. Additionally, the frequency-domain counterpart of the
approximate form of Küssner function ("Freq. Kussner", (5.13)) is rationally approximated.
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the rational approximation of the Theodorsen and Sears functions, respectively, (cf. Fig. 5.55). The
approximate form of Wagner and Küssner functions (3.62) is given as a reference. Additionally, the
buffeting indicial function, obtained from the rational approximation frequency-domain counterpart of
the approximate form of Küssner function ("Freq. Kussner" in Fig. 5.55, left), is given and is denoted
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Figure 5.57: Flat plate: self-excited and buffeting impulse functions obtained from the rational
approximation of the Theodorsen and Sears functions (cf. Fig. 5.55), respectively.

can be performed for the frequency-domain counterpart of the approximate form of Küssner
function (3.62), given as follows [118]:

χ = 1 − 0.5
K∗ − 0.13i

− 0.5
K∗ − i

, (5.13)

for K∗ being the reduced frequency w.r.t half chord. The frequency-domain counterpart is
denoted as "Freq. Kussner" in Fig. 5.55 (right). Giesing et al. [118] noted that Küssner chose
the leading edge of the airfoil as a reference point, which is why the spirals do not appear.
Performing rational approximation on this function resulted in excellent results for both impulse
and indicial functions for Nst = 2. As expected, the obtained indicial function ("Indicial Approx.
Kussner") matches exactly the approximate form Küssner function. The impulse functions in
Fig. 5.57 depict the averaged linear fluid memory, and cannot be directly compared to the
indicial functions using (3.87), as discussed by Wu and Kareem [361].

Next, the simple method for computation of the unsteady buffeting forces based on FFT is
verified (cf. Sec. 3.5.7 and Fig. 3.8). The fluctuating lift coefficient for the vertical wind
fluctuations used in the previous section is obtained for three cases: (i) without admittance,
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Figure 5.58: Flat plate: verification of the method for computation unsteady buffeting forces using
FFT (cf. Sec. 3.5.7 and Fig. 3.8). The lift coefficient CL obtained using this method is denoted as
"FFT Kussner". The "Direct Kussner" denotes the lift coefficient CL obtained full convolution of the
Küssner function and vertical wind velocity.

(ii) with admittance using "direct" convolution (cf. (3.59)) of the approximate form of Küssner
function (cf. (3.62)), and (iii) with admittance using FFT (cf. (3.141)) for the frequency-domain
counterpart of the approximate form of Küssner function (cf. (5.13)). The result for the three
cases is depicted in Fig. 5.58. It can be seen that the presented method using FFT ("FFT
Kussner") is almost identical to performing direct convolution using direct convolution ("Direct
Kussner"). The relative RMS error for the time-history of τ = 500 is less than 1 %.

5.4.6 Buffeting analysis
Having all aerodynamic coefficients verified, the CFD buffeting response of the flat plate can
be studied and compared against its analytical counterpart. The dynamic properties of the flat
plate and characteristics of the random free-stream turbulence are given in Tab. 5.7. A wind
speed of U = 20 m/s is selected to be low enough, to accommodate the linearity assumption, and
high enough, for the influence of local effects to be insignificant. The verification is performed
in two manners:

• One-to-one comparison - same input wind time-history for both the analytical flat plate
and the CFD model;

• Statistical comparison - input of twenty random wind records for both the analytical flat
plate and the CFD model.

The results from the flat plate model are denoted as "Analytical". Each analysis is conducted for
a run-time amounting to τ = 450, of which the last τ = 387 chords are used for the comparison
and statistical analyses. The effective time-window for comparison corresponds to dimensional
t = 600 s, which is the standard 10-minute wind specified by codes as a reference (cf. e.g.
ESDU [100]). The SRQ are the vertical displacements and rotation.

It is noted that the numerical code used for the analytical flat plate model is verified with the
results produced from the Task Group 3.1: "Super Long Span Bridge Aerodynamics" from the
International Association of Bridge and Structural Engineering (IABSE), of which the author
is a contributing member. Buffeting and flutter analyses are used as a basis for verification
in both time and frequency domain for a similar example with slightly different aerodynamic
coefficients. A fraction of the results is given in the Appendix A.
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One-to-one comparison

Within the one-to-one comparison, the buffeting response from the CFD model is compared
with the time-domain response from the analytical flat plate model for the same input. The
input wind fluctuations are tracked down at the stiffness center xs from a simulation without
a section in the CFD domain. A time-shift for τ = 0.5 is applied as the approximation of the
Küssner function in (3.62) is for gusts acting at the leading edge. Although the gust tracking
point could have been selected at the leading edge, this was not done to maintain consistency
of the verified Sears admittance in the previous section. Also, the shift is justified based on
Taylor’s hypothesis, which was shown to be valid during the turbulent free-stream verification.

Figure 5.59 depicts a representative sample of 100 chords of the response. The amplitudes
of the vertical displacements and rotations are generally small. The maximum effective angle
of attack due to rotation and vertical displacements is approximately 4 deg; thus, ensuring
a linear range of the self-excited forces. Excellent correspondence can be observed for the
vertical displacement, while there is a slight discrepancy for the rotation. The instantaneous
velocity field in Fig. 5.60 shows that there is no major separation that can lead to aerodynamic
nonlinearity, although the gusts can increase the velocity at the leading edge in some instances.
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Figure 5.59: Flat plate: sample time-histories of the vertical displacements (left) and rotation (right)
from the one-to-one comparison.
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Figure 5.60: Flat plate: instantaneous longitudinal velocity fields from buffeting analysis. The two
snapshots are approximately τ = 2 apart and they correspond to the peak of the vertical displacements
at τ ≈ 158 from Fig. 5.59.
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To verify further all aspects of the verification in terms of model assumptions and signal features,
the comparative methodology presented from Ch. 4 is applied in a similar manner as for the
aerodynamic models for bridges. The flat plate (FP) model (cf. (3.59)) is linear and based on
potential flow, while the CFD model (cf. (3.184)) is not. Thus, SetFP represents a superset of
SetCFD as

SetFP := SetCFD ∪ {f v = 0; fnoi = 0; f(t) = f(a(t)); f = f |αs} , (5.14)
since the LU model disregards the vortex shedding f v and interior noise fnoi forces, is time-
invariant for input a(t), and is linear. Therefore, the FP model is less complex than the CFD
model:

FP −→ CFD.

Figure 5.61 depicts the comparison metrics MFP,CFD for the vertical displacement (left) and
rotation (right), computed for the metric parameters given in Tab. 5.9. Since the purpose
of this example is to verify the CFD model, the FP model is taken as a reference model for
the comparison; thus, the comparison is backward according to Definition 4.13. Except for
MαFP,αCFD

w = MαFP,αCFD

wf ≈ 0.87, all metrics resulted in values higher than 0.95. No indications
of non-stationarity or nonlinearity are noted. The sources of the minor discrepancies differences
are due to numerical uncertainty in the CFD model and/or the assumptions within the FP
model (cf. (5.14)). Particularly, it is plausible to argue that the minor discrepancy in the
wavelet metrics for the rotation is due to the local effects. Nevertheless, the effect of these
sources cannot be separated. A qualitative criterion for the comparison metrics is not strictly
defined yet; however, values larger than 0.9 generally mean very good correspondence.

Metric parameter Value
Normalization time: Tc (1/fh+1/fα)/4
Central wavelet frequency: fce 10.5fα

Confidence level: CL 95 %
Surrogates - Stationarity: Nsur 200
Exceedance - Stationarity: g∗

s 2
Surrogates - Nonlinearity: Nsur 100
Exceedance - Nonlinearity: g∗

b 2

Table 5.9: Flat plate: Comparison metric parameters for one-to-one comparison of buffeting response.
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5.4. Flat Plate

The normalized wavelet amplitude is shown in Fig. 5.62 for the CFD (left) and FP (right) models
for both components of the response, vertical displacements (top) and rotation (bottom). The
vertical natural frequency corresponds to a reduced frequency of approximately K ≈ 1, while
the torsional to K ≈ 2.7. It can be seen from the figure that the flat plate oscillates mainly
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Figure 5.62: Flat plate: normalized absolute wavelet coefficients of the vertical displacements (top)
and rotation (bottom) for the CFD (left) and analytical model (right) from the one-to-one comparison.
The normalization is performed w.r.t. the corresponding wavelet coefficients (vertical or rotational
displacements) of the analytical model. The dashed-dot line indicates the cone of influence COI.
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at the natural frequencies, although the effect of the background turbulence on the very low
frequencies for the vertical displacements is also prominent. Both instantaneous magnitude and
frequency match which further proves that the CFD and FP models correspond very well.

Further, the histogram estimate PDFs of the displacements are given in Fig. 5.63. Generally,
the displacements follow the Gaussian PDF; however, the Kolomorgov-Smirnov test rejected
the null hypothesis at 5 % significance. Since the FP is a linear model, the reason is probably
due to the non-Gaussianity of the free-stream turbulence discussed previously in this chapter.

Statistical comparison

The comparison performed in the previous section is not completely based on an independent
analytical solution as the input wind time-histories are obtained from CFD analysis. To further
verify the CFD model to a purely analytical solution, a statistical comparison is performed.
Twenty separate CFD analyses are conducted, each with randomly generated free-stream tur-
bulence with the same turbulent statistics. These are then compared to the analytical FP
model in both the time and frequency domain. The solution for the analytical FP model in the
frequency domain is obtained by reformulating (3.57), in a similar fashion as for the LU model
in Sec. 3.5.5. Twenty separate random records of the wind fluctuations are considered for the
FP model in the time domain as well.

The results of the RMS displacements are given in Fig. 5.64. The analytical response for the
FP model in the frequency domain is denoted as AN-FD, while in the time domain as AN-TD.
Further, the 99 % confidence interval is given for the FP model in the time domain and the
CFD model. It can be seen that the mean value of the CFD response yields very good results
compared to both AN-TD and AN-FD responses. A discrepancy of 4 % and 6 % is noted for the
vertical displacement and rotation, respectively. The analytical response is clearly within the
99 % confidence interval of the CFD model. It can be seen that the confidence interval of the
FP model in the time domain (AN-TD) is very narrow. This is a consequence of the generation
process of the time-history for a single point. In this case, the random wind fluctuations have
the exactly prescribed spectrum since the generation process is simply inverse FFT with random
phase (cf. (3.35)), i.e. without random amplitudes of the spectrum.

Figure 5.65 depicts the PSD of the vertical displacements (left) and rotation (right). The PSD
of the response for the CFD and analytical FP model in the time domain is averaged from the
twenty analyses. For the CFD model, the PSD is computed using Welch’s method, i.e. it is
smoothened. In the case of the FP model in the time domain, no smoothing is necessary as the
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Figure 5.64: Flat plate: RMS of the vertical displacements (left) and rotation (right) from the
statistical comparison. The response for the analytical model is obtained in the frequency (AN-FD)
and time domain (AN-TD), while the CFD response is only in the time domain. The error bars indicate
the 99 % confidence interval for the time-domain models (AN-TD and CFD), while the marker is the
mean of 20 response time-histories.
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statistical comparison. The response for the analytical model is obtained in the frequency (FD) and
time domain (TD), while the CFD response is only in the time domain. The shaded area defines the
envelope at each frequency for the CFD model, while lines indicate the mean for the time domain
models from 20 response time-histories.

random wind fluctuations have the exactly prescribed spectrum. Further, the shaded gray area
represents the envelope from all twenty PSDs for the CFD model. As can be observed from the
figure, excellent correspondence is obtained across the frequency content, even for a secondary
peak of Sh that represents the aerodynamic coupling. The slight deviation in the PSD of the
rotation at the reduced frequency corresponding to the first natural mode, i.e. K ≈ 1, is due
to the smoothing as Sα is significantly low for this frequency.

5.4.7 Flutter analysis
Flutter analyses are performed for both models as a final step of the flat plate study. The
critical flutter velocity Ucr is the SRQ of interest and is determined for the FP model in both
the time and frequency domain and the CFD model for laminar free-stream. In the frequency
domain, the critical flutter velocity is determined for the forces defined in (3.57) by complex
eigenvalue analysis in the state-space, in a similar fashion as in Sec. 3.5.7. The system is simply
let to perform free-vibration to obtain the critical flutter limit in the time domain for both FP
and CFD models. Figure 5.66 (left) depicts the critical flutter limit, normalized with the central
frequency fhα = (fα + fh)/2. A difference of less than 1 % is noted between the CFD model
and the FP model for both the frequency (AN-FD) and time domain (AN-TD). Further, in the
same figure (right), the critical flutter frequency fcr is compared. In the time domain, fcr is
obtained as the argument corresponding to the peak in the FFT of the response time-histories
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Figure 5.66: Flat plate: critical flutter velocities Ucr (left) and critical frequencies fcr (right) for the
analytical model in both the frequency (AN-FD) and time domain (AN-TD), and the CFD model.
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Figure 5.67: Flat plate: time-histories of the vertical displacements (left) and rotation (right) for
the CFD (top) and analytical model in the time domain (bottom) near the critical flutter velo-
city. The following oscillation cases are depicted: CFD damped (U/(Bfhα) = 13.31), CFD divergent
(U/(Bfhα) = 13.35), Analytical damped (U/(Bfhα) = 13.29), Analytical critical (U/(Bfhα) = 13.31)
Analytical divergent (U/(Bfhα) = 13.40)

in the flutter region, which is equal for both degrees of freedom. In the frequency domain, fcr

corresponds to the governing flutter mode, i.e. the one with negative damping. Again, the
discrepancy for the CFD model w.r.t. its analytical counterpart is approximately 3 %, yielding
excellent correspondence between the CFD and analytical results.

Figure 5.67 depicts the time-histories of the decaying, critical and post-critical (divergent)
regime for the CFD and FP models in the time domain. Below Ucr, a decaying response is
observed for the CFD model, while there is a divergent trend of the displacements and rotation
at Ucr. It is difficult to obtain exact Ucr in case of CFD free-vibration analysis at which the
response would result in critical oscillations, i.e. for which the damping is exactly zero. On the
other hand, it is possible to obtain the critical oscillation case for the LU model that maintains
a constant amplitude of oscillation at Ucr. In the post flutter region, divergent oscillations can
be observed for the LU model in the time domain as well.

Instantaneous particle maps and velocity fields are depicted in Fig. 5.68 that correspond to
a minimum, zero and maximum rotation for the CFD model at τ ≈ 1000. The rotation
amplitude is ≈ 1 deg in this region. No clear separation is yet observed that would lead to high
aerodynamic nonlinearity, yielding the conclusion that the flutter is still coupled [91, 219, 220].

Figure 5.69 depicts the frequency (left) and damping (right) for each mode from the frequency-
domain flutter analysis for the FP model. It is clear that the unstable mode is the torsional
mode, exhibiting the critical zero-damping condition ξα = 0 at Ucr.
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Figure 5.68: Flat plate: instantaneous particle maps and longitudinal velocity fields of a fluttering
plate at a consecutive local maximum (top), zero (center) and local minimum (bottom). The cycle is
occurring at τ ≈ 1000 (cf. Fig. 5.67).
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5.5 Summary
This chapter presented fundamental applications to study and verify particular aspects of the
novel methods and the main framework for aerodynamic analyses and model comparison. Ini-
tially, the performance of the comparison metrics presented in Sec. 4.3 was examined on generic
signals. By modifying elementary features of the signal, the behavior of the comparison metrics
was studied. This demonstrated how and why various global and local signal features should
be considered when comparing two time-histories.

Next, the random free-stream turbulence was verified for the CFD model. The turbulent
statistics in 2D were examined for the von Kármán spectra, including parametric studies.
Generally, good correspondence with the target quantities was observed for the isotropic case,
while a reduction in the turbulent energy in the longitudinal fluctuations was reported for
the anisotropic case. It was concluded that this discrepancy is a consequence of the grid
generated velocities being not divergence-free. Then, the velocity span-wise correlation and
coherence between the fluid strips were examined for the novel velocity-based Pseudo-3D VPM,
presented in Sec. 3.6.4. The simulated velocity coherence between strips based on the proposed
modified coherence model resulted in better correspondence with the target coherence than
Vickery’s model, particularly for isotropic turbulence. Both coherence models yielded minor
underestimation of the coherence for the simulated longitudinal velocity for the isotropic case,
which was mainly attributed to the viscous forces. This particular verification provides a basis
for an application of the turbulent Pseudo-3D VPM for multimode buffeting analysis of bridges.

Further, the flow field for deterministic gusts was studied. It was shown that sinusoidal gusts can
be obtained with sufficient quality and their amplitude can be predicted to some extent using
the closed-form solution derived in Sec. 3.7.4. By performing parametric studies, guidelines were
given for a selection of numerical and physical parameters for practical applications. Thus, a
basis for determination of the complex aerodynamic admittance under deterministic gusts was
established.

Finally, a complete aerodynamic analysis of a flat plate was conducted. The results from the
aerodynamic coefficients and aeroelastic response were verified with their analytical counter-
parts. Good agreement was obtained for the boundary layer, static wind coefficients, flutter
derivatives and aerodynamic admittance at the baseline Reynolds number. As a particular
facet, the novel method for computation of the complex aerodynamic admittance under de-
terministic gusts was verified w.r.t. the analytical Sears function, yielding excellent results for
both real and imaginary parts. Having the aerodynamic coefficients verified, a comparison of
the buffeting response for the analytical and CFD models was performed in two manners: one-
to-one and statistical comparison. The comparison metrics which ensued from the one-to-one
comparison resulted in high values, delivering the conclusion of an excellent correspondence.
The outcome of the statistical comparison further supported the overall verification of the buf-
feting response as the CFD model was completely independent of the analytical one. This
represents the first CFD study using the VPM that verifies the buffeting response with an
analytical solution. Moreover, the critical flutter velocity for the CFD model was found to be
corresponding with the one from analytical frequency- and time-domain flutter analysis with
less than 1 % discrepancy.

This chapter was intended to provide clear and convincing results for elementary examples that
have either simple or analytical solutions. The utility of the presented methods and framework
for applications in bridge aerodynamics is presented in the coming chapter.
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Chapter 6

Applications to Bridge Aerodynamics

6.1 Introduction
This chapter shows the applicability of the presented individual methods and synergistic frame-
work to bridge aerodynamics and aeroelasticity. First, the Mersey Gateway Bridge is used as an
example to illustrate how the categorical modeling approach can be of practical use. The Great
Belt Bridge is used as a second reference object for the application of the complete synergistic
framework. Finally, the Third Bosporus Bridge is used as a validation example for the CFD
method for the determination of the complex aerodynamic admittance.

6.2 Mersey Gateway Bridge
The Mersey Gateway Bridge spans over the River Mersey and it connects Runcorn and Widnes
in Cheshire, UK. A long-held aspiration of the local authorities, the bridge commenced fully
operational mode in October 2017. Knight Architects and COWI were commissioned to carry
out the design and engineering. Now, the bridge stands as a landmark structure with the main
crossing of 988 m, supported by three towers and stay cables.

From a structural aspect, the Mersey Gateway Bridge is a multi-span and cable-stayed, featur-
ing a concrete box deck with varying width in the range approximately between 33 and 34 m.
As such, the deck caters to six traffic lanes. The south tower rises 127 m in height, while the
north tower 112 m. Both outer towers are considerably higher than the central one, which is
82 m high. The balanced cantilever method was used for the construction, in which first the
towers are erected and then the deck is built onwards by casting in-situ segments progressively.
For bridges build using this method, the erection stage at maximum cantilever is of special
interest in the design check for wind action due to the high bending moments. A particular
attribute of the structural system of this bridge is that the deck rests simply supported at the
north and south towers, requiring special treatment in the erection stage.

As a part of this case-study, aeroelastic analyses are performed for the south tower at the erec-
tion stage, with modified system properties. The goal is to illustrate the practical applicability
of the categorical approach to aerodynamic modeling, which was presented in Sec. 4.2. Con-
sidering only semi-analytical aerodynamic models, the effect of specific model assumptions on
the deck response is studied in a structured manner. Specifically, nine models are considered
including the LST, ST, LQS, MQS, CQS, MBM, CMBM, LU, and HNL model. Moreover, the
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reference object is chosen to be rather stiff with a bluff cross-section compared to other studies
dealing with an assessment of aerodynamic models (cf. e.g. [194, 255, 273, 359]). The results
in this section are part of a study by the author (cf. Kavrakov and Morgenthal [167]). Therein,
the models are defined slightly different compared to this work and the categorical aspect is
not included in the discussion; however, the conclusions stay essentially the same.

This section starts with briefly explaining the structural system, including the modifications
made for this particular case. Next, the aerodynamic coefficients, based on CFD analyses, are
determined, followed by a buffeting analysis for a range of wind speeds. Finally, a flutter analysis
is conducted including a short parametric study of specific aspects of the aforementioned models.

Figure 6.1: Mersey Gateway Bridge: a panoramic impression (picture courtesy Halton Borough
Council, from www.merseygateway.co.uk).

Figure 6.2: Mersey Gateway Bridge: south tower in the erection stage, including the tempor-
ary pier that was not considered in this study (picture courtesy Halton Borough Council, from
www.merseygateway.co.uk).
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6.2. Mersey Gateway Bridge

6.2.1 Modified structural model

In the original design and construction of the Mersey Gateway Bridge, simply supported con-
nection is established between the deck and both south and north pylons. Further, to ensure
sufficient stability during the balanced cantilevering stage, a temporary pier was build in ad-
dition to the temporary fixing of the deck (cf. Fig. 6.2). Here, the temporary pier is not
considered; instead, the deck is rigidly fixed with the tower and additionally stiffened, resulting
in relatively higher natural frequencies than the original design.

Figure 6.3 (bottom) depicts the bridge with the considered south tower. Each of the two
cantilevers in the maximum cantilever stage is lspan = 205 m long. At this stage, 57 stay cables
are connected to the deck with 8 m distance between the concrete segments. The vertical
distance between the tip of the tower and the deck surface amounts to 96 m. With this, the
smallest angle between the deck and the cables results in 25.4 deg, while the largest angle results
to 68 deg. The cross-section is a concrete box girder with a width of B = 33.15 m (cf. Fig. 6.3,
top). Inherently, such type of girders poses a high sectional modulus that results in rather high
structural stiffness compared to light streamlined sections. Taking this into account, higher
natural frequencies are expected compared to flexible suspension bridges.

Based on the basic physical parameters listed in Table 6.1, a Finite Element model was built.
The achieved first modes in the lateral, vertical and torsional direction are depicted in Fig. 6.4.
Without loss of generality, the wind is applied only to the deck within the aeroelastic analyses.
For further information, all considered natural frequencies are included in Tab. B.1 in Appendix
B.

205 205

33.15

4.
85

[m]

Figure 6.3: Mersey Gateway Bridge: deck cross-section (top) and structural system (bottom), in-
cluding the considered south tower in the erection stage.

Figure 6.4: Mersey Gateway Bridge: shapes of the first lateral (left, fp = 0.401 Hz), vertical (center,
fh = 0.444 Hz) and torsional (right, fα = 0.913 Hz) modes of the south tower in erection stage.
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Property type Physical parameter Value

Structural

Total span: lspan 2694 m
Deck width: B 33.15 m
Deck depth: HD 4.85 m
Mass: mh 28.71 t/m
Inertial mass: mα 2.99×103 tm2/m
Number of modes: Nm 15
First lateral frequency: fp 0.401 Hz
First vertical frequency: fh 0.444 Hz
First torsional frequency: fα 0.913 Hz
Damping ratio: ξ 1 %

Turbulent

Wind speed: U 25-75 m/s
Longitudinal intensity (Low/High): TIu 12/24 %
Vertical intensity (Low/High): TIw 6/12 %
Longitudinal length scale: Lu 140 m
Vertical length scale: Lw 56 m
Coherence coefficient: cx = (Cx, Cy, Cz) (3,8,10)

Table 6.1: Mersey Gateway Bridge: physical parameters.

6.2.2 Aerodynamic coefficients
Static wind coefficients and flutter derivatives are obtained using CFD analyses, for which
the section is discretized on Npan = 280 panels with a CFD domain spanning approximately
6B beyond the trailing edge. As the purpose of this application involves only semi-analytical
models that can be based on any set of aerodynamic coefficients, standard numerical parameters
described in Sec. 3.6 are used and are not discussed in detail.

Bluff box girders are usually prone to torsional flutter. Their flutter derivatives are rather
irregular and sensitive to the angle of incidence, while the moment static wind coefficient may
experience negative slope, i.e. stall. Looking at the static wind coefficients in Fig. 6.5, nearly
a zero slope is obtained for a static angle of attack amounting to αs ≈ 6 deg, which is the first
indication for a torsional flutter.

Further, the flutter derivatives for various angles of incidence are depicted in Fig. 6.6 including
their rational approximation for the models involving unsteady forces. Impulse functions are
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Figure 6.5: Mersey Gateway Bridge: static wind coefficients from CFD analysis.
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used for the rational approximation with aerodynamic states ranging in the Nst = 3−5 interval.
A particular point of interest is the derivative A∗

2, which is related to the torsional and which
changes sign between the angles αs = 3 deg and αs = 6 deg, indicating torsional flutter. Based
on fundamental studies of rectangular cylinders, Matsumoto et al. [216] conclude that as
the width-to-depth increases, the flutter mechanism changes from coupled to torsional flutter.
Rotating the section about the stiffness center increases the width-to-depth ratio and thus
this section is prone to torsional flutter at high angles of attack. For the buffeting analysis,
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the flutter derivatives P ∗
j for j ∈ {1, . . . , 6}, A∗

j and H∗
j for j ∈ {5, 6} are considered to be

corresponding to their quasi-steady values (cf. (3.123) from Sec. 3.5.5).

At the time when this particular application was considered, the CFD methods for estimating
the aerodynamic admittance were not implemented/developed. Hence, Sears function is used
for the aerodynamic admittance to account for the unsteady effects in the buffeting forces. For
bluff decks such as the present, the absolute value of the aerodynamic admittance is typically
higher than the one for Sears (cf. e.g. [287]). Thus, the unsteady contribution may be
overestimated, resulting in lower buffeting forces. The experimental data on the aerodynamic
admittance is scarce, which is the reason why many studies also use Sears admittance (cf.
e.g. [61, 359]). As the purpose of the present application is mostly a conceptual comparison of
assumptions, Sears function is considered to be sufficient and is used for the MBM, CMBM,
LU and HNL models.

Apart from the common aerodynamic coefficients, the dynamic derivatives Q∗ for the CQS
model (cf. (3.145) and (3.146)) are given in Fig. 6.7 (left) for Vr=4. This coefficient accounts
for the average fluid memory at a particular reduced velocity. Based on the present results
in the figure, the averaged fluid memory is more prominent for the moment than the lift and
generally reduces the response. For a larger angle of incidence than zero, the effect seems to
be noisier than for the negative angles. In addition, Fig. 6.7 (right) gives the phase angle
between the gust and forces for Sears admittance. It can be observed that for Vr �10, there
is a significant change, while for Vr �10 the phase slowly attenuates. This is important for
the lag coefficients nL and nM in the HNL model (cf. (3.148) from Sec. 3.5.10) and in order to
determine above which Vr quasi-steady assumption becomes valid. Although it is difficult to
say when the phase becomes negligible, herein n is obtained based on the interpolation of the
admittance at Vr=15. In the case of experimental complex admittance functions, the phase
usually converges faster.

6.2.3 Buffeting analysis
Buffeting analysis is performed for the selected models for wind speeds ranging from U = 25−75
m/s. A total of seven different wind speeds are selected, each with a duration of 10 minutes (i.e.
t = 600 s) and time-step amounting to Δt=0.1 s. The spectral properties of the fluctuations are
based on the von Kárman spectra and Vickery coherence as in (3.26), with turbulent parameters
given in Tab. 6.1 for two turbulent cases: low and high turbulence. At every wind speed in
both turbulent cases, the same time-history is used for all of the models, i.e. the input wind
fluctuations are identical. The RMS is selected as a SRQ for the following discussion.

Figure 6.8 depicts the RMS across the span of the response for a wind speed of U = 75 m/s and
the high turbulence case. Three main branches could be distinguished w.r.t. the magnitude
of the response. The first branch is the one with the highest amplitudes including the models
that neglect the self-excited forces, i.e. the ST and LST models. The second branch involves
the QS, LQS, and MQS models, which either neglect the complete fluid memory or the fluid
memory of the buffeting forces. In the last branch, consisted of CQS, MBM, CMBM, LU, and
HNL models, the fluid memory is included in both self-excited and buffeting forces up to a
certain extent. All branches tend to diverge with the rise of the turbulence intensity.

Similar behavior of the models can be observed from the cantilever tip-response for increasing
wind speed (cf. Fig. 6.9). The three branches can be also delineated, somewhat more prominent
for the vertical displacement than for the rotation. Comparing the two levels of turbulence
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intensity, the relative difference between the branches is intensified for the case with high
turbulence.

Next, model comparison is conducted based on the diagrammatic ordering of models which was
formulated as a part of the categorical approach to aerodynamic modeling in Sec. 4.2.4. The
effect of including/excluding a particular aerodynamic assumption is studied for complexity-
related models, i.e. only for models that are directly comparable according to Definition 4.12.
For the present application, the comparison is based only on the RMS comparison metric Mrms
for the tip-response.

The influence of six assumptions is studied, although many more can be examined based on
the current results. Addressing the assumption of interest, based on the model with higher
complexity (cf. Sec. 4.2.4), the focus is on the effect of:

• Aerodynamic nonlinearity, based on SetST and metric MST,LST
rms , since from (4.14) follows

SetST/SetLST = {f = f |αs} ;

• Aerodynamic nonlinearity, based on SetQS and metric MQS,LQS
rms , since from (4.12) follows

SetQS/SetLQS = {f = f |αs} ;

• Aerodynamic damping/stiffness, based on SetLQS and metric MLQS,LST
rms , since from (4.13)

follows
SetLQS/SetLST = {f se = 0} ;

y/lspan [-]

h
rm

s
[m

]

0 0.2 0.4 0.6 0.8 1
0.00

0.05

0.10

0.15

0.20

0.25

y/lspan [-]

α
rm

s
[d
eg

]

0 0.2 0.4 0.6 0.8 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

y/lspan [-]

h
rm

s
[m

]

0 0.2 0.4 0.6 0.8 1
0.0

0.1

0.2

0.3

0.4

0.5
LST
ST
LQS
QS
MQS
CQS
MBM
CMBM
LU
HNL

y/lspan [-]

α
rm

s
[d
eg

]

0 0.2 0.4 0.6 0.8 1
0.0

0.2

0.4

0.6

0.8

Figure 6.8: Mersey Gateway Bridge: RMS of deck-wise vertical displacement (left) and rotation
(right) at U = 75 m/s, for the low (TIu = 12 %, TIw=6 %, top) and high (TIu = 24 %, TIw=12 %,
bottom) turbulent cases.
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Figure 6.9: Mersey Gateway Bridge: RMS of cantilever tip vertical displacement (left) and rotation
(right), for the low (TIu = 12 %, TIw=6 %, top) and high (TIu = 24 %, TIw=12 %, bottom) turbulent
cases.

• Fluid memory, based on SetLU and metric MLU,LQS
rms , since from (4.12) follows

SetLU/SetLQS = {Vr → ∞} ;

• Aerodynamic coupling, based on SetLU and metric MLU,MBM
rms , since from (4.7) follows

SetLU/SetMBM =
{
f se,coupl = 0

}
;

• Frequency-dependent fluid memory, based on SetLU and metric MLU,CMBM
rms , since (4.5)

follows
SetLU/SetCMBM = {Vr = Vrc} .

The term f se,coupl denotes the coupling terms in the self-excited forces. As the model with higher
complexity is taken as a reference for the RMS metric, the comparison is forward according to
Definition 4.13.

Figure 6.10 depicts the RMS metric for the above-mentioned comparison couples of aerodynamic
models, while Fig. 6.11 depicts a sample of the displacement time-histories. The following
discussion is found upon these two figures and the tip-response (cf. Fig. 6.9).

The impact of aerodynamic nonlinearity based on SetST (i.e. steady nonlinearity) is negligent
in this case (cf. Fig. 6.10, top-left) as the RMS metric resulted in values of MST,LST

rms ≥ 0.9
for the response in both turbulent cases. On the other hand, the influence of the aerodynamic
nonlinearity based on SetST (i.e. quasi-steady nonlinearity) for the rotation is noteworthy for
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the high turbulence case (cf. Fig. 6.10, top-right) and it reduces the response. Thus, including
the quasi-steady self-excited forces can affect the influence of aerodynamic nonlinearity.

Neglecting the aerodynamic stiffness and damping, based on SetST, significantly increases the
vertical response for both turbulence cases. This is a logical observation as the air resistance
due to the self-excited forces is in general beneficial for the design before any instability occurs.
Thus, the metric MhLQS,hLST

rms amounts to a relatively low value of approximately 0.6 for high
wind speeds (cf. Fig. 6.10, center-left).

Generally, the largest effect on the response is due to the fluid memory, based on SetLU
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Figure 6.10: Mersey Gateway Bridge: direct and forward comparison of semi-analytical models based
on the RMS metric of the response for both turbulent cases to study specific effects of: aerodynamic
nonlinearity, based on SetST (top-left); aerodynamic nonlinearity, based on SetQS (top-right); aerody-
namic damping/stiffness, based on SetLQS (center-left); fluid memory, based on SetLU (center-right);
aerodynamic coupling, based on SetLU (bottom-left); frequency-dependent fluid memory, based on
SetLU (bottom-right).
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(i.e. linear unsteadiness), particularly for the vertical displacement (cf. Fig. 6.10, center-
right). Essentially, including the complete linear fluid memory reduces the response and this
reduction is more prominent for the high turbulence case. Thus, it is of great importance to
consider the unsteady contribution of the aerodynamic forces. This is the main reason why
the LU model is, in fact, the baseline model in practice. On the other hand, the influence of
the frequency-dependent fluid memory based on SetLU is insignificant, which can be observed
from the metric MhLU,hCMBM

rms (cf. Fig. 6.10, bottom-left). Therefore, assuming averaged fluid
memory at the complex-eigenfrequencies is fair.

Interestingly, the effect aerodynamic coupling based on SetLU does not have any major impact
on the response for the present application (cf. Fig. 6.10, bottom-right). In the typical scenario
for streamlined decks, neglecting the aerodynamic coupling can have severe ramifications and
result in not detecting the critical flutter limit. This is the case for the next case-study, when
the Great Belt Bridge is selected as a reference object.

Finally, the case of comparing models that are not complexity-related is considered, such as
the QS, LU and HNL models. To compare these models, first one needs to perform a relative
comparison according to Definition 4.12, for which a model of higher or lower complexity than
all three models is required. Herein, the LQS model is selected as it is of lower complexity
than all other models. According to (4.12), the effect of the aerodynamic nonlinearity for the
low-frequency range and fluid memory for the high-frequency range is examined on the metric
MHNL,LQS

rms since

SetHNL/SetLQS =
{
f = f |αs for αl

e; Vr → ∞ for αh
e

}
.

Figure 6.12 depicts the comparison metrics for the studied models, taking the LQS model as a
reference; hence, a backward comparison is in order according to Definition 4.13. Looking at
metrics for the vertical displacement, it can be observed that the effect of linear fluid memory
has the largest influence, while the effect of quasi-steady nonlinearity is negligible, taking the
LQS model as a reference. For the rotation, the impact of the model assumptions on the
response is generally lower. However, a conclusion on which of the QS, LQS and HNL models
performed better and yielded results of higher quality cannot be drawn. For such comparison,
a reference model with higher complexity than all models is necessary.
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6.2.4 Flutter analysis

Stability check during the cantilever erection stage for cable-stayed bridges represents a par-
ticular issue as the torsional stiffness of the deck is usually lower than in-service condition. As
previously discussed in brief, the structure is prone to torsional flutter for a change of the angle
of the incident wind, which can be easily identified by the changing sign of the A∗

2 derivative (cf.
Fig. 6.13), which is related to the torsional damping of the system. In what follows, flutter ana-
lysis is performed for the selected models under uniform free-stream at αs = 6 deg. At a static
angle of attack of αs = 0 deg, the structure remained stable for velocities up to U = 175 m/s
and to consider higher wind speeds would have required extrapolation of the flutter derivatives.

With the exception of the CMBM model, the critical flutter velocity Ucr is obtained based on
the time-dependent displacements for the rest of the considered models. To illustrate what this
means in the time domain, Fig. 6.14 depicts an example of time-history for the LU model below
and at the critical wind speed. For wind speeds higher than the critical, the LU model would
result in divergent response as the fundamental for the flat plate in the previous chapter. In
the post-flutter regime, some of the nonlinear models such as the QS and the CQS models can
exhibit limit cycle oscillations. This will be briefly discussed for the next application, while Ucr

is considered to be the only SRQ addressed herein.

Table 6.2 provides the critical velocity for the selected models. Theoretically, the CMBM and
LU models should result in an identical flutter limit as the CMBM has the same complex
modal properties as the full frequency-independent system, which was argued by Chen and
Kareem [57]. This practically means that the fluid memory is identical for the CMBM and LU
models for free-vibration as the structure would oscillate only at the complex eigenfrequencies,
where the CMBM model interpolates (i.e. averages) the fluid memory. Nonetheless, the critical
flutter velocities are slightly different. In fact, the critical velocity for the LU model using ra-
tional approximation is somewhere in between Ucr obtained using linear and cubic interpolation
for the CMBM model. Thus, this is purely a numerical consequence of the goodness-of-fit of
the A∗

2 derivative, which could be observed in Fig. 6.13. The assumption of considering the fluid
memory the aerodynamic matrices at the complex frequencies (SetLU/SetCMBM = {Vr = Vrc},
based on SetLU, from (4.5)) has no influence for the critical flutter velocity. Comparing dir-
ectly the HNL and LU model is not permitted under the categorical framework, as discussed
in the previous section. However, for flutter analysis, the HNL model is governed either by the
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Figure 6.13: Mersey Gateway Bridge: flutter derivative A∗
2 with linear and cubic interpolation

(CMBM model), rational approximation (MBM, LU, and HNL models), least-squares and secant
approximation (MQS model).
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rotation (right) at critical flutter velocity (Ucr = 128 m/s) and below (U = 126 m/s) for the LU model
under laminar free-stream at angle of attack of αs = 6 deg.

Model Note Ucr [m/s]
QS Aerodyn. center: m = m(fhα) 106
QS Aerodyn. center: m = m(fα) 140
LQS Aerodyn. center: m = m(fhα) 99
LQS Aerodyn. center: m = m(fα) 131
CQS Aerodyn. center: m = m(fhα) 102
CQS Aerodyn. center: m = m(fα) 134
MQS Approx.: Least squares 22
MQS Approx.: Secant 157
MBM Approx.: Rational 132
CMBM Interp.: Linear 125
CMBM Interp.: Cubic 137
LU Approx: Rational 128
HNL Approx: Rational 128

Table 6.2: Mersey Gateway Bridge: critical flutter velocities at αs = 6 deg angle of attack.

quasi-steady or linear unsteady part. Since both models used the flutter derivatives at αs = 6
deg and resulted in identical Ucr, the linear unsteady assumption is governing. In general, the
results might differ if the response of the HNL model is governed by the quasi-steady part.

When comparing the MQS and CMBM models for free-vibration, the assumption of interest is
the complex modes are identical as the natural modes (SetCMBM/SetMQS =

{
λj = ωj; φj = ψj

}
,

based on SetLU for j ∈ {1, 2, 3}, from (4.6)). Additional uncertainty is included in the approx-
imation of the flutter derivatives for the MQS model, while they are automatically interpolated
at the complex eigenfrequencies for the CMBM model. As a result of the nearly quadratic
shape of the A∗

2 derivative, the Ucr obtained using the linear least-squares approximation for
the MQS is underestimated significantly. The accuracy of the MQS model is generally good for
linear trends for the velocity-related and quadratic trends for the displacement related flutter
derivatives. For different trends than this, the secant approximation is used at the reduced
velocity of interest, as pointed out in Øiseth et al. [244]. Utilizing the secant approximation
for A∗

2 w.r.t. the torsional frequency, the analysis with the MQS yielded in overestimation of
the flutter limit by 14.6 % w.r.t. the limit for the CMBM with cubic interpolation. Thus, it is
difficult to say whether the discrepancy is due to numerical uncertainty or due to the inherent
assumption in the mathematical construction of the MQS model.
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The effect of aerodynamic coupling is the assumption of interest when comparing the MBM and
LU models (SetLU/SetMBM =

{
f se,coupl = 0

}
, based on SetLU, from (4.7)). For purely torsional

flutter, both models should deliver identical results. However, the instability threshold for the
MBM was underestimated by 3.1 % due to the effect of the aerodynamic coupling, which is
of minor significance. Moreover, the MBM model is able to predict aerodynamic instability as
the instability is torsional; i.e. the MBM model is complete w.r.t. torsional flutter. Should the
instability has been coupled flutter, this would not have been possible as the MBM model is
not a part of the FlutterModel category in (4.15).

Before studying the effect of the aerodynamic assumptions for the LQS, CQS and QS models,
a brief discussion is given on the influence of the uncertainty in selecting equivalent reduced
velocity Vr for the aerodynamic center mα. Torsional instability for these models occurs if the
aerodynamic center is positioned between the trailing edge and the stiffness center, i.e. mα >0.
Flutter can not occur in this case by choosing Vr ≥12 at 6 deg static angle of incidence. Although
the value of A∗

2 is negative, A∗
3 is negative as well (cf. Fig. 6.6), resulting in positive value for the

aerodynamic center, based on (3.125). Negative values for A∗
3 rarely occur and at high reduce

velocities, the quasi-steady values indicate stall, i.e. C
′
M < 0. However, some studies have

reported negative value for the A∗
3 such as for the Tacoma Narrows Bridge, reported by Larsen

and Walther [193] or the Deer-Isle Sedgewick Bridge, reported by Caracoglia and Jones [45].
Therefore, the assumption of selecting the aerodynamic center at high Vr is challenged for
bluff bridge decks which are prone to torsional flutter. Thus, flutter analysis is conducted for
two cases w.r.t. the aerodynamic center. In the first case, the aerodynamic center is based
on the reduced velocity for the central frequency of oscillation fhα = (fh + fα)/2, while in the
second case, the torsional frequency fα is used for the determination of the aerodynamic center.
For these values, the coefficient H∗

3 is still in the positive range; thus, flutter occurs. As an
alternative to obtaining the aerodynamic center based on the flutter derivatives (cf. (3.125),
this coefficient is set as mα = −0.25 for streamlined bridge decks, which assures no occurrence
of torsional flutter.

The flutter limits for the LQS model with m = m(fα) and the CMBM model are close. This
makes sense since the oscillations are driven by the pitching motion and the coupling effects
have minor influence. The underestimation of 4.4 % of Ucr between this two models is attributed
to the linear fluid memory of the self-excited forces contained in the CMBM model, i.e. due to
the quasi-steady assumption (SetCMBM/SetLQS = {Vr → ∞}, based on SetCMBM, from (4.12)).
The influence of the quasi-steady aerodynamic nonlinearity contained in the QS model increased
the flutter velocity by 6.4 % compared to the LQS model (SetQS/SetLQS = {f = f |αs}, based
on SetQS, from (4.12)). By including the averaged nonlinear fluid memory for the CQS, the
flutter limit is reduced for 4.3 % w.r.t. the QS model (SetCQS/SetQS = {Vr → ∞}, based
on SetCQS, from (4.10)). It is worth mentioning that the models, in which the aerodynamic
damping is based on the aerodynamic center, may overestimate or underestimate the critical
velocity by a relatively large margin; therefore, such models are generally not used for flutter
analyses.
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6.3 Great Belt Bridge
Little more than two decades have passed since the Great Belt Bridge opened to traffic. The
bridge is a part of the Great Belt Link that connects the Danish islands Zealand and Funen.
With a main span of 1624 m, it had the second-longest span in the world at the time of
the commencement of operation, trailing only Akashi Kaikyō Bridge. Although records of
initial plans for linking the two Danish islands can be found dating back to the 1930s, it was
not until the late 1980s and early 1990s when the design was finished by COWI, Ramboll
and Dissing+Weitling. Today it holds the record of the longest span in Europe and is still
undoubtedly considered one of the most remarkable structures (cf. Fig. 6.15).

Structurally, the Great Belt Bridge is a multi-span suspension bridge with a main span of 1624
m and two side-spans of 535 m each, totaling a cable-supported length of lspan = 2694 m (cf.
Fig. 6.16, bottom). Untypical for suspension bridges, the structural system of the Great Belt
Bridge is a continuous girder, without joints at the pylons. Such a system benefits the in-service
lateral deflections due to both traffic and wind, as noted by Larsen [188]. This made the design
possible with only 4.34 m deep steel girder (cf. Fig. 6.16, top). To put things in perspective,
the Great Belt Bridge has a 15 % longer span than the Humber Bridge with practically the
same depth of the deck [119].

In bridge aerodynamics, the Great Belt Bridge is one of the most studied bridges. It represents
sort of a benchmark deck for testing and applying new models and methodologies owning to
its streamlined aerodynamic shape and the much-appreciated effort by the Danish government,
affiliated consultancies, and design companies to make a large amount of the design data public.
Therefore, this bridge is selected as the main application example for all developed methods
and methodologies, with the exception of the complex aerodynamic admittance. With this,
an attempt is made to show how the individual parts of the synergistic framework fit and
contribute together to both the fundamental understanding of the wind-bridge interaction and
practical calculation of the response.

Figure 6.15: Great Belt Bridge: a panoramic impression (picture courtesy of Niels Elgaard Larsen
(Elgaard), from commons.wikimedia.org).
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Figure 6.16: Great Belt Bridge: deck cross-section (top) and structural system in elevation (bottom).

The section starts by briefly discussing the structural model. This is followed by describing the
numerical and experimental setup for the aerodynamic models and establishing a comparative
basis for the CFD and selected semi-analytical models. Next, the aerodynamic coefficients from
the CFD analyses are determined and validated with experimental results from this and former
studies, where possible. Then both the self-excited and buffeting forces are studied for the CFD
model independently and are compared with the selected semi-analytical models to quantify
the effect of aerodynamic assumptions. This step is also repeated for the aeroelastic response
in a similar fashion for the 2D one-to-one buffeting and flutter analysis. Finally, Pseudo-3D
flutter and buffeting CFD analyses are performed and compared with the results for the LU
model in a statistical manner.

6.3.1 Structural model
Specific dimensions of the used deck can be found in Fig. 6.16 (top), which is a scaled section of
the H9.1 model tested in a wind tunnel by Reinhold et al. [263]. Herein, additional equipment
such as barriers and fairings were not considered. The reason for the lack of detailed modeling
of additional equipment is to reduce the computational load for the CFD analyses since very
fine discretization is required to resolve to small turbulent scales, thin boundary layer and
complex flow structures in the region of the deck details.

A Finite Element model of the Great Belt Bridge is constructed to obtain the dynamic prop-
erties. The model is based on the information provided by Larsen [188] and Karoumi [162].
Some of the structural parameters are given in Tab. 6.3. Approximately 120 beam elements
are used to model the deck, with the appropriately distributed mass and sectional modulus for
the steel deck girder. Positioned every 4 m, the hangers are connected to the main cables and
to the center of the deck using rigid elements horizontally, suspending the bridge in the vertical
direction. The catenary shape was obtained from the 1/9 main span-to-sag ratio, resulting in
a total sag of 180 m. The concrete pylons are modeled as beam elements as well, with tapered
cross-section. Including the cable saddle, the total height of the pylon reaches 257.6 m. Springs
are used to connect the deck to the pylon in the lateral direction.

By varying the prestressing force in the cable and spring stiffness at the support, the modal
frequencies are calibrated against the ones given by Larsen [188]. Exact correspondence is
obtained w.r.t. the first mode in lateral, vertical, and torsional directions (cf. Tab. 6.3). The
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Figure 6.17: Great Belt Bridge: shapes of the first vertical (fh = 0.100 Hz, top) and torsional
(fα = 0.278 Hz bottom) modes.

first lateral and vertical modes are depicted in Fig. 6.17. Without a loss of generality, the wind
is applied only to the deck within the aeroelastic analyses. A total of Nstr = 50 strips are
used for the Pseudo-3D analysis for both the CFD and semi-analytical models. The strips are
mostly regularly spaced across the deck, with an average length of each strip of approximately
54 m. The modes are then interpolated at the center of the strips. Such span-wise discretization
accommodates a total of Nm = 22 modes for the Pseudo-3D analysis. It is worth noting that
until now, a maximum of 11 strips has been used for Pseudo-3D CFD analysis, yielding the
present span-wise discretization as very high resolution. Only two degrees of freedom are used
to describe the structural system in 2D. All considered natural frequencies are given in Tab. B.2
in the Appendix B.

6.3.2 Aerodynamic models: Setup and comparative basis
CFD and semi-analytical models

Several types of analyses are performed for this case-study to determine various quantities such
as the aerodynamic coefficients, forces, and response. Therefore, the physical and numerical
parameters for the CFD and semi-analytical models are generally dependent on the type of
analysis and unless noted otherwise, the parameters in Tabs. 6.3 and 6.4 are used. An important
remark is that the verification of the 2D and Pseudo-3D free-stream turbulence in Sec. 5.3
is performed using the exact same parameters. Thus, the same inflow particles are directly
employed for the CFD buffeting analysis and the determination of aerodynamic admittance for
random free-stream turbulence.

Before proceeding with analyses, a comparative basis for the CFD semi-analytical and semi-
analytical models is laid out. For all following comparisons, the CFD model is taken as a
reference as it is of the highest complexity compared to the rest of the semi-analytical models
according to the categorical diagram of model ordering (cf. Sec. 4.2.4).
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Property type Physical parameter Value

Structural

Total span: lspan 2694 m
Deck width: B 31 m
Deck depth: HD 4.4 m
Mass: mh 22.74 t/m
Inertial mass: mα 2.47×103 tm2/m
Number of modes: Nm 22
First lateral frequency: fp 0.052 Hz
First vertical frequency: fh 0.100 Hz
First torsional frequency: fα 0.278 Hz
Damping ratio: ξ 0.5 %
Forced oscillation: Vr 2 − 16
Forced oscillation amplitude: α0 = ḣ0/U 1 deg

Laminar Wind speeds: U 20-75 m/s
Reynolds number: Re 1.03×105

2D Random
turbulent
(isotropic)

Wind speed: U 20-60 m/s
Longitudinal intensity (Low/High): TIu 6/10 %
Vertical intensity (Low/High): TIw 6/10 %
Longitudinal length scale: Lu 54 m
Vertical length scale: Lw 27 m
Turbulent Reynolds number: ReLu 1.8×105

Coherence coefficient: cx = (Cx, Cz) (3,10)

Pseudo-3D
Random
turbulent

(anisotropic)

Wind speed: U 30 m/s
Longitudinal intensity: TIu 11 %
Vertical intensity: TIw 6 %
Longitudinal length scale: Lu 108 m
Vertical length scale: Lw 30 m
Turbulent Reynolds number: ReLu 3.59×105

Coherence function: coh Davenport
Coherence coefficient: cx = (Cx, Cy, Cz) (3,5,10)

Table 6.3: Great Belt Bridge: physical parameters for the CFD and semi-analytical models.

Numerical parameter Value
Domain length: ld/B 21
Domain height: lh/B 21
Number of panels: Npan 250
Panel length: Δlpan/B 8.08×10−3

Reduced time-step: Δτ = ΔtU/B 1.65×10−2

Total time: τ = tU/B 677
Core radius: ε/B 9.77×10−3

Poisson grid: Nx × Nz 511 × 511
P3M neighboring cells: Nr 3
Particle release factor: Δp = Δtin/Δt 4
Particle band height: lG/B 18
Number of strips: Nstr 50
Correction factor: βin 0.7 (0.65)

Table 6.4: Great Belt Bridge: numerical parameters.
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6.3. Great Belt Bridge

Six aerodynamic models are studied, including the LQS, QS, CQS, MQS, LU, and HNL models.
The assumptions included in these models result in neglecting certain effects that can be cap-
tured by the CFD model. Accordingly, none of the semi-analytical models are able to capture
the vortex shedding and interior noise forces and they are time-invariant (cf. (4.3)). In addition
to these, based on SetCFD, the following effects are neglected:

• Aerodynamic nonlinearity and fluid memory for the LQS model (cf. (4.12)), as
SetCFD/SetLQS = {f v = 0; fnoi = 0; f(t) = f(a(t)); f = f |αs ; Vr → ∞} ;

• Fluid memory for the QS model cf. (4.10), as
SetCFD/SetQS = {f v = 0; fnoi = 0; f(t) = f(a(t)); Vr → ∞} ;

• Frequency-dependent fluid memory for self-excited forces, fluid memory for buffeting
forces and aerodynamic nonlinearity for the MQS model (cf. (4.6)), as

SetCFD/SetMQS = {f v = 0; fnoi = 0; f(t) = f(a(t)); Vr → Vrc} ;

• Frequency-dependent fluid memory, conditioned on the origin of the effective angle, for
the CQS model (cf. (4.9)), as

SetCFD/SetCQS =
⎧⎨
⎩f v = 0; fnoi = 0; f(t) = f(a(t));

f
(

w

U + u

)
= f

(
ḣ

U − ṗ

)
= f

(
mBα

U − ṗ

)
; Vr → Vrc

⎫⎬
⎭;

• Aerodynamic nonlinearity for the LU model (cf. (4.4)), as
SetCFD/SetLU = {f v = 0; fnoi = 0; f(t) = f(a(t)); f = f |αs} ;

• Fluid memory for the low-frequency range and aerodynamic nonlinearity for the high
frequency range for the HNL model (cf. (4.11)), as

SetCFD/SetNLU =
{
f v = 0; fnoi = 0; f(t) = f(a(t)); f = f |αs for αl

e; Vr → ∞ for αh
e

}
.

When performing one-to-one comparisons, all comparison metrics defined in Sec. 4.3 are used
to discuss the effect of the aerodynamic assumptions. Unless noted otherwise, the metric
parameters given in Tab. 6.5 are used for computing the comparison metrics.

Metric parameter Value
Normalization time: Tc 1/(4fh+4fα)
Central wavelet frequency: fce 10.5fα

Confidence level: CL 95 %
Surrogates - Stationarity: Nsur 200
Exceedance - Stationarity: g∗

s 2
Surrogates - Nonlinearity: Nsur 100
Exceedance - Nonlinearity: g∗

b 2
Sensitivity - PDF: εPDF 10

Table 6.5: Great Belt Bridge: comparison metric parameters for the one-to-one comparison of
buffeting response.
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Experimental model

For validation of the static wind coefficients, experiments were conducted at the low-speed wind
tunnel at the Bauhaus-Universität Weimar (cf. Fig. 6.18). The tunnel is of the closed return
type with a measuring section of size 2.5 × 1.3 × 0.8 m (length×width×height), allowing wind
speeds in the range of U = 1 − 30 m/s. Such wind tunnels are characterized by superior flow
quality in the test section with low turbulence (TIu ≈ 0.5 %). However, a high blockage may
be an issue for large section ratios. Forces in all six directions were measured using two strain
gauge load cells with low cross-talk (cf. Fig. 6.18, e). The signals were then passed through
analog amplifies with a sampling frequency of 500 Hz.

Figure 6.18 (a and b) presents the setup for the experiments. A plywood experimental model
was constructed by assembling eleven individual cross-sections (cf. Fig. 6.18, c). Using a high
precision laser cutting system, superior accuracy was achieved with less than 0.1 mm deviation
for the cross-sections. The model was closed using elliptical plates to avoid the end-effects.
The geometrical scale of the model w.r.t. the scaled H9.1 section (cf. Fig. 6.16, top) is 1 : 100,
yielding a width of B = 31 cm and a height of HD = 4.4 cm. Including end-plates, the length
of the model that gathers the aerodynamic forces amounts to 1.2 m. Assembled as such, the
geometrical properties of the model allow one to perform tests at Reynolds number that is
comparable to other experimental studies for a similar section to the selected one (cf. Reinhold
et al. [263]), while retaining reasonable blockage ratio.

The measurements for a static section at each angle of attack were performed in a sequence
lasting approximately 16 minutes. Figure 6.18 (f) depicts a smoke visualization at αs = 0 at
low wind speed. Each measuring sequence consists of four parts, including initial part at U = 0
m/s for three minutes, two parts at two separate wind speeds, U = 5.4 m/s and U = 10.8
m/s, for five minutes each, and final part at U = 0 m/s for three minutes. Performing the
experiments in such a way permits to set up a baseline for the measurement forces at U = 0
m/s. For the static wind coefficients, the measurements at U = 5.4 m/s are used, which yields
a Reynolds number of Re = 1.0 × 105.

Measuring the static wind coefficients for the H9.1 section is of particular importance, as the
experimental results by Reinhold et al. [263] are for the H4.1 section with a ratio of B/HD =
6.81. This section is different from the H9.1 section (B/HD = 7.05), which was used in
the experiments by Reinhold et al. [263] for the flutter derivatives. Thus, both static wind
coefficients and flutter derivatives from the CFD can be now validated for the H9.1 section.
Naturally, it would have been better if the remaining aerodynamic coefficients such as the flutter
derivatives and aerodynamic admittances are measured as well using the current experimental
setup; however, the present state of wind tunnel equipment still needs further development for
such tests.

1

204



6.3. Great Belt Bridge

a) c)

U

U

12
0

13
0

80

31

31

35
[cm]b)

d) e)

f)

Figure 6.18: Great Belt Bridge: a) experimental setup in elevation, b) experimental setup in plan,
c) skeleton of experimental plywood model, d) setup in wind tunnel including a wheel for angle
adjustment, e) back view of the model mounted on sensors, f) static tests at αs = 0 deg.
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6.3.3 Aerodynamic coefficients
This section is devoted to the aerodynamic coefficients from the CFD analyses. Where possible,
a part of the aerodynamic coefficients is validated with experimental results from this study and
Reinhold et al. [263]. A further comparison is made with former numerical studies to acquire
a sense of validity and comparability of the numerical simulations. Moreover, by studying the
distinctive features of the aerodynamic coefficients, the nonlinear effects and fluid memory are
preliminarily identified to a certain extent.

Static wind coefficients

The static wind coefficients are determined for a smooth free-stream. Each CFD simulation
is performed for a time amounting to τ =450 chords, of which 400 chords are used for the
averaging. In the case of the experiments, similar averaging time was used as well. Table 6.6
summarizes the mean values of the static wind coefficients and Strouhal number St= fshedHD/U
at αs =0 deg, where fshed is the vortex shedding frequency. Since there is not a clear peak in
the spectral amplitude of the lift coefficient, the Strouhal number is computed as a range rather
than a value for the CFD analysis. A similar observation is noted by Kuroda [183] for shallow
box sections, while Farsani et al. [106] noted broadband frequency spectrum of the lift for the
Great Belt Bridge section. Unfortunately, oscillations of the static rig with a frequency of
oscillation close to the natural one were noted in the experiments; hence, it was unreliable to
select the shedding frequency properly as it may have been influenced by the synchronizing
oscillation, i.e. vortex-induced vibration.

Figure 6.19 depicts the static wind coefficients w.r.t. the angle of attack. Looking at the figure,
the validation of the present CFD results with experiments is considered fair, compared to other
CFD studies. It is evident that the value of the drag coefficient is different compared to the
experimental results, and a change of slope is indicated in the moment coefficient at αs ≈ ±5
deg. As can be seen from the figure, some of these features appear in other numerical studies
as well.

Before performing the experiments, it was argued by the author [169] that the width-to-depth
ratio of the H4.1 model, higher level of detailing (fences and barriers) and free-stream turbulence
(TIu = 7.5 %) in the experiments by Reinhold et al. [263] could partially explain the scattering
in the static wind coefficients for the numerical studies. The present experiments indicate that

Re CD CL St
Present (VPM) 1.0×105 0.060 0.065 0.106 - 0.173
Present (EXP) 1.0×105 0.072 0.00 /
Farsani et al. [106] (VPM) 1.0×105 0.071 0.053 0.084
Hejlesen et al. [135] (VPM) 1.0×104 0.06 0.07 0.20
Larsen and Walther [192] (VPM) 1.0×105 0.061 0.000 0.100 - 0.168
Bruno and Khris [37] (FVM) 1.0×105 0.071 -0.195 0.124 - 0.164
Lee et al. [196] (FVM) 1.0×105 0.05 0.03 0.160
Fradsen [108] (FEM) 6.2×106 0.072 -0.08 0.26
Reinhold et al. [263] (EXP) 1.0×105 0.080 0.010 0.109 - 0.158

Table 6.6: Great Belt Bridge: comparison of the static wind coefficients and Strouhal number St
at αs =0 deg with present experimental (EXP) results and results from former studies based on the
VPM, Finite Volume Method (FVM) and Finite Element Method (FEM).
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Figure 6.19: Great Belt Bridge: drag CD (top), lift CL (center) and moment CM (bottom) static
wind coefficients for the CFD and present experimental (EXP) results and results from former studies
(Farsani et al. [106], Brusiani et al. [40], Vairo [332], Lee et al. [196], Reinhold et al. [263]), based on
the VPM, EXP, Finite Volume Method (FVM) and Finite Element Method (FEM).

this may be the case for the lift coefficient, as a higher slope is also obtained for the present
setup compared to the experiments by Reinhold et al. [263]. Bruno and Khris [37] note that
the side barriers influence the reattachment point and prevent the formation of a larger bubble
on the upper side, while the blockage effect of the railings contributes to higher suction on the
lower surface. Both of these effects influence the lift coefficient compared to a bare section.

Further, the increased surface due to the auxiliary equipment gathers additional drag force
and thus a larger mean drag coefficient in Reinhold et al. [263] experimental values at αs = 0,
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which is also noted by Larsen and Walther [192]. Considering the present experimental results
it can be argued that the effect of the auxiliary equipment does not contribute to such a large
discrepancy. Issues in the prediction of the drag coefficient have been noted in several VPM
studies (cf. e.g. [193, 229]). Although preliminary indications of a stall are notable in the
moment coefficient in the present experimental results at high positive angles, the change of
slope is mostly a feature for the present and former CFD models. Moreover, from the trend of
the lift and moment coefficients, it can be observed that linearity is valid in ≈ ±5 deg interval
for the static wind coefficients.

Flutter derivatives

The flutter derivatives are determined for smooth free-stream and angle of attack ranging from
-4 to 4 deg with an increment of 2 deg. Utilizing the forced oscillation method, a minimum
time corresponding to 10 cycles is set to obtain the flutter derivatives at each reduced velocity.

At αs =0 deg, good correspondence is observed between the obtained CFD flutter derivatives
and experimental results by Reinhold et al. [263] (cf. Fig. 6.20). It is noted, that determining
the flutter derivatives under smooth free-stream for aeroelastic analyses with turbulent free-
stream does not account for the effect of the free-stream turbulence on the self-excited forces.
Haan and Kareem [128] showed that both turbulence intensity and length scales impact the
flutter derivatives. However, a standard procedure for separation of the buffeting from self-
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Figure 6.20: Great Belt Bridge: flutter derivatives from CFD analysis and their rational approxim-
ation (Approx.). The derivatives related to the velocity (H∗

1 , H∗
2 A∗

1 A∗
2) are given in blue, while the

derivatives related to the displacement (H∗
3 , H∗

4 A∗
3 A∗

4) are given in red. These are further compared
with from former studies (Farsani et al. [106], Brusiani et al. [40], Vairo [332], Reinhold et al. [263]),
based on the VPM, experiments (EXP) and Finite Volume Method (FVM).
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excited forces is not well-established. This warrants further investigation including experimental
validation.

Figure 6.21 depicts the flutter derivatives for varying angles of attack. A higher sensitivity of
the flutter derivatives is observed for the positive angles than for negative angles. For αs =4 deg,
the sign of A∗

2 changes to positive for reduced velocities above Vr =6, which indicates torsional
flutter. Since the aerodynamic nonlinearity outside the range of αs = ±4 deg is evident in the
static wind coefficients (cf. Fig. 6.19), a linearization of the self-excited forces in this region
might result in erroneous high amplitudes in the displacements for the HNL model. Therefore,
the flutter derivatives in the αs = ±4 deg range are used.

Furthermore, the indicial functions for the self-excited forces are given in Fig. 6.22. These
are obtained by rational approximation of the flutter derivatives. At low angles of attack
(2 ≤ αs ≤ 2), the indicial functions are generally smooth with relatively short rise-time, as
expected for a streamlined bridge deck. The abrupt change in the first few steps is due to
the temporal singularity at Vr → 0. Significantly longer rise-time and higher overshooting
amplitudes are noted for the indicial functions at αs = ±4 deg.

The aerodynamic center is an important parameter in the quasi-steady based models. Fig-
ure 6.23 (left) depicts the aerodynamic center and the correction coefficients for the selected
case, based on the flutter derivatives (cf. (3.125)). It can be observed from the figure that
the moment aerodynamic center mM is in the range between -0.2 and -0.45 with a convergent
trend beyond -0.4. The lift aerodynamic center mL changes from positive to negative due to
the changing value of the H∗

2 derivative (cf. Fig. 6.20). Commonly for bridge decks, reduced
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Figure 6.21: Great Belt Bridge: flutter derivatives for various angles of attack and their rational
approximation (Approx.). The derivatives related to the velocity (H∗
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Figure 6.22: Great Belt Bridge: lift (left) and moment (right) self-excited indicial functions for
various angles of attack, related to the vertical displacement Φh (red) and rotation Φα (blue).
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Figure 6.23: Great Belt Bridge: aerodynamic center (left) and dynamic derivatives at Vr = 12
(right). The black filled markers indicate the values of the aerodynamic center used in the analyses.

velocities beyond Vr ≥15 are considered to represent an equivalent quasi-steady state; hence,
the aerodynamic center is selected in this reduced velocity range [85]. In this case, the values
for the aerodynamic center in the subsequent analyses are selected for Vr=16 and they fall in
the reasonable range between -0.5 and 0.5, given by Wu and Kareem [359]. The selected values
for the aerodynamic center can strongly influence the results in the aeroelastic analysis, by
increasing or decreasing the contribution of aerodynamic damping due to rotation. Choosing
a large positive value for the moment aerodynamic center may lead to premature torsional
flutter for streamlined bridge decks [359]. As seen in the previous case-study, obtaining the
aerodynamic center at very high reduced velocities may lead to failure of capturing a torsional
flutter for bluff bridge decks prone to torsional flutter. Although obtaining the aerodynamic
center from the flutter derivatives may not be accurate for a nonlinear model [364], presently
the author is not aware of other standard procedures for its determination. Herein, parametric
studies on the influence of the aerodynamic center on the response are beyond the scope of the
study (cf. e.g. [85, 359, 364] for discussions). The frequency-dependent correction coefficients
Q∗

L and Q∗
M in the CQS model (cf. Fig. 6.23, right) can reduce or increase the slope of the

static wind coefficients, based on the aerodynamic characteristics described by the flutter de-
rivatives. In this case, these coefficients attain high value for positive angles of attack due to
the prominent nonlinearity, as noted previously. Beyond the range of ±4 deg, these coefficients
are maintained as constant.
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Aerodynamic admittance

Next, the aerodynamic admittance is determined for random free-stream turbulence
(cf. Sec. 3.7.3). At the time of performing the analyses for this case-study, the novel method
for determining the aerodynamic admittance under deterministic gusts was not yet developed.

Figure 6.24 depicts the obtained aerodynamic admittance functions are shown for αs ∈ {−2, 0, 2}
deg, along with the approximate Sears function (cf. (5.13) of Sec. 5.4.5). Approximately τ = 400
chords of wind fluctuations and forces are used to compute the aerodynamic admittance, both
recored at the stiffness center xs (cf. Sec. 3.7.3). As a separation between the influence of the
longitudinal and vertical fluctuations in the buffeting forces is not feasible for the admittance
under random free-stream, it is assumed that χL = χLu = χLw and χM = χMu = χMw.
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Figure 6.24: Great Belt Bridge: lift (left) and moment (right) aerodynamic admittance for angle of
attack of αs = −2 deg (top), αs = 0 deg (center) and αs = −2 deg (bottom) including its rational
approximation (Approx.). The cutoff frequency describes the lower limit for the approximation to
eliminate vortex shedding effects.
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Figure 6.25: Great Belt Bridge: lift (left) and moment (right) buffeting indicial functions for various
angles of attack.

Two regions are distinguished in the aerodynamic admittance w.r.t. the reduced velocity: below
and above the cutoff reduced velocity (cf. Fig. 6.24). Above the cutoff reduced velocity, the
admittance is governed by the incident wind fluctuations, while the wake fluctuations govern
the admittance below the cutoff reduced velocity. The latter observation can be linked to
the Strouhal number as well, as the vortex shedding frequency corresponds to the peak of
the admittance below the cutoff reduced velocity. There are various interpretations of the
aerodynamic admittance for a bridge deck. Kareem and Wu [161] separate three distinctive
regions of the admittance, characterized by the incident, shear layer or near wake and the wake
fluctuations. The LU and HNL models, which model for the fluid memory in the buffeting
forces, account only for the region of the aerodynamic admittance governed by the incident
fluctuations. Therefore, only the part of the aerodynamic admittance above the cutoff reduced
velocity is used for the rational approximation. There is no clear indication for the selection
of the cutoff reduced velocity; rather a heuristic distinction between the three regions. In this
case, the cutoff limit is chosen at Vr =2, with the same reasoning as for a flat plate (cf. 5.4.4),
that gust lengths shorter than the width are dominated by local effects. It should be noted that
the incident fluctuations also have a contribution to the admittance below the cutoff reduced
velocity. However, this contribution is small compared to the one from the wake fluctuations.

Since with this method the phase and magnitude component of the aerodynamic admittance
cannot be obtained separately, it is assumed that the imaginary part from the complex form of
the admittance is the same as the one in the complex Sears approximation (5.13). The buffeting
indicial functions are relatively smooth with short rise-time and are depicted in Fig. 6.25. The
shear layer and wake fluctuations significantly influenced the aerodynamic admittance for angles
higher than 2 deg and lower than -2 deg; therefore, the region of the admittance governed by
incident fluctuations could not be clearly distinguished for angles outside this range.

6.3.4 Buffeting forces
In this section, the buffeting fluctuating lift and moment coefficients are studied for a static
section under turbulent free-stream, in order to single out the discrepancies between the CFD
and the semi-analytical models in case of the buffeting forces. As the Reynolds number is kept
constant, both cases of low (TI = 6 %) and high (TI = 10 %) turbulence intensity are studied
only for one constant mean wind speed of U = 30 m/s. The input free-stream turbulence for
the semi-analytical models is the tracked wind fluctuations in the CFD domain at xs = (0, 0, 0),
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from analysis without a section. Additionally, they are shifted for τ = −1/2 as the imaginary
part of the approximation of the Sears admittance (cf. (5.13)) corresponds to the Küssner
function that is for gusts acting at the leading edge (cf. Sec. 5.4.6 for discussion).

In Fig. 6.26, a representative part of the time-histories of the fluctuating wind coefficients
is presented for the CFD and semi-analytical models. It is observed that the high-frequency
component of the fluctuating wind coefficients is overestimated by the LQS model, as the peaks
in the time-histories are significantly higher than the ones for the reference model. Nonetheless,
the low-frequency content of the fluctuating wind coefficients for the LQS model follows the
same trend as the CFD model. The peaks in the fluctuating wind coefficients for the QS model
have lower amplitudes compared to the LQS model, which effectively shows the influence of
the quasi-steady aerodynamic nonlinearity on the buffeting forces for large effective angles of
attack. Nevertheless, the effect of nonlinearity on the buffeting forces is overestimated by the
QS model, which is observed when the time-histories for this model are further compared to
the ones for the CFD model (see e.g. CMb for t = 170 − 180 s). Although the additional
high-frequency content in the fluctuating wind coefficients is still overestimated for the CQS
model, a better correspondence is achieved between this and the reference model compared to
the QS and LQS models. The averaged fluid memory considered in the CQS model is dependent
on the correction coefficient Q∗ (cf. (3.146)), which is based on the flutter derivatives. When
there is no motion, the fluid memory of the buffeting forces is described by the aerodynamic
admittance; therefore, the correction coefficient should be based on the admittance. However,
the buffeting and self-excited part of the effective angle of attack are inseparable in a nonlinear
formulation and thus, the correction coefficient Q∗ is computed from the flutter derivatives.
This corresponds to the assumption that the fluid memory is independent of the origin of the
effective angle. Mainly, the LU and HNL models are in the best agreement with the CFD model
for the fluctuating wind coefficients. The effect of fluid memory is manifested as a filter for the
fluctuating wind coefficients, resulting in their amplitude and phase alteration. Looking at the
time-histories for these models, it is evident that an additional high-frequency component is
present in the fluctuating wind coefficients for the CFD model, which is revisited later in this
section.

Generally, the observations made from the qualitative assessment of the time-histories corres-
pond to the quantitative assessment based on the RMS of the fluctuating wind coefficients
for both turbulent cases (cf. Fig. 6.27). The RMS of the fluctuating wind coefficients for the
LU and HNL model corresponds well with the RMS for the CFD model. By including the
quasi-steady nonlinearity of the low-frequency wind fluctuations in the HNL model, the RMS
of the lift coefficient is slightly increased, while a decrease is noted in the RMS of the moment
coefficient. Comparing the results for the LQS and LU model, it can be seen that fluid memory
plays a major role in the buffeting forces, particularly in the high turbulence case. The impact
of the quasi-steady nonlinearity is prominent for the moment coefficient, which is observed
from the results of the QS model in contrast to the LQS model. As discussed previously, the
effect of the nonlinearity may be overestimated if the fluid memory is not taken into account
concurrently for the buffeting forces.

In order to further examine the discrepancies between the fluctuating wind coefficients for the
LU and CFD model, a sequence of snapshots of an instantaneous particle map and correspond-
ing pressure coefficient Cp is depicted in Fig. 6.28. The sequence of snapshots corresponds to
the peak moment coefficient for t = 164 − 165 s (cf. Fig. 6.26). An incoming vertical gust
(given by the resultant velocity vector Ur) initiates a flow separation on the top surface (cf.
Fig. 6.28, a), which grows in size as a vortex is entrained. The gust velocity reaches a peak
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Figure 6.26: Great Belt Bridge: sample time-history of the lift (left) and moment (right) fluctuating
buffeting coefficients for the CFD and semi-analytical models and a static deck at U = 30 m/s and
TI = 6 %.

almost simultaneously with the suction pressure at the top surface near the leading edge (cf.
Fig. 6.28, b). The vortex is then convected downstream and a secondary vortex is formed,
resulting in an additional suction pressure (cf. Fig. 6.28, c). Both of the vortices are then
convected downstream (cf. Fig. 6.28, d). Since all of the semi-analytical models resulted in a
peak in the fluctuating moment coefficient (cf. Fig. 6.26), the main influence in the moment
force is due to the incident fluctuations. Nevertheless, the peak of CMb for the LU model is
slightly reduced compared to the one for the CFD model, which may originate from some local
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Figure 6.27: Great Belt Bridge: RMS of the lift (left) and moment (right) fluctuating buffeting
coefficients for the CFD and semi-analytical models and a static deck at U = 30 m/s.
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Figure 6.28: Great Belt Bridge: instantaneous particle maps and pressure distribution for a static
deck at U = 30 m/s and TI = 6 %. The snapshots correspond to: a) t = 159.40 s; b) t = 164.04 s; c)
t = 164.31 s and d) t = 165.06 s from Fig. 6.26. The black arrow corresponds to both direction and
magnitude of the instantaneous resultant wind velocity Ur.

effects. Fundamental studies on long rectangular cylinders note that the unsteady behavior of
the separation bubble results in quasi-periodic fluctuating pressures as the vortex is convected
downstream (cf. Cheri et al. [63]). For a turbulent free-stream, the magnitude of these fluc-
tuating pressures increases significantly and the length of the separation bubble reduces (cf.
Saathof and Melbourne [272] and Hiller and Cherry [136] for a detailed discussion on these
effects). The local effects are highly influenced by the three-dimensionality of the flow, and
therefore they are not well captured by the current CFD model. Presently, it is not well un-
derstood how the local 2D effects influence the local pressure. Furthermore, these local effects
are length scale-dependent. The experimental studies are conducted for moderate Reynolds
number with a significantly lower length scale to depth ratio Lu/HD ≈2.1 compared to this
study Lu/HD ≈25. Therefore, strong conclusions on the local effects cannot be drawn without
further fundamental investigations.

It is noted that the combined effects due to the nonlinearity and non-stationarity are intractable
by the selected semi-analytical models. Although the underlying mechanisms of bluff-body
aerodynamics are still not fully established, three effects could be mentioned, which are the
probable cause for the low-frequency content in the fluctuating wind coefficients for the CFD
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model, namely: (i) unsteady aerodynamic nonlinearity, (ii) local effects due quasi-periodic
fluctuations and (iii) vortex shedding. As the shape of the fluctuating wind coefficients for
the LU and HNL model is similar and the high-frequency fluctuations of the CFD model are
mostly quasi-periodic, the claim that these fluctuations are due to the vortex shedding and local
turbulence effects seems plausible. Nevertheless, it is difficult to single out these effects. The
influence of the vortex shedding can be also seen in the aerodynamic admittance (cf. Fig. 6.24).

To further study the effect of aerodynamic nonlinearity, the PDFs of the fluctuating wind
coefficients are shown in Fig. 6.29. For wind fluctuations that follow the Gaussian PDF (cf.
Fig. 5.13 from Sec. 5.3.1), a linear force model would also result in a similar PDF of the
fluctuating wind coefficients, which is the case for the LU model. The PDFs of the fluctuating
wind coefficients for the CFD model generally follow the trend of the Gaussian PDF for the
low turbulence case, except for the positive values of the lift coefficient at the tail of the
distribution. While the values at the tail for the CFD model can be due to the vortex shedding
and/or aerodynamic nonlinearity, it can be seen that the PDF of the lift and especially the
moment coefficient for the QS and CQS models significantly depart from the Gaussian trend.
This departure fortifies the claim that the effect of nonlinearity on the buffeting forces is
overestimated for the QS and CQS model as the fluid memory is not accounted for accordingly.

Besides the difference in the amplitude of the buffeting forces, the consideration of the fluid
memory also affects the phase between the buffeting forces and wind fluctuations. Figure 6.30
depicts the envelope of the fluctuating wind coefficients w.r.t. the instantaneous angle of attack
for the low turbulence case, filtered using a moving average filter with 30 samples. It is evident
that the hysteretic behavior of the fluctuating wind coefficients, appearing for the CFD model,
can be only captured by the LU and HNL models. The good correspondence of these models
indicates that using the imaginary part for the aerodynamic admittance from the approximation
of the Sears function is justified. However, this assumption is case-dependent. The consideration
of the phase in the complex form of the aerodynamic admittance can significantly influence the
response in aeroelastic analyses at high reduced velocities when the intermodal coupling is
meaningful, as noted by Chen [53].

Most of the above observations can be realized by studying the comparison metrics in Fig. 6.31
for the fluctuating wind coefficient, taking the CFD as a reference for the metric parameters
in Tab. 6.5. As expected, the LQS model has the poorest performance overall, since it is
the most simple model from the selected models. An important remark can be made on the
metrics for the QS model for the lift coefficient: while a high value the peak metric MCCFD

Lb ,CQS
Lb

p

can be observed, this is not consistent with the rest of the metrics, which resulted in poor
behavior. When high-frequency vortex shedding is present, the corresponding peaks for the
two models, CFD and QS, could be accidental and not occur at the same time. This proves
the need for a multicriterial assessment of aerodynamic models. Similarly, despite having good
correspondence for the RMS in the moment coefficient for the QS model, the PDF metric
MCCFD

M ,CQS
Mb

pdf also resulted in poor value, which supports the statements made above that the
aerodynamic nonlinearity is overestimated when the fluid memory is not considered within the
model. The CQS model showed some success for the moment coefficient. However, this is not
consistent in the case of the lift coefficient. Although not as drastic for the QS model, the PDF
metric MCCFD

Mb ,CCQS
Mb

pdf also resulted in low values due to the tail of the distribution (cf. Fig. 6.29).
Overall, the most consistently high metrics are obtained for the LU and NLU models, which
further proves the point that consideration of fluid memory is paramount. For these two models,
the magnitude Mm and both wavelet-based metrics, Mw and Mwf , are similar, which yields
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Figure 6.29: Great Belt Bridge: histogram estimate PDF of the normalized (standard score) lift (left)
and moment (right) fluctuating buffeting coefficients for a static deck at U = 30 m/s and TI = 6 %.
The black line indicates a standard normal distribution N (0, 1).
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Figure 6.30: Great Belt Bridge: filtered envelope of the aerodynamic hysteresis of the lift Chys
Lb (left)

and moment Chys
Mb (right) buffeting coefficients for a static deck at U = 30 m/s and TI = 6 %.
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Figure 6.31: Great Belt Bridge: comparison metrics for the lift MCCFD
Lb ,Cj

Lb (left) and moment
MCCFD

Mb ,Cj
Mb (right) buffeting coefficients for a static deck at U = 30 m/s and TI = 6 %, where

j ∈ {LQS, QS, CQS, LU, HNL}. The CFD model is selected as a reference.

the conclusion again that the vortex shedding effects are the reason for the discrepancies. No
quadratic phase coupling or non-stationarity is detected, which could be seen from Mb and Ms
metrics, respectively. It is also important to note that the phase metric might be obsolete in
this case, as the buffeting forces are broadband. Thus, the mean phase is distorted by the high-
frequency vortex shedding forces for the CFD model. For such cases, the effect of phase-shift
is better observed from the hysteresis (cf. Fig. 6.30).

6.3.5 Self-excited forces
The effect of aerodynamic nonlinearity can be prominent in the self-excited forces at large angles
of attack. This was also initially indicated based on the flutter derivatives at various angles of
attack in the previous section. In the following, the self-excited moment coefficient CMα due
to a sinusoidal forced rotation are compared for the LQS, QS, CQS and LU models w.r.t. the
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reference CFD model. The MQS and NLU models are not considered, as theoretically both
would equal the LU model for a single-frequency sinusoidal excitation, taking into account the
flutter derivatives at the oscillation frequency.

Figure 6.32 depicts a portion of the time-history of CMα, due to rotation about a static angle
of attack amounting to αs = 0 deg (left) and αs = 4 deg (right) for the considered models. The
deck is forced to rotate in a sinusoidal manner with an amplitude of α0 = 3 deg at a reduced
velocity amounting to Vr = 16 for a reduced time of τ = 1600, i.e. 100 cycles. Despite the
additional component due to the vortex shedding forces for the CFD model, a single-frequency
fit describes the forces sufficiently well for oscillations at αs = 0 deg. However, this is not the
case for rotation about αs = 4 deg. Complex behavior is exhibited for the CFD model at this
static angle of attack that results in large negative peaks of the moment coefficient.

Before comparing the models, an attempt is made to study the origin of these particular peaks.
Figure 6.33 depicts instantaneous particle maps for rotation about αs = 0 deg (left) and αs = 4
deg, at τ/Vr ≈ 56.4 that corresponds to one of the negative peaks (cf. Fig. 6.32). A large
separating vortex is noted for the αs = 4 deg case, resulting in high negative pressure at
the trailing part of the deck. This vortex is a consequence of large separation at the leading
edge, i.e. this is a leading-edge vortex. Such vortices are known to be a source nonlinearity
in the aerodynamic forces for airfoils (cf. e.g. [139, 219, 220, 260, 340]) and bridge decks
(cf. e.g. [376]), resulting in amplitude dependence of the self-excited forces and thus, complex
hysteretic behavior.

To quantify the discrepancies between the time-histories, the comparison metrics for the semi-

τ/Vr [-]

C
M

α
[-
]

55 56 57 58 59 60
−0.2

−0.1

0.0

0.1

CFD
LQS
QS
CQS
LU

τ/Vr [-]

C
M

α
[-
]

55 56 57 58 59 60
−0.2

−0.1

0.0

0.1

Figure 6.32: Great Belt Bridge: fluctuating moment self-excited coefficient for sinusoidally rotating
deck about static angle αs = 0 deg (left) and αs = 4 deg (right) at Vr = 16.

Figure 6.33: Great Belt Bridge: instantaneous particle maps for sinusoidally rotating deck about
static angle αs = 0 deg (left) and αs = 4 deg (right) at Vr = 16. The snapshots correspond to the
negative peak occurring in the moment coefficient for αs = 4 deg at τ/Vr ≈ 56.3 (cf. Fig. 6.32, right).
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analytical models are given in Fig. 6.34, taking the CFD as a reference. Modified parameters
w.r.t. the metric parameters in 6.5 are the central wavelet frequency, taken as f0 = 2 Hz, and
the normalization time amounting to Tc = VrB/(2U) for the phase metric. Significant difference
can be noted in the metrics between the case of rotation about αs = 0 deg (cf. Fig. 6.34, left)
and the case of rotation about αs = 4 deg (cf. Fig. 6.34, right). Neglecting the fluid memory,
completely or partially, results in a lower phase metric for the LQS, QS and CQS models. This
is particularly true for the rotation about the static angle of αs = 4 deg. Unlike these models,
the LU model resulted in good correspondence for Mϕ as it is a linear fit at the main harmonic.

The LQS and QS models showed good correspondence for the RMS Mrms, magnitude Mm

and peak Mp metrics for the αs = 0 deg case. Although the quasi-steady assumption is
close to being valid for such a high reduced velocity of Vr = 16, these metrics for the case of
sinusoidal forced vibrations may not fully represent the realistic effect of quasi-steady related
assumptions. The additional vortex-shedding forces easily affect these metrics for this type of
vibration. These forces are not captured by any of the quasi-steady based models.

For the case of self-excited forces with single-frequency input motion, the wavelet metrics Mw

and Mwf are the most important since the major part of the wavelet energy of the forces should
be concentrated at few frequencies. Both of these metrics yield the best results for the LU model
for the αs = 0 deg case, which is logical as this model directly replicates the amplitude and
phase for the main harmonic. However, the results of the quasi-steady based models resulted
in similar values, providing that the quasi-steady assumption may be valid at this high reduced
velocities. On the other hand, the wavelet metrics resulted in significantly lower values for the
case of αs = 4 deg for all models. Both the wavelet and normalized-wavelet metrics resulted
in a similar value of Mw ≈ Mwf , meaning that there is a significant discrepancy in the time-
frequency plane mainly due to frequency modulations. Another interesting point, in this case,
is that the QS and CQS model yielded better results than the LU model for the wavelet-based
metrics.
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Figure 6.34: Great Belt Bridge: comparison metrics for the moment self-excited coefficient
MCCFD

Mα ,Cj
Mα for sinusoidally rotating deck about static angle αs = 0 deg (left) and αs = 4 deg

(right) at Vr = 16, where j ∈ {LQS, QS, CQS, LU}. The CFD model is selected as a reference.
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To study the behaviour of the wavelet-based metrics, Fig. 6.35 depicts the magnitude of the
wavelet coefficients |WCMα

| for the CFD, LU and QS models for rotation about αs = 0 deg
(left) and αs = 4 deg (right). Apart from from the main harmonic at Vr = 16 (i.e. K ≈ 0.4),
an additional superharmonic contribution is noted for the CFD and QS models at K = 0.8 (cf.
Fig. 6.35, top-right and bottom-right, respectively). Since the LU model is linear, it models
only a single harmonic component; hence, it does not account for the frequency content other
than the forcing frequency. On the contrary, the QS model is able to capture this behavior as it
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Figure 6.35: Great Belt Bridge: normalized absolute wavelet coefficients of the fluctuating self-
excited moment coefficient for a sinusoidally rotating deck about static angle αs = 0 deg (left) and
αs = 4 deg (right) at Vr = 16. From top to bottom: CFD, LU and QS models. The dashed-dot line
indicates the cone of influence COI.
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is nonlinear. Moreover, there is a widespread frequency content in the range from K = 2−4 for
αs = 4 deg for the CFD model, which corresponds to the frequency range of vortex-shedding. At
αs = 0 deg, the relative effect of the vortex shedding on the wavelet coefficients is significantly
lower (an order of magnitude) than at αs=4 deg, and it occurs at higher frequencies (i.e.
lower Strouhal number); thus, it is not visible in the figure. Both the nonlinearity and vortex
shedding are the reason for high discrepancies in the wavelet metrics of the forces for rotation
about αs = 4 deg. The LQS and CQS models resulted in similar time-frequency planes as the
LU and QS models, respectively; thus, they are not shown in the figure.

Detecting superharmonics is the first indicator of nonlinearity, as observed numerous studies in
bluff-body aerodynamics (cf. e.g. [86, 207, 367]). Quadratic phase coupling is the nonlinearity
that is related to the superharmonic at twice the frequency of oscillation (i.e. second-order
nonlinearity), as observed previously in the wavelet coefficient, and can be revealed by the bis-
pectrum. Figure 6.36 depicts the unfiltered GR

B(K1, K2) (top) and surrogate-filtered GF
B(K1, K2)

(bottom) phase-randomized bispectrum magnitude for the CFD (left) and QS models (right)
for forced vibration at αs = 4 deg. For both of these models, there is a peak at the frequency
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Figure 6.36: Great Belt Bridge: phase-randomized bispectrum amplitude GR
BCMα

(top) and filtered
phase-randomized bispectrum amplitude GF

BCMα
(bottom) of the fluctuating self-excited moment coef-

ficient for the CFD (left) and QS (right) models. The deck is performing sinusoidal rotations about a
static angle of αs = 4 deg at Vr = 16. The dashed-dot line indicates the inner triangle IT.
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Figure 6.37: Great Belt Bridge: histogram estimate PDF of the normalized (standard score) fluc-
tuating self-excited moment coefficient for a sinusoidally rotating deck about a static angle of αs = 4
deg at Vr = 16.

couple of (K1, K2) = (0.4, 0.4) for the unfiltered bispectrum magnitude GR
B, indicating potential

quadratic phase coupling (i.e. nonlinearity). However, in case of the QS model (cf. Fig. 6.36,
top-right), the peak at (K1, K2) = (0.4, 0.4) is significantly lower than for the CFD model
(two orders of magnitude). This indicates that the aerodynamic nonlinearity is significantly
underestimated for the QS model. Similar observations for a pitching airfoil were realized
by McCroskey and his coworkers [219, 220], who observed that the dynamic hysteresis of the
self-excited aerodynamic forces attains significantly higher values compared to the static coun-
terparts at a similar angle of attack. Based on the surrogate testing, such small amplitudes
of the bispectrum as the ones for the QS model, are detected as noise. Thus, the filtered bis-
pectrum magnitude of the QS model resulted in trivial values (cf. Fig. 6.36, bottom-right).
Contrary, the peak for the CFD model is clearly indicated in the filtered bispectrum mag-
nitude (cf. Fig. 6.36, bottom-left), suggesting aerodynamic nonlinearity. As none of the models
captured this phenomenon for the present case, the bispectrum metric resulted in Mb = 0.

Significantly small values are noted for the PDF metric Mpdf for all models. Figure 6.37 depicts
the histogram estimate PDFs of the CMα due to rotation at αs = 4 deg. The PDFs of the CFD
model are somewhat Gaussian and asymmetric due to the vortex shedding, interior noise, and
nonlinearity, despite single-frequency input. A similar observation is noted by Lin et al. [207] for
the case of bluff rectangular cylinders. Since all semi-analytical models yield close to sinusoidal
forces, the PDF attains vertical asymptotic behavior. In the case of the QS and CQS models,
the asymmetry is due to the nonlinear behavior that is different for positive and negative angles
of attack. It should be noted that, selecting a sensitivity factor of εPDF = 10 (cf. Tab. 6.5) also
contributes to the high value of the PDF metric.

6.3.6 Aerostatic analysis: 2D
The aerostatic response is computed for a smooth free-stream at the selected wind speeds using
CFD, semi-analytical linear and nonlinear aerostatic analyses. The latter analysis is performed
by iterative updating of the static wind coefficients w.r.t. the position of the section until an
aerostatic equilibrium is achieved. For the CFD analysis, the section is subjected to a smooth
free-stream and undergoes free oscillations with a duration of τ =160. The response is then
averaged for τ =110-160, for which the initial impulse is sufficiently damped out. Figure 6.38
shows the vertical hs and torsional αs displacements due to laminar free-stream. The figure
suggests that nonlinear aerostatic analysis is required for high wind speeds. Similar observa-
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Figure 6.38: Great Belt Bridge: 2D aerostatic vertical displacement hs (left) and rotation αs (right)
for smooth free-stream.

tions are noted by Zhang et al. [374], where the influence of the geometric and aerodynamic
nonlinearities on the flutter velocity are studied. It is noted that for the linear models, the
linearization of the static wind coefficients is performed at the angle of nonlinear static equi-
librium.

6.3.7 Buffeting analysis: 2D

Aeroelastic analyses under free-stream turbulence are performed for velocities ranging from 20
up to 60 m/s for both turbulent cases. Since the turbulent Reynolds number is constant, the
influences of the reduced velocity, turbulence intensity and motion amplitudes on the dynamic
response are studied. Figure 6.39 depicts snapshots of the velocity field during bridge oscillation
for CFD buffeting analysis, in which upstream fluctuation velocity can be observed due to the
free-stream turbulence.

Two types of comparisons are performed: one-to-one comparison, for the same input wind
time-history for all models; and statistical comparison, for twenty random wind time-histories
for the LU model.
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Figure 6.39: Great Belt Bridge: instantaneous longitudinal velocity fields of 2D buffeting analysis
at U = 30 m/s and TI = 6 %.
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One-to-one comparison

Input wind fluctuations for the semi-analytical models are tracked down in the section-less
CFD domain at xs within the one-to-one comparison. In what follows, the time-histories are
compared based on local and global quantities, as well as the comparison metrics.

Figure 6.40 depicts the RMS values of the vertical and torsional response for the selected wind
speed range for both turbulent cases. Specific values of the response are listed in Fig. 6.41
for two representative velocities: high (U = 30 m/s) and low (U = 60 m/s) w.r.t. the flutter
limit Ucr ≈ 70 m/s. Based on the figures containing the RMS of the response, it is observed
that the aeroelastic response for the LQS model is overestimated compared to the one for the
CFD model for all of the cases. If the response for the LQS model is further compared to
the results of the LU and QS models, it is evident that the effects of linear fluid memory and
quasi-steady nonlinearity decrease the amplitude of the response, particularly for the case with
high turbulence intensity.

The discrepancy between the vertical responses for the QS and CFD models is decreasing
for higher wind velocities. Although the good correspondence between these two models can
be attributed to the fact that the effect of fluid memory becomes negligible at high reduced
velocity, this might not be the case herein. As discussed previously, the effect of the quasi-
steady nonlinearity in the buffeting on the aeroelastic response is likely overestimated, while the
nonlinearity in the self-excited forces underestimated. Another indication for the incapability
of the QS model to represent the nonlinear aeroelastic behavior is the significant difference in
the rotation w.r.t. the CFD model for high wind speeds, particularly for the high turbulence.
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Figure 6.40: Great Belt Bridge: RMS of the vertical displacement (left) and rotation (right) for the
CFD and semi-analytical models from 2D buffeting analysis for the selected mean wind speed range
at TI = 6 % (top) and TI = 10 % (bottom).
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Figure 6.41: Great Belt Bridge: RMS of the vertical displacement (left) and rotation (right) for the
CFD and semi-analytical models from 2D buffeting analysis at U = 30 (top) m/s and U = 60 m/s
(bottom).

The trend of the response for the CQS model is essentially the same as the one for the QS
model compared to the CFD model. For the case with low turbulence intensity, the vertical
displacement for the CQS model is in better agreement with the response for the CFD model
than the QS model. Other than this case, there is no clear indication of how the averaged fluid
memory affects the aeroelastic response. Although no conclusive statements can be made on
this account, the abrupt changes in the correction coefficient in the CQS model might result
in irregularity in the trend of the displacements, as noted by Wu and Kareem [359]. The same
observations regarding the effect of quasi-steady nonlinearity hold for the CQS model as well.
Even though the aim of the MQS model is to better describe the aerodynamic damping than the
LQS model, an increased discrepancy for the vertical displacement is noted for the MQS model
compared to the LQS model. This is a result of the quadratic trend of H∗

2 , in contrast to the
linear trend assumed in the MQS model [244]. The slope of the RMS of the torsional response
w.r.t. the mean wind speed for the MQS model is lower than the one for the CFD model, which
indicates an insufficient quality of approximation for the torsional damping. This can be also
observed in Fig. 6.41 as the rotational displacement for the MQS model is overestimated at
U =30 m/s and underestimated at U = 60 m/s w.r.t. the CFD model. Øiseth et al. [244] used
the secant approximation of the torsional flutter derivatives to address this issue; however, this
is not considered in this study.

Generally, the smallest discrepancies in the response are obtained for the LU and HNL models
w.r.t. the CFD model, taking into account all considered cases and both degrees of freedom.
Representative time-histories of the aeroelastic response for the semi-analytical models are
compared with the response for the CFD model in Fig. 6.42, for the case with low turbulence
and U = 30 m/s. The figure suggests that the response for the CFD model lags behind all
models based on the quasi-steady assumption. This indicates the phase effect of the fluid
memory in the aerodynamic forces. Based on a qualitative assessment, the response time-
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Figure 6.42: Great Belt Bridge: representative sample time-histories of the vertical displacement
(left) and rotation (right) for the CFD and semi-analytical models from 2D buffeting analysis at
U = 30 m/s and TI = 6 %.

227



CHAPTER 6. APPLICATIONS TO BRIDGE AERODYNAMICS

t [s]

h
[m

]

100 120 140 160 180 200
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

CFD
LU

t [s]

α
[d
eg

]

100 120 140 160 180 200
−0.50

−0.25

0.00

0.25

0.50

t [s]

h
[m

]

100 120 140 160 180 200
−3
−2
−1

0
1
2
3

t [s]

α
[d
eg

]

100 120 140 160 180 200
−2

−1

0

1

2

t [s]

h
[m

]

100 120 140 160 180 200
−3
−2
−1

0
1
2
3

t [s]

α
[d
eg

]

100 120 140 160 180 200
−3
−2
−1

0
1
2
3

t [s]

h
[m

]

100 120 140 160 180 200
−4

−2

0

2

4

t [s]

α
[d
eg

]

100 120 140 160 180 200
−5.0

−2.5

0.0

2.5

5.0

t [s]

h
[m

]

100 120 140 160 180 200
−8

−4

0

4

8

t [s]

α
[d
eg

]

100 120 140 160 180 200
−12

−6

0

6

12

Figure 6.43: Great Belt Bridge: representative sample time-histories of the vertical displace-
ment (left) and rotation (right) for the CFD and LU models from 2D buffeting analysis at U =
20, 30, 40, 50, 60 m/s (top to bottom) and TI = 6 %.

histories for the LU and HNL models appear to be in the best agreement with the response
time-histories for the CFD model.

A particular feature is observed in the torsional response for the CFD model: above a certain
velocity (U = 50 m/s and U = 40 m/s for the low and high turbulence case, respectively),
a distinctive change of the slope of RMS of the response is noted (cf Fig. 6.40). For both
levels of turbulence, a notable similarity in the torsional responses is the amplitude at which
this change of slope occurs (αrms � 3 deg). When a motion is introduced to an aeroelastic
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system in addition to the free-stream turbulence, it is even more challenging to describe the
origin of discrepancies in the aerodynamic forces for the models. In a dynamic system, the
nonlinearity of the self-excited forces is included through their nonlinear amplitude dependence
on the motion [117] and multiple output frequencies, excited by a single harmonic input motion
[84, 86].

Figure 6.43 shows a comparison of the response time-histories for the LU and CFD models for
the studied wind speed range and the case with low turbulence. The torsional responses for
the LU and CFD models exhibit an increasing phase-shift and amplitude difference at U =60
m/s. In the time interval between t = 140 − 180 s, the amplitudes for the CFD model exceed
α ≥ 6 deg. When studying the self-excited forces in the previous section, it was seen that at
such high angles of attack, quadratic phase coupling may occur (i.e. nonlinearity is present).
This high peak in the rotation can be also observed from the wavelet coefficients at U = 60 m/s
for the low turbulence case, depicted in Fig. 6.44 for all models. None of the models is actually
capable to capture this high rotation amplitudes at this particular time. Further, this makes
the case that although the RMS of the torsional response for the LQS model corresponds well
with the response for the CFD model at U = 60 m/s (cf. Fig. 6.40, top-right), a conclusion
that the LQS model describes well the aerodynamic forces is likely to be inaccurate. To prove
this point, it can be observed that the peak of the torsional response for the LQS model does
not occur at the same time instance as for the CFD model (cf. Fig. 6.44). Thus, general
conclusions should not be made solely on the RMS of the response. Another interesting effect
that can be observed from the wavelet magnitude of the vertical displacement (cf. Fig. 6.44,
left) is a spectral contribution appears at a frequency corresponding to the torsional frequency
fα = 0.287 Hz. This indicates the effect of aerodynamic coupling, which is prominent for all
models, except for the MQS model.

All previous observations can be further supported by the comparison metrics depicted in
Fig. 6.45 for two wind speeds, U = 30 m/s (top) and U = 60 m/s (bottom). Again, the
CFD model is taken as a reference when comparing the semi-analytical models. Generally,
the nonlinear quasi-steady based models, CQS and QS, are in better agreement for the vertical
rotation at the higher wind speed, which indicates the validity of the quasi-steady assumption at
high wind speeds. Neglecting both nonlinearity and fluid memory yields the highest discrepancy
for the LQS model. The effect of fluid memory is clearly the most influential as the LU and
HNL models yielded the best overall behavior, local and global. Moreover, by studying the
comparison metrics for the vertical displacement h at U = 60 m/s, it can be realized why
considering the RMS as an only basis for comparison is insufficient. Particularly, the QS model
performs slightly better for the RMS metric MhCFD,hLU

rms < MhCFD,hQS

rms , while the situation is
reversed for the magnitude metric, i.e. MhCFD,hLU

m > MhCFD,hQS

m . This indicates that only the
global quantities of the CFD model are in better correspondence with the QS model and not
the local ones. Since the input may be considered as identical, to draw a general conclusion
that the quasi-steady nonlinearity is more critical than the linear fluid memory at high wind
speeds, all metrics should support such a statement. In this case, it may only be indicated that
the influence of the nonlinearity becomes apparent in the RMS at high wind speeds.

A particular point of interest is the stationarity metric Ms for the rotation at U = 60 m/s
(cf. Fig. 6.45, bottom-right). Namely, this metric yields a value of zero for all models, which
means that a part of the CFD torsional response is actually non-stationary. Figure 6.46 de-
picts the non-stationary portion of the rotation for the CFD model. It can be observed that
this particular time interval is the same as the one discussed previously, where nonlinearit-
ies were indicated and the incapability of the semi-analytical models to capture this effect
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(cf. Fig. 6.43, bottom-right). For stationary input, which is the case for the wind fluctuations
in this study, only a nonlinear model may result in a non-stationary output in the stable range
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Figure 6.44: Great Belt Bridge: normalized absolute wavelet coefficients of the vertical displacement
(left) and rotation (right) for the a) CFD, b) LQS, c) QS, d) CQS, e) MQS , f) LU and g) HNL models
from 2D buffeting analysis at U = 60 m/s and TI = 6 % (continued figure).
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Figure 6.44 (continued)

(i.e. not in the flutter region). Hence, the unsteady nonlinearity in the self-excited forces seems
like a plausible reason for the amplitude modulations in this time interval.

The bispectrum showed no appreciable peaks for all models; thus, the bispectrum metric
amounts to Mb = 1. Although quadratic phase coupling may be occurring, this effect can be
further reduced by the mechanical admittance when looking at the dynamic response. Hence,
it is easier to be captured for the self-excited aerodynamic forces due to sinusoidal forced ex-
citation, as shown in the previous section. It should be noted that quadratic phase coupling
is just one particular type of nonlinearity. Other types of nonlinearities such as cubic phase
coupling cannot be identified by the bispectrum.
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Figure 6.45: Great Belt Bridge: comparison metrics of the vertical displacement MhCFD,hj (left) and
rotation MαCFD,αj (right) from 2D buffeting analysis at U = 30 m/s (top) and U = 60 m/s (bottom)
and TI=6 %, where j ∈ {LQS, QS, CQS, MQS, LU, HNL}. The CFD model is selected as a reference.

Statistical comparison

The statistical comparison is performed using twenty time-history records for the input wind
fluctuations only of the LU model. In contrast to the flat plate study (cf. Sec 5.4), where the
time-histories were generated simply by phase randomization of the wind spectrum, here the
wind fluctuations are the ones generated at the particle ladder for the CFD model. In this
way, it is avoided that the spectrum of the wind fluctuations is matched exactly due to the
imposed correlation between ladder cells. Hence, a more appropriate statistical significance can
be obtained for the LU model.

Figure 6.47 depicts the response for the CFD, for a single time-history, and for the LU model,
for twenty records. The shaded area represents the 99 % confidence interval for the LU model.
Generally, the CFD response for the vertical displacement falls into the confidence interval.
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Figure 6.46: Great Belt Bridge: filtered non-stationary part of the absolute wavelet coefficients of
the rotation for the CFD model from 2D buffeting analysis at U = 60 m/s and TI = 6 %.
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Figure 6.47: Great Belt Bridge: RMS of the vertical displacement (left) and rotation (right) from
the statistical comparison for 2D buffeting analysis for the CFD and LU models. The response for the
LU model is obtained based on the mean of 20 independent response time-histories. The shaded area
represents the 99 % confidence interval for the LU model.

This indicates that regardless of how the wind fluctuations are obtained (from CFD or directly
generated), similar conclusions can be made on the assumptions and validity of the CFD model.
Again, the LU model underestimates the torsional response for amplitudes αrms � 3 deg for
the CFD model. Similarly as for the one-to-one comparison, it can be argued that this is a
consequence of the aerodynamic nonlinearity in the self-excited forces.

6.3.8 Flutter analysis: 2D
The critical flutter velocity Ucr is computed in the time domain using the semi-analytical and
CFD models for smooth free-stream and the results are given in Fig. 6.48 (left). Additionally,
the critical flutter range obtained from Larsen’s [189] direct section model tests is given by the
gray area in the same figure. To obtain the critical frequency fcr, FFT is performed on the
motion time-histories at flutter (cf. Fig. 6.48, right). The good correspondence of the results
for the HNL and CFD models suggests that good approximation of the flutter velocity can be
obtained by a linear dynamic perturbation analysis about the nonlinear static equilibrium. In
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Figure 6.48: Great Belt Bridge: critical flutter velocity Ucr (left) and frequency fcr (right) for the
CFD and semi-analytical models from 2D flutter analysis. The shaded area represents the range for
critical flutter velocity obtained from experimental section model testing by Larsen [188].

the case of the HNL model, the flutter derivatives were linearized at the static angle αs = 1.5
deg for the flutter analysis. However, the effect of the aerostatic nonlinearity is not very
significant in this case, since the critical velocity for the LU model is slightly overestimated
(≈ 1.5 %) w.r.t. the one for the HNL model. The QS and LQS models underestimate the
critical velocity compared to the LU and CFD models, which indicates that the effect of linear
fluid memory increases the flutter velocity. This observation is in line with the previous case-
study of the Mersey Gateway bridge; however, it is in contradiction to the results presented
by Wu and Kareem [359]. A general conclusion cannot be made since the flutter derivatives
and the aerodynamic center are case-dependent. Furthermore, from the results for the QS and
CQS models, it can be observed that including the averaged fluid memory increases the flutter
velocity when the quasi-steady nonlinearity is considered. Nevertheless, considering the fluid
memory in an averaged manner overestimates the effect of the fluid memory on the instability
limit, as the critical velocity for the CQS model is overestimated compared to the one for the
LU, HNL and CFD models. A higher flutter velocity is obtained for the MQS model compared
to the CFD model, which is a result of the quadratic trend of the velocity flutter derivatives.

Figure 6.49 depicts the time-histories of the decaying, critical and post-critical response for the
CFD, HNL and QS models. The response of the CFD model below Ucr has a decaying trend,
while limit cycle oscillations can be observed at Ucr. In the case of the CFD free vibration
analysis, it is difficult to obtain the exact critical velocity, although Ucr is computed with
an increment of 0.2 m/s. The response for the HNL and QS models maintain a constant
amplitude at the critical flutter speed. For a velocity higher than Ucr, the response for the
HNL model adopts divergent behavior with unlimited amplitudes. Although the post-flutter
behavior results in limit cycle oscillations for the QS model, the amplitudes during limit cycle
oscillations are not corresponding with the CFD model. The reason for this is that the dynamic
wind coefficients considerably exceed their static values, which is also noted by McCroskey [219].
The aerodynamic response from the flutter analysis for the rest of the semi-analytical models is
omitted herein since it has a similar trend as the LU and QS models (linear or nonlinear) [359].

An absolute value of the wavelet coefficients of the vertical and torsional response for the
CFD model, normalized w.r.t. the frequency marginal, is depicted in Fig. 6.50). The wavelet
analysis is performed for a central frequency of f0 = 0.5 Hz. For these wavelet coefficients
of the response, the instantaneous frequency is computed by the identification of the local
maxima of the ridge (cf. Fig. 6.51, where the wavelet energy is concentrated (cf. Kijewski
and Kareem [171]). The results suggest that the initial frequency of oscillation for the CFD
model corresponds well with the one obtained for the HNL model. As the divergent behavior
progresses to stable limit cycle oscillations, the coupled instantaneous frequency tends to the
torsional natural frequency, indicating torsionally driven oscillations in this range.
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Figure 6.49: Great Belt Bridge: time-histories of the responses near the critical velocity from 2D
flutter analysis. The following cases of response are depicted: a) CFD model - damped (U = 71.0 m/s,
left), limit cycle oscillation (Ucr = 72.2 m/s, right); b) HNL model - damped (U = 71.5 m/s, left),
critical (Ucr = 72.5 m/s, center), divergent (U = 78.0 m/s, right); c) QS model - damped (U = 67.0
m/s, left), critical (U = 68.1 m/s, center), limit cycle oscillation (U = 72.0 m/s, right).
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Figure 6.50: Great Belt Bridge: frequency-normalized wavelet magnitude of the vertical displace-
ment |Wh| (left) and rotation |Wα| (right) during limit cycle oscillation (at Ucr = 72.2 m/s) for the
CFD model from 2D flutter analysis.
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Figure 6.51: Great Belt Bridge: instantaneous frequency of the response during limit cycle oscillation
(at Ucr = 72.2 m/s) for the CFD model from 2D flutter analysis.

Amandolese et al. [7] performed an experimental study on limit cycle oscillation of a flat plate
due to aerodynamic nonlinearities and noted that beyond the critical velocity, the coupled fre-
quencies tend towards the rotational branch, which is in line with the observations of this study.
The authors also noted that with increasing amplitudes, there might be a change in the driving
mechanism of the aeroelastic response from coupled to stall flutter. Unlike coupled flutter, stall
flutter for airfoils is characterized by limited amplitudes and by partial or complete separation
of the flow at the leading edge [91, 219], leading to high nonlinearity in the aerodynamic forces.

Figure 6.52 depicts instantaneous particle maps and velocity contours during half a period in the
limit cycle oscillation range. As seen in the figure, a separation bubble is forming at the leading
edge, which is characteristic of a dynamic stall. The transition from coupled to torsional flutter
can be also identified from the A∗

2 derivative at αs = 4 deg (cf. Fig. 6.21). Generally, the vortex
methods are capable of accurately modeling the post-flutter behavior and matching the limit
cycle oscillation amplitudes. This was recently validated by Chawdwhury and Morgenthal [52]
with experimental results and for energy harvesters, while Akbari and Price [6] showed that the
aerodynamic hysteresis can be accurately represented during dynamic stall of airfoils. However,

236



6.3. Great Belt Bridge

x/B [-]

z
/
B

[-
]

10 10.5 11 11.5 12
−0.50

−0.25

0.00

0.25

0.50

x/B [-]
z
/
B

[-
]

10 10.5 11 11.5 12
−0.50

−0.25

0.00

0.25

0.50

x/B [-]

z
/
B

[-
]

10 10.5 11 11.5 12
−0.50

−0.25

0.00

0.25

0.50

x/B [-]

z
/
B

[-
]

10 10.5 11 11.5 12
−0.50

−0.25

0.00

0.25

0.50

u/U [-]
−1.5 −1.0 −0.5 0.0 0.5 1.0

Figure 6.52: Great Belt Bridge: instantaneous particle maps (left) and longitudinal velocity fields
(right) during limit cycle oscillation for the CFD model from 2D flutter analysis. The sequence
represents half cycle from minimum (nose-down, top) to maximum (nose-up, bottom) rotation.

it is noted that amplitudes in the limit cycle oscillation range might lack numerical accuracy, as
issues were noted in the vortex release algorithm for large rotations in the present work. This
is attributed to the relatively coarse time-step. Nevertheless, the critical flutter limit for the
CFD model corresponds well with the wind tunnel experiments and the LU and HNL models,
which is of main interest in bridge aerodynamics.
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6.3.9 Buffeting analysis: Pseudo-3D

The fundamental study of a flat plate and extensive analyses in the previous section prove the
reliability of using the vortex method for 2D aeroelastic analyses. In what follows, a Pseudo-
3D buffeting analysis is performed using the new turbulent Psuedo-3D method, presented in
Sec. 3.6.4, and further verification is conducted with the LU model in a statistical manner.
As noted in Tabs. 6.3 and 6.4, anisotropic free-stream turbulence (TIu = 11 %; TIw = 6
%) is used for the Pseudo-3D buffeting analysis for a bridge discretized on Nstr = 50 strips.
The properties of the free-stream turbulence in terms of achieved coherence and turbulence
statistics are identical as in Sec. 5.3.1 since the numerical parameters are similar. Thus, very
good correspondence was noted for the vertical turbulence intensity (TIw = 6 %), while the
longitudinal was underestimated resulting in TIu = 8 %. It is noted that although isotropic
turbulence could have been easily selected, the idea is to show that for conventional streamlined
bridge decks, the underestimation of the longitudinal turbulence intensity does not play a
significant role.

Before performing the aeroelastic analysis, the span-wise correlation of the buffeting forces
is further verified for the Davenport coherence. Considering 5 static strips of the Great Belt
section at a distance Δy = 5 m, the Welch magnitude-squared coherence of the lift and moment
force of the first and third strip are given in Fig. 6.53. In the same figure, the magnitude
squared-coherence is given for the wind fluctuations, previously obtained in Sec. 5.3.1 (cf.
Fig. 5.23). Very good agreement can be observed for the buffeting forces w.r.t. the target
Davenport coherence. Moreover, it can be seen that the vertical fluctuations govern the span-
wise correlation, which makes the Davenport coherence function sufficient for this case-study.
Generally, the modified coherence should be used (cf. Sec. 5.3.1), which was realized at a later
point in this work.

Next, buffeting analysis is performed for both CFD and LU models. Selecting the mean wind
speed at U = 30 m/s ensures that vortex shedding effects do not influence the response signific-
antly while minimizing the potential nonlinear effects. As discussed, both of these phenomena
are not captured by the LU model. The analyses are performed for time amounting to t = 700
s with approximately 41 thousand time-steps. The fluid domain for each strip is discretized by
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Figure 6.53: Great Belt Bridge: span-wise coherence of the forces and wind fluctuations between
the first and the third strip for a static deck and Nstr = 5 number of strips with and distance of
Δy = 5 from a CFD Pseudo-3D buffeting analysis. The results for the wind fluctuations are taken
from Sec. 5.3.1 (cf. Fig. 5.23) for a simulation without a body in the CFD domain, as the numerical
parameters are identical.
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Figure 6.54: Great Belt Bridge: representative sample time-histories of the lateral (top), vertical
(center) and rotation (bottom) displacements at midspan (y/lspan = 0.5) for the CFD (left) and LU
(right) model from Pseudo-3D buffeting analysis.

approximately Np= 175 thousand particles, resulting in a total of Np=8.75 million particles for
all strips. A parallel multi-core CPU architecture is utilized and each strip is run on a single
core. The runtime was approximately 100 h, excluding the time required for the generation
of inflow particles. A representative sample of the response time-histories for the CFD and
LU model are shown in Fig. 6.54. Figure 6.55 depicts instantaneous particle maps for all 50
strips in the initial steps of the analysis, i.e. before the particles reach the section, to achieve
sufficient visibility.

Two cases are considered for the free-stream turbulence in the LU model: case one (C1),
considering the loss of turbulent energy of the longitudinal fluctuations of the CFD model,
i.e. TIu=8 % and TIw=6 %, and case two (C2), where the turbulence intensity is taken as
the prescribed quantities, i.e. TIu=11 % and TIw=6 %. With this, a comparable basis is
maintained between the CFD and LU model for C1, whereas the influence of the loss of lateral
turbulent energy on the response can be evaluated by studying C1 and C2 for the LU model.
For each of the two cases for the LU model, 20 analyses are conducted with randomly generated
wind fluctuations in order to facilitate a statistical significance of the results. As per common
practice for time-domain buffeting analysis with randomly generated wind fluctuations, the 99
% confidence interval of the results is considered for the comparison [61].

Figure 6.56 depicts the RMS of the response, where the curve for the LU model in both cases
is an average from the 20 analyses, while the shaded area corresponds to the 99 % confidence
interval of the response for the LU model for C1. The lateral displacement is overestimated
from the CFD analysis by 4.4 % compared to the mean value of the response for the LU model
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Figure 6.55: Great Belt Bridge: instantaneous particle maps at the initial steps from Pseudo-3D
buffeting analysis. The particle maps are shown before the bridge is immersed into the inflow particles
for visibility.
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Figure 6.56: Great Belt Bridge: RMS of the span-wise lateral (top), vertical (center) and rotational
(bottom) displacements for the LU and CFD models from Pseudo-3D buffeting analysis. The lines
representing the response for the LU model in case C1 (TI = 8 %, TI = 6 %) and C2 (TI = 11 %,
TI = 6 %) are obtained as an average from 20 generated random wind time-histories with U = 30
m/s. The shaded area defines the 99 % confidence interval of the displacements for the LU model for
C1.

for C1, which can be attributed to the quasi-steady values used for the lateral aerodynamic
damping and the slower decay from the initial impulse in the CFD model. The RMS of the
vertical displacement at the span of the CFD model is in good agreement with the mean value
of the LU for C1 with a discrepancy of 2 %. The difference in the mean value of the RMS of
the torsion for the LU model for C1 is 10 % w.r.t. the CFD model.

Figure 6.57 (left) depicts the PSDs of the response at mid-span (y/lspan=0.5), where the gray
shaded area corresponds to the envelope for the LU model for C1. Additionally, the same
figure (cf. Fig. 6.57, right) depicts the modal contributions of the first three modes for each
component of the response. Judging from the relative modal contribution, there is a good
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Figure 6.57: Great Belt Bridge: PSD (left) of the response at midspan (y/lspan = 0.5) and modal
contribution (right) the first 3 modes in horizontal (top), vertical (center) and torsional (bottom)
directions for the LU and CFD models from Pseudo-3D buffeting analysis. The lines and bars represent
the response for the LU model in case C1 (TI = 8 %, TI = 6 %) and C2 (TI = 11 %, TI = 6 %),
are obtained as an average from 20 generated random wind time-histories with U = 30 m/s. The
shaded area (left) defines the envelope, while the error bars (right) the 99 % confidence interval for
the displacements of LU model for C1.

correspondence between the CFD and LU model for C1. The frequency content of the vertical
and rotational displacements shows that the CFD model results in a slightly increased value in
the part of the response due to background turbulence. This is the probable reason why the
shape of the RMS vertical response of the CFD model is slightly distorted and unsymmetrical
compared to the LU model (cf. Fig. 6.56). Nevertheless, it is noted that the response for
the CFD model is within the confidence interval of the RMS and envelope of the PSD of the
response for the LU model, from which it can be concluded that a good agreement is obtained
for the vertical and rotational displacements. The loss of lateral turbulent energy affected only
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the lateral displacement, where C1 underestimated the response compared to the C2 by 3.1 %.
Therefore, for bridge decks with low drag coefficient at the angle of static equilibrium compared
to the lift slope, which is commonly the case for most of the streamlined sections, the loss of
lateral turbulent energy can be negligible for the vertical and torsional displacements.

6.3.10 Flutter analysis: Pseudo-3D
A multimode flutter analysis is conducted as a final step of the aeroelastic analyses for the
Great Belt Bridge. The critical flutter velocity Ucr is determined using the laminar Pseudo-3D
VPM and the LU model in the time domain. Figure 6.58 depicts the time-histories of the
vertical and torsional displacements for the LU and the CFD model, for velocities below and
at critical flutter velocity. Furthermore, the displacements for a divergent velocity for the LU
model are given. The static displacements due to the mean wind velocity for the LU model are
omitted in the time-histories in order to distinctively show the difference between the damped,
critical and divergent oscillations. Limit cycle oscillations are evident in the post-flutter range
(approx. t > 300 s) for the CFD model, in a similar fashion as for the 2D analysis with slightly
lower amplitudes.

Figure 6.59 shows the instantaneous particle maps of the bridge deck during limit cycle oscil-
lation from peak negative (nose-down) to peak of the positive rotation (nose-up). The con-

t [s]

h
[m

]

0 100 200 300 400
−4

−2

0

2

4
CFD - U=72 m/s
CFD - U=71 m/s

t [s]

α
[d
eg

]

0 100 200 300 400
−15

−10

−5

0

5

10

15

t [s]

h
[m

]

0 100 200 300 400
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
LU - U=75.3 m/s
LU - U=74.3 m/s
LU - U=72.3 m/s

t [s]

α
[d
eg

]

0 100 200 300 400
−30

−20

−10

0

10

20

30

Figure 6.58: Great Belt Bridge: time-histories of the vertical displacement (left) and rotation (right)
near the critical velocity for the CFD (top) and LU (bottom) models from Pseudo-3D flutter analysis.
The following cases of response are depicted: CFD model - damped (U = 71.0 m/s), limit cycle
oscillation (Ucr = 72 m/s); LU model - damped (U = 72.3 m/s), critical (Ucr = 74.3 m/s), divergent
(U = 75.3 m/s). In case of the LU model, the mean is subtracted from the response and aerodynamics
(indicial functions and flutter derivatives) are used for static angle of attack of αs = 2 deg.
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tribution of the first vertical and torsional modes is clear during the limit cycle oscillations;
however, vibrations of higher modes can be seen as well. Since the self-excited forces are usually
considered as fully correlated in the span-wise direction, the utility of the Pseudo-3D VPM for
the determination of the instability threshold in multimode flutter analysis is prominent.

Similarly, as for the 2D analysis, the critical flutter velocity Ucr appeared to be sensitive to
the positive angles of incidence. In 2D, this was manifested by comparing the LU and HNL
models. Therein for the HNL model, the instability threshold was determined directly from the
flutter analysis using interpolated rational coefficients for the indical functions at the angle of
static equilibrium. Herein, the critical flutter limit at the angle of static equilibrium for the LU
model (Ucr-LU for α = αs) is computed by linearly interpolating of the critical velocity, obtained
for flutter derivatives at various angles of attack. As the flutter derivatives were additionally
obtained determined an increment of 1 degree (not shown), the deviations are expected to be
small for the simple approach of interpolation of Ucr using the LU model herein.

Figure 6.60 shows the critical flutter velocity for the CFD and LU models. The CFD model
resulted in lower instability limit w.r.t. the LU model at the angle of static equilibrium αs,
with a difference of 5.5 %. The angle at static equilibrium for the CFD model is obtained
by averaging the rotations at a velocity that is 1 m/s less than the critical one. Since critical
flutter velocity for the CFD model lies on the αs−LU curve, it can be further concluded that
the nonlinear aerostatic analysis of the LU model yielded good correspondence with the CFD
model.

Compared to the 2D case, performing a multimode flutter analysis resulted in higher flutter
velocity for the LU model. This means that there is a contribution of the higher modes, yielding
higher instability threshold (Ucr = 73.8 m/s in 2D at α = αs for HNL model, that is equivalent
to LU for this case with Ucr = 76.2 m/s for Pseudo-3D at α = αs). Interestingly, this is not the
case for the CFD model as the critical velocity in 2D is identical as in Pseudo-3D. Due to the
unsymmetrical shape of the deck, the Great Belt experiences a relatively large static angle of
attack compared to other symmetrical streamlined sections. This, and the fact that the flutter
regime changes to stall flutter at high angles of attack are the plausible reasons why there is
no increment of the flutter velocity for the 3D case. Such observation means that the unsteady
aerodynamic nonlinearity can govern the flutter velocity and suppress the contribution of the
higher modes. In the case of the symmetrical deck of the Little Belt Bridge, Abbas [2] found
that the critical flutter limit is increased by performing a multimode CFD Pseudo-3D analysis.

Larsen [188] reported an instability threshold amounting to Ucr ≈ 72 m/s from free-vibration
experimental tests for a taut strip model, which is similar to the results from the Pseudo-3D
analysis. For free-vibration tests, the angle of attack is automatically corresponding to the
angle of static equilibrium. Hence, the good overall correspondence between the CFD and
experimental results further proves the reliability of the laminar Pseudo-3D VPM. Even in
experiments, the critical velocity taut-strip model (3D) is in the critical range (Ucr = 70 − 74
m/s) for the sectional model (2D). This further confirms the findings of this study for the
Pseudo-3D VPM.
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Figure 6.59: Great Belt Bridge: instantaneous particle maps during limit cycle oscillation for the
CFD model from Pseudo-3D flutter analysis. The sequence represents half cycle from minimum (nose-
down, top) to maximum (nose-up, bottom) rotation.
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Figure 6.60: Great Belt Bridge: critical flutter velocity Ucr for the LU and CFD models from
Pseudo-3D flutter analysis. The experimental results (EXP) are for the taut strip model reported by
Larsen [188]. In the case of the LU model, Ucr is determined for a positive angle of incidence and the
corresponding value is computed using linear interpolation at the intersection with the angle at static
equilibrium αs (Ucr-LU for α = αs).
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6.4 Third Bosphorus Bridge
The new Third Bosphorus Bridge, officially named Yavuz Sultan Selim Bridge, stands as a link
between Europe and Asia (cf. Fig. 6.61). With a main span of 1408 m and a total length of 2164
m, it connects the two villages of Garipçe, on the European side, and Poyrazköy, on the Asian
side, both located near Istanbul, Turkey. An unconventional hybrid between a cable-stayed and
suspension bridge was selected for the structural system by the Swiss engineer Jean-François
Klein and the French engineer Michel Virlogeux, to assure the required high rigidity for the
in-service condition [335]. Standing as such, the Third Bosphorous Bridge is certainly one of
the most innovative civil structures of the decade.

From a wind engineering aspect, the deck is aerodynamically shaped with a high width-to-depth
aspect ratio. With a width of 58.4 m, the deck accommodates four road, two railway and two
pedestrian lanes (cf. Fig. 6.62, (c) for a schematic illustration of the shape). The high aspect
ratio and cutting-edge aerodynamic shape were the two of several reasons why this deck was
selected to be the experimental benchmark for code verification as a part of the IABSE Task
Group 3.1, "Super Long Span Bridge Aerodynamics". Thus, extensive experimental tests were
conducted at the boundary layer wind tunnel at Politecnico di Milano by the wind engineer-
ing group. These tests included determination of static wind coefficients, flutter derivatives,
aerodynamic admittance and buffeting response under deterministic gusts.

This section presents a validation of the novel method for the determination of complex aero-
dynamic admittance, presented in Sec. 3.7.4. The experimental results are taken from the
tests conducted as a part of the aforementioned IABSE task group. During his research stay
at Politecnico di Milano, the author was present for the model building and instrumentation
had extensive discussions with the wind engineering group. The data from the tests and post-
processing codes were supplied by the Politecnico di Milano wind engineering group [12], and
were further advanced and elaborated by the author.

The section starts with a description of the experimental setup, followed by validation of the
static wind coefficients and aerodynamic admittance for vertical sinusoidal gusts. Moreover,
the aerodynamic admittance for longitudinal gusts is obtained from CFD simulations.

Figure 6.61: Third Bosphorous Bridge: a panoramic impression (picture courtesy of Rolf Cosar
(Rolfcosar), from commons.wikimedia.org).
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6.4.1 Experimental setup
As a part of the experimental tests, aerodynamic forces were measured for laminar free-stream
and deterministic gusts using an active turbulence generator, for the experimental setup de-
picted in Fig. 6.62. The sectional model was made of carbon fiber with a geometrical scale
of 1:50 and is equipped with four rings of pressure taps connected to high-frequency pressure
scanner (cf. Fig. 6.63, a and d). Each ring consists of 62 pressure taps and is positioned at
different locations along the length of the model, denoted as R1 − R4 in Fig. 6.62 (b). Having
such a configuration enables one to measure the pressure correlation in the lateral direction.
Compared to the real deck on-site, the experimental model does not include windshields; never-
theless, fences were considered (cf. Fig. 6.63, d). Due to high porosity, the aerodynamic forces
are obtained by integration of the pressure taps positioned on the deck only, i.e. the effect of
the fences is assumed to be negligible; however, they might influence the local aerodynamics.

An active turbulence generator consisting of ten NACA 0012 airfoils with a chord of 20 cm
was utilized to generate vertical sinusoidal gusts (cf. Fig. 6.62, b). All airfoils are mechanically
linked and forced to perform sinusoidal pitching motion by two brushless motors with user-
defined frequency and amplitude. The active turbulence generator is 4 m long, i.e. 40 cm
longer than the model, and it was positioned at a distance of 6B upstream of the section.

Four four-holes cobra probes were installed at distance B upstream of the leading edge for
each pressure ring (cf. Fig. 6.62, c). With this, the instantaneous wind fluctuations were
measured in both horizontal and vertical directions, which is required for the computation of
the aerodynamic admittance.

Cobra probeNACA0012

11
627

14
2

117

117
U

R1 R2 R3 R4

33 33
113 113

360

a)

b) c)

[cm]

11
7

Figure 6.62: Third Bosphorous Bridge: experimental setup in a) elevation, b) plan including four
pressure rings denoted as R1 − R4, and c) cross-section.
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a) b)

c)

d)

e)

Figure 6.63: Third Bosphorous Bridge: a) experimental model, b) active turbulence generator, c)
experimental model with cobra probes, d) fences and pressure taps, e) aerodynamic admittance tests
(pictures b), c) and e) are courtesy of T. Argentini, S. Omarini, and D. Rocchi.)
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Low residual turbulence intensity was noted during the admittance tests with an intensity of
TIu=1.6 % in the horizontal and TIw= 1.1 % in the vertical direction and corresponding length
scales of Lu=0.124 m and Lw=0.025 m, respectively. These values are negligible w.r.t. the
actively generated turbulent component. Thus, the experimental setup ensured, up to a certain
degree, that the deck aerodynamics is two-dimensional for both laminar and deterministic
turbulent free-stream, i.e. the strip assumption is valid.

6.4.2 Static wind coefficients

Before validating the aerodynamic admittance, the static wind coefficients obtained using CFD
simulations are compared to the experimental results. The common physical parameters for
the CFD simulations and experiments are given in Tab. 6.7. In the case of the CFD model,
the numerical parameters are given in Tab. 6.8. The lift and moment coefficients are averaged
for a minimum period amounting to τ=50 at each angular increment, for a deck positioned
at xs=(6.5B, 0) in the CFD domain. An instantaneous velocity field and particle map of the
section under laminar free-stream is depicted in Fig. 6.64.

Figure 6.65 depicts the static wind coefficients, obtained from the CFD simulations and exper-
imental tests. As noted previously for the experimental tests, the static wind coefficients are
obtained from the pressure taps positioned on the deck only, neglecting the fences and auxiliary
equipment. The Reynolds number in the experimental tests amounts to Re=7.70×105. A slight
overestimation is noted in the lift coefficient for positive angles; while there is an offset in the
moment coefficient. The drag coefficient can be underestimated by the VPM, which has been
also observed in other studies (cf. e.g. Larsen and Walther [193]). Although the aerodynamic
forces from the experimental tests are obtained using the pressure taps only, the separation and
reattachment point is still influenced by the auxiliary equipment. Taking this into account, the
correspondence is considered to be fair.

Property type Physical parameter Value

Shape Deck width: B 1.17 m
Deck depth: HD 0.11 m

Experimental

Wind speed: U 6.5-11 m/s
Reynolds number: Re 4.9×105-1.16×106

Vertical amplitude: wc0/U 1.1-7.4 %
Longitudinal amplitude: uc0/U /
Airfoil distance: lR/B 1.5
Reduced velocities: Vr 2 − 54

CFD

Wind speed: U 10 m/s
Reynolds number: Re 7.78×105

Vertical amplitude: wc0/U 3.5 %
Longitudinal amplitude: uc0/U 3.5 %
Airfoil distance: lR/B 1.5
Reduced velocities: Vr 2 − 54

Table 6.7: Third Bosphorous Bridge: prescribed physical parameters for the experimental and CFD
models under laminar and turbulent free-stream.
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Numerical parameter Value
Domain length: ld/B 17
Domain height: lh/B 8.5
Number of panels: Npan 750
Panel length: Δlpan/B 2.75×10−3

Reduced time-step: Δτ = ΔtU/B 2.75×10−3

Core radius: ε/B 3.3×10−3

Poisson grid: Nx × Nz 1023 × 511
P3M neighboring cells: Nr 3
Vorticity support: lv/B 16.5
Particle release factor: Δp = Δtin/Δt 12-21

Table 6.8: Third Bosphorous Bridge: prescribed numerical parameters the CFD model.

x/B [-]

z
/
B

[-
]

6 6.5 7 7.5 8 8.5 9 9.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

u/U [-]
−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Figure 6.64: Third Bosphorous Bridge: instantaneous particle map (top) and velocity field (bottom)
under laminar free-stream.

6.4.3 Aerodynamic admittance
Having validated the static wind coefficients, the aerodynamic admittance for vertical gusts is
determined herein for both experimental and CFD models. The section is subjected to vertical
sinusoidal gusts with prescribed amplitude (cf. Tab. 6.7). For experiments, it is difficult
to obtain exactly the prescribed reduced velocities and gust amplitude. Hence, the Reynolds
number and the gust amplitudes are given in a range. As an example, Fig. 6.66 depicts the time-
histories and their corresponding FFTs of the longitudinal and vertical velocity components.
Despite the high frequency and additional longitudinal components, a clear sinusoidal harmonic
is observed at Vrt = 9.52. The gust quality (cf. (5.10)) for this particular experimental time-
history amounts to Qw ≈0.7.

Figure 6.67 depicts instantaneous snapshots of particle maps from minimum to maximum peak
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Figure 6.65: Third Bosphorous Bridge: drag CD (top), lift CL (center) and moment CM (bottom)
static wind coefficients for the CFD and experimental (EXP) model.
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Figure 6.66: Third Bosphorous Bridge: sample wind velocity time-histories, u and w (left), and
corresponding FFTs, û and ŵ (right), recorded from the cobra probe corresponding to the pressure
ring R3 at gust with reduced velocity Vrt = 9.52.

of a sinusoidal gust past the bridge deck at a reduced velocity of Vrt=10. It is evident that
the particles do not cross the section. Figure 6.68 depicts the fluctuating wind coefficients
due to buffeting forces, CDb, CLb and CMb (i.e. the mean is subtracted), which are normalized
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Figure 6.67: Third Bosphorous Bridge: instantaneous particle maps of the section under vertical
sinusoidal gust with reduced velocity Vrt = 10.

w.r.t. the gust amplitude w0/U . The reduced velocity, Reynolds number and gust amplitudes
are approximately similar for this case for the CFD analyses and experiments. To obtain
comparable results, the abscissa is normalized w.r.t. the gust reduced velocity for each model
(Vrt = 10 for the CFD and Vrt = 9.52 for the experimental results). Very good correspondence
can be observed, with a slight overestimation by the CFD model for the lift and moment. In the
case of the drag, the amplitudes at the prescribed reduced velocities correspond well, while an
additional low reduced velocity component can be observed from the experimental results. The
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Figure 6.68: Third Bosphorous Bridge: sample normalized drag CDb (top-left), lift CLb and moment
CMb time-histories of the buffeting forces (no mean), and their corresponding FFTs (right), for a
section under vertical sinusoidal gust for the CFD (Vrt = 10, Re = 7.78 × 105, wc0/U = 3.5 %) and
experimental (EXP) model (Vrt = 9.52, Re = 7.78 × 105, wc0/U = 3.1 %). The abscissa is normalized
w.r.t. the corresponding gust reduced velocity.

drag force at Vr = 0.5Vrt is higher for the experimental results due to the higher contribution
of the additional longitudinal velocity component.

In Fig. 6.69, the aerodynamic admittance for vertical gusts for the CFD and experimental
models is depicted. The experimental results are for the inner pressure rings, R2 and R3
(cf. Fig. 6.62). These two rings are selected in order to alleviate the end effects of the flow
on the model. The aerodynamic admittance for the CFD model is computed for two setups.
In the first setup (S1), the sinusoidal gust is tracked down at B upwind of the leading edge
(i.e. xc = (5B, 0)), in a similar fashion as for the experimental results. The aerodynamic
admittance for the second setup (S2) is computed with a sinusoidal gust tracked at the position
of the stiffness center (i.e. xc ≡ xs = (6.5B, 0)), from a simulation without a section in the CFD
domain as previously discussed in Sec. 3.7.4 from Ch. 3. In order to obtain comparable results
with the experiments for the imaginary value of the aerodynamic admittance, the sinusoidal
gust is shifted for τshift = 1.5 for S2. It is noted that this does not influence the absolute value
of the aerodynamic admittance. As it can be observed from the figure, the CFD results for
the lift and moment correspond well with the experimental results for both real and imaginary
components. In the case of the drag aerodynamic admittance, the correspondence of the CFD
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Figure 6.69: Third Bosphorous Bridge: aerodynamic admittance of the drag χDw (top), lift χLw

(center), and moment χMw (bottom) forces for a section under vertical sinusoidal gusts for the CFD
and experimental (EXP) model. The complex description (left) is given for the real (blue) and ima-
ginary (red) values, while the absolute admittance (right) is further compared to Sears function.

results is better for R3, while some discrepancies are observed for R2. Obtaining the drag
admittance implies division of the drag force with the difference C

′
D − CL (cf. (3.209)), which

value is very low. As seen from the static wind coefficients (cf. Fig. 6.65), the drag is highly
nonlinear in the region of αs ≈ 0 and the value of drag derivative C

′
D is very small. The low-

frequency components in the experimental results govern the drag force at particular reduced
velocities as well, which means that the sensitivity of the drag due to vertical gusts is indeed
very low. This explains partially the discrepancies for the drag admittance component. It is
worthy to notice that, the drag aerodynamic admittance exceeds unity in both models.

Two reasons seem plausible for the difference between S1 and S2 for the CFD model. First, the
distortion of the incoming gust due to the influence of the section, and second, the variation of
the gust amplitude in the along-wind direction. As discussed previously, the linear unsteady
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Figure 6.70: Third Bosphorous Bridge: aerodynamic admittance of the drag χDu (top) and lift χLu

(bottom) forces for a section under longitudinal sinusoidal gusts for the CFD model. The complex
description (left) is given for the real (blue) and imaginary (red) values, while the absolute admittance
(right) is further compared to Sears function.

aerodynamic model does not take the effect of the section on the gust amplitudes into account.
It is noteworthy to mention that for S1, the absolute value of the aerodynamic admittance
tends faster towards unity than in the S2 case.

Furthermore, the aerodynamic admittance due to longitudinal gusts is determined only for the
CFD model. All of the airfoils used in the experimental tests are mechanically connected and
oscillate in-phase. Hence, a pure longitudinal gust cannot be generated. Figure 6.71 depicts
the aerodynamic admittance for the drag and moment forces. Although some alteration can
be observed, the absolute value of the drag admittance is mostly unitary. The lift admittance
is somewhat irregular w.r.t. Sears function. The imaginary values for the drag and lift ad-
mittances are always negative, meaning that the forces lag behind the longitudinal gust for
this particular point of tracking of the wind. This was not the case for the vertical gusts (cf.
Fig. 6.69). No significant difference between the two setups, S1 and S2, is observed.

The moment admittance due to longitudinal gusts is not obtained for this particular case. The
reason for this is that the moment forces resulted in rather low values, which for most of the
reduced velocity range are even lower than the vortex-shedding forces. This can be observed
in the FFTs of the fluctuating coefficients in Fig. 6.71. Furthermore, the value of the moment
coefficient CM at αs = 0 is very close to zero (cf. Fig. 6.65); hence, the results are prone to high
numerical uncertainties in the averaging procedure for the static wind coefficients. Therefore,
the moment admittance resulted in very high values due to the small values in the denominator
in (3.208) for moment aerodynamic admittance due to longitudinal gusts χMu. In a general
case for a deck with CM �≈ 0, obtaining χMu is straightforward using the presented method.
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Figure 6.71: Third Bosphorous Bridge: sample normalized drag CDb (top-left), lift CLb and moment
CMb time-histories of the buffeting forces (no mean), and their corresponding FFTs (right), for a
section under vertical sinusoidal gust for the CFD model (Vrt = 10, Re = 7.78 × 105, uc0/U = 3.5 %).
The abscissa is normalized w.r.t. the corresponding gust reduced velocity.
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6.5 Summary
Applications of the whole or parts of the presented synergistic framework were made in this
chapter to practical problems from bridge aerodynamics and aeroelasticity. Three bridges were
considered as reference objects, including the Mersey Gateway Bridge, Great Belt Bridge, and
Third Bosporus Bridge.

The Mersey Gateway Bridge was used as an illustrative example to show how the categorical
modeling approach can help to study the influence of specific assumptions on the response. This
particular reference object was selected as not many studies focused on evaluating aerodynamic
models for a cable-stayed bridge with a bluff cross-section in the erection stage. Aeroelastic
analyses were performed for nine semi-analytical models and the effects of six assumptions were
studied based on the RMS metric for complexity-related models using direct comparison. Based
on the results from buffeting analysis, it was argued that considering the self-excited forces and
fluid memory has the largest influence on such type of structures. On the other hand, the
nonlinearity, steady or quasi-steady, did not have a significant contribution. Similar findings
on the effects of the aerodynamic model assumptions were noted from the flutter analysis. In
contrast to streamlined decks, it was found out that the effect of aerodynamic coupling on the
critical velocity does not play a major role for bluff girders as the flutter is mostly torsional.

The Great Belt Bridge was selected as an application example to show how most of the presented
methods fit together and how they can aid the aerodynamic and aeroelastic analyses. With
exception of the CFD method for determination of the complex aerodynamic admittance, all
presented methods were used in a synergistic manner to study the influence of the aerodynamic
assumptions, perform and verify the results of 2D and Pseudo-3D aeroelastic analysis. Where
possible, the aerodynamic coefficients were first validated with present and past experimental
results. This was followed by 2D analyses using a CFD and six semi-analytical models. Applying
the presented comparative methodology, the effects of aerodynamic assumptions on the self-
excited forces, buffeting forces, aeroelastic response from one-to-one comparison and critical
flutter limit were highlighted. This effectively showed which aerodynamic phenomena can or
cannot be captured by the semi-analytical models compared to the CFD model. As the LU
and HNL model yielded the best overall correspondence, the fluid memory was determined to
be the most influential effect within the fluid-structure interaction. However, the discrepancies
between these models increased for the rotation at high amplitudes, which was attributed to
the nonlinearity of the self-excited forces. The nonlinearity was not appropriately considered by
the nonlinear quasi-steady models. None of the semi-analytical models was able to replicate the
effect of vortex shedding and local non-stationary effects included in the CFD model. Buffeting
and flutter analyses were conducted using the Pseudo-3D VPM. The results corresponded well
with the results for the LU model. As linear behavior is expected for the prescribed wind, it
could be concluded that this method is readily available for practical applications.

Finally, the Third Bosphorous Bridge was utilized as a validation example for the presented
CFD method for the determination of the complex aerodynamic admittance. Results from
experiments, conducted in the boundary layer wind tunnel at Politecnico di Milano, were used
as a basis for validation. Initially, the static wind coefficients were compared, followed by valid-
ation of the aerodynamic admittance due to vertical gusts for all aerodynamic forces, including
drag lift and moment. Both real and imaginary parts of the CFD complex aerodynamic admit-
tance corresponded well with their experimental counterparts. In addition, the aerodynamic
admittance due to longitudinal gusts was determined, showing the versatility of the method to
determine six complex aerodynamic admittances.
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Chapter 7

Summary and Conclusions

7.1 Summary
The main aim of this work was to develop a comparative methodology for aerodynamic models.
Three additional, by no means less important, methods were developed including a turbulent
Pseudo-3D VPM for buffeting analysis, a CFD method for determination of the complex aero-
dynamic admittance and a simple FFT-based method for computation of the unsteady buffeting
forces. Ultimately, all of the developed methodologies were presented as a synergistic frame-
work with the notion to perform both model assessment and analyses in bridge aerodynamics
and aeroelasticity.

To address the issue of model assessment in both qualitative and quantitative manner, a com-
parative methodology was established in two steps. In the first step, the complexity of a CFD
and twelve semi-analytical models was evaluated on an abstract level based on their mathemat-
ical constructions using a categorical modeling approach. The result is a diagrammatic ordering
of models which clearly shows which model is more complex, and thus, better. Further, the
categorical modeling approach was extended in terms of model comparability and completeness
to clearly delineate which models can be compared and which not.

In the second step of the comparative methodology, nine comparison metrics for time-histories
were constructed on a uniform basis. Two of these metrics were introduced as new, which could
evaluate the discrepancy in the non-stationary and nonlinear parts of the signal. Considering
that the aerodynamic forces and response are time-histories for analyses in the time domain, the
effect of the aerodynamic assumptions was studied using these metrics. The need for metrics
that quantify a SRQ beyond the RMS, as per standard practice in bridge aerodynamics, was
demonstrated on generic signals in Chapter 5.

The turbulent Pseudo-3D VPM was composed using two previously developed methods, namely,
the laminar Pseudo-3D VPM and the velocity-based random free-stream turbulence generation.
It was shown in analytical manner that the span-wise correlation of the velocity within the CFD
domain remains correlated between strips. Based on the verification of the velocity field within
the fundamental applications, it was confirmed in a numerical manner that the velocity span-
wise correlation between strips is maintained within the CFD domain up to a certain extent.
The minor loss of span-wise correlation was attributed to the application of kinematic constrains
on a non-divergence-free velocity field.
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To determine the complex aerodynamic admittance, deterministic free-stream turbulence was
simulated by modeling the wakes of two fictitious pitching airfoils with inflow vortex particles.
Positioning a section downstream of the particle release locations yielded sinusoidal buffeting
forces. The complex aerodynamic admittance was then determined as a transfer function
between the buffeting forces and the deterministic free-stream gusts. Moreover, a closed-form
relation, based on an existing mathematical model, was deduced to relate the gust amplitudes
and vortex particles’ circulation. This closed-form relation and the quality of the deterministic
gusts were verified based on simulation without a body in the domain.

The complete verification of the CFD aerodynamic and aeroelastic analyses of flat plate w.r.t.
their analytical counterpart served several purposes for the novel aspects of this work. Initially,
the complex aerodynamic admittance was verified against the Sears analytical function. Then,
it was shown that there is virtually no difference when a simple FFT-based method for com-
putation of the unsteady buffeting forces is used compared to the standard approach based on
the convolution of indicial functions. As a final step of the flat plate analysis, the results of the
buffeting and flutter response were compared w.r.t. an analytical solution, rendering very good
results. The comparison metrics from one-to-one verification of the buffeting response resulted
in high values as well, indicating excellent correspondence.

Chapter 6 was devoted to applications of the presented methods and synergistic framework
in bridge aerodynamics and aeroelasticity. The Mersey Gateway Bridge was used as an ex-
ample to demonstrate how the categorical modeling approach can be used to study the effect
of aerodynamic model assumptions in the case of semi-analytical aerodynamic models. The
most complete application of the synergistic framework was for the Great Belt Bridge. Aero-
dynamic coefficients were compared with wind tunnel results where possible, and then the 2D
buffeting and flutter responses were studied for six semi-analytical and a CFD model. Employ-
ing the comparison metrics for time-histories, it was shown that in the case of both, the Great
Belt Bridge and Mersey Gateway Bridge, the most influential assumption is the fluid memory.
Moreover, the analysis revealed that although nonlinearities may be present in the CFD re-
sponse, these cannot be appropriately captured by the quasi-steady based models. The results
from the Pseudo-3D flutter and buffeting analyses corresponded well with the semi-analytical
models. Finally, a study was undertaken to validate the CFD complex aerodynamic admittance
with experimental results for the deck of the Third Bosporus Bridge.

7.2 Critical remarks
Before proceeding with the conclusions, three remarks on the modeling in this work are made
on the strip assumption, sub-grid turbulence modeling and the validity of results.

Strip assumption

The present investigation is based on the 2D strip assumption, which inevitably influences the
fluid-structure interaction and turbulent energy transfer compared to a 3D case. From a per-
spective of aerodynamic forces, the linear motion-induced forces have been commonly assumed
as fully correlated (cf. e.g Scanlan [285]), indicating that the 2D effects are predominant for
these forces. Thus, the flutter derivatives from 2D CFD simulations are in good correspond-
ence with experimental results, as it was the case herein for the Great Belt Bridge. Similar
observations were reported by Bai et al. [15] for the flutter derivatives obtained using 2D and
3D numerical simulations.
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The 3D effect in the incident part of the buffeting forces is, however, not negligible and it
is dependent on the free-stream turbulence characteristics such as the turbulent length scale
and span-wise coherence [187]. Herein, all employed 2D aerodynamic models, CFD or semi-
analytical, depend only on the chord-wise wavenumber. This situation closely resembles ex-
perimental tests involving an active turbulence generator (cf. e.g. [81, 86]), as the forces are
assumed to be fully correlated over the strip. It is well-established that the aerodynamic forces
dependent on both span- and chord-wise wavenumbers. Experimental studies such as the ones
by Larose [187] and Etkin [101] have shown that the buffeting forces per unit span are reduced
and their and span-wise correlation is increased in the 3D case.

Analytical models for thin airfoils including both wavenumbers have been long developed,
such as the one by Graham [121]. Utilizing the general two-wavenumber analytical model
of the aerodynamic forces, Massaro and Graham [215] showed why there is an increase in
the span-wise correlation of the buffeting forces for random free-stream. The most recent semi-
analytical model in bridge aerodynamics involves both, span-wise and chord-wise, wavenumbers
(cf. e.g. [200, 201]). Presently. This model is linear and only applicable in the frequency domain.

An important finding in the analytical study by Massaro and Graham [215] was that for bridges
with a large span-to-width ratio, such as the Great Belt Bridge, the strip assumption may be
used with sufficient accuracy as the reduction of the lift in the 3D admittance is balanced by
its increased span-wise correlation. Probably, the largest influence of the three-dimensionality
is in the local effects in the aerodynamic forces due to the small turbulent scales and vortex
shedding, which also has been observed in some experimental studies (cf. e.g. [136, 199]).

Looking at the strip assumptions from a fluid dynamics point of view, it is also well established
that the 2D flow characteristics lack physical merit. The mechanism of energy transfer between
scales for 2D turbulence is different from the mechanism for the 3D case [30]. Moreover, the
phenomena due to fluid-structure interaction such as vortex shedding are three-dimensional.
However, the large number of validation studies shows that the VPM can reasonably well
approximate the aerodynamic forces, which is of main interest for this work.

Sub-grid turbulence

Another factor that influences the aerodynamic forces is the sub-grid turbulence. In this work,
a sub-grid turbulent model has not been included and the resolved scales are significantly larger
than the Kolmogorov length scale, hence the name CFD "model". However, it is noted that the
unresolved scales do not significantly affect the resolution of the resolved scales in the VPM
[71] and the angular impulse and energy are mostly conserved. Although a partial turbulence
modeling is implied in the mollification process, this is not a controlled procedure [70].

Nevertheless, the influence of sub-grid turbulence, 2D or 3D, on the aerodynamic forces is not
well understood and warrants further investigations, as discussed by Wu and Kareem [362].
In case the aerodynamic coefficients are validated to a certain extent with experimental and
numerical results from former studies, it is reasonable to assume that the computational model
describes the fluid-structure interaction adequately.
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Validity of numerical results

Where possible, a wind tunnel validation was performed in this work with good to fair corres-
pondence. In particular, most of the aerodynamic coefficients for the Great Belt Bridge and
the aerodynamic admittance in the case of the Third Bosporus bridge were validated. Further,
the critical flutter velocity for the Great Belt Bridge was also validated with the experimental
results from past studies for both 2D and Pseudo-3D.

The 2D or Pseudo-3D aeroelastic response due to random free-stream turbulence was not
validated with experimental results. This would require further experimental tests performed
on a taut-strip model with very large length scale-to-deck width ratio in order to alleviate the
3D effects.

However, as the aerodynamic coefficients are validated to a certain extent with experimental
and numerical results from former studies, it is reasonable to assume that the CFD model
describes the fluid-structure interaction adequately, at least in the linear range. On the other
hand, a point can be made that even though experiments represent the reality, the influence
of measuring uncertainty and non-corresponding scaling of both structure and fluid may not
completely resemble the situation on-site.

7.3 Conclusions
As a part of the proposed synergistic framework, the comparative methodology offers a straight-
forward way to determine the assumption responsible for the discrepancies in a particular metric
of a SRQ by using the diagrammatic ordering of models. A newly developed model can be easily
integrated into the diagram, and the advantages and limitations of its mathematical construc-
tions can be observed immediately. In case the SRQ is a signal, the comparison metrics for
time-histories allow one to quantify discrepancies in particular signal features for two models
individually. In other words, one can obtain a deeper insight into the effect of the aerodynamic
assumptions by looking at individual comparison metrics. Based on this, a judgment can be
made which phenomena can or cannot be captured by this model and how does this reflect
on particular signal features. The present methodology can be easily extended to any other
engineering field. Thus, it shows the potential to be used in model assessment studies beyond
the field of bridge aerodynamics.

Both the laminar and novel turbulent Pseudo-3D VPM provide a new instrument to unveil
some of the nonlinear and local non-stationary effects for wind-bridge interaction. Utilizing the
Pseudo-3D VPM, the vortex shedding, local turbulence effects, and aerodynamic nonlinearities
are inherent in a 2D manner. These effects may be of major significance for high amplitudes
of oscillation in severe wind conditions. Thus, this provides an advantage of the Pseudo-3D
VPM over any semi-analytical model that includes aerodynamic coefficients predicated on 2D
CFD studies. Taking into account the critical remarks made previously and obvious limitations
of a 2D analysis, the notion was to show that the Pseudo-3D VPM may be readily applicable
for aeroelastic analyses of bridges. It is indeed indented that this method is considered from a
modeling aspect, rather than as a simulation, serving as a compromise between the limitations
of the semi-analytical models and high computational demand of the 3D CFD simulations.

Having verified and validated, the CFD method for obtaining the six-component complex aero-
dynamic admittance under deterministic gusts is promising. Both real and imaginary parts
can be obtained separately at a clearly delineated frequency. A complex transfer function in
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the time domain is necessary for the buffeting forces to be real signals. In contrast, only the
absolute value of the aerodynamic admittance can be obtained for random free-stream gusts.
Moreover, there is no presently available two-wavenumber semi-analytical model in the time do-
main. Thus, assuming fully correlated gusts (i.e. two-dimensionality) seems appropriate. These
arguments, and the fact that remarkably few studies exist that compute the aerodynamic ad-
mittance using grid-based CFD methods, makes the case for using the VPM for practical design
applications.

It is envisioned that the presented synergistic framework is applied in bridge aerodynamics in
part or as a whole. Studying the effects of the assumptions in a systematic manner can provide
the range of applicability for the semi-analytical aerodynamic models from a CFD perspective.
Moreover, if one can establish grounds of a reliable CFD model by validating the aerodynamic
coefficients, there is a convincing argument that the results of the Pseudo-3D analyses are valid.

In light of the previous statements, it can be concluded the model performance is highly depend-
ent on the case-study and it is in the designers’ interest to conduct the analysis with various
models to check the range of deviation due to the effect of aerodynamic assumptions. The
outcome of this work is indented to shed some light on the complex processes occurring during
fluid-structure interaction and to unveil some of the nonlinear and non-stationary aerodynamic
effects.

7.4 Outlook
Both the individual presented methods and the proposed synergistic framework leave room for
improvement and open new avenues for further study.

A potential advancement of the categorical modeling approach would be to provide a definition
of empirical and experimental models. With this, a clear approach using category theory could
be defined for different types of models, i.e. experimental w.r.t. mathematical.

Presently, all comparison metrics for time-histories are considered individually as some of them
are redundant. Future studies may involve combining these metrics in a unified metric by util-
izing weighting factors. These factors, as well as a qualitative interpretation of the comparison
metrics, should involve subject matter experts. Moreover, new metrics to quantify discrepan-
cies in higher-order nonlinearities could be developed by employing mathematical tools such as
the higher-order spectra.

Extending the comparative methodology in a probabilistic fashion remains a viable outlook as
well. Thus, previous approaches used for various verification and validation frameworks based
on sensitivity and uncertainty analyses could be incorporated into this methodology.

Several extensions can be made on the account of the CFD model and the Pseudo-3D method in
terms of the random free-stream turbulence. Generating a divergence-free random free-stream
turbulence will alleviate the loss of kinetic energy and thus, yield better anisotropic properties.
Moreover, if the divergence-free velocity fields for multiple strips fields are additionally correl-
ated in the span-wise direction, the loss of correlation for the turbulent Pseudo-3D VPM may
be reduced.

To address the limitation of strip assumption, the Pseudo-3D CFD model can be coupled with
a semi-analytical model in a hybrid fashion. In this sense, the aerodynamic forces for a single
CFD strip could be adjusted to take into account the effects of three-dimensionality such as loss
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of span-wise correlation of the buffeting forces. Additionally, simple quasi-steady models can
be used to apply the wind on the remaining elements of the bridge such as cables and towers.

Further, applications of the method for simulation of deterministic gusts could entail verific-
ation of the superposition principle for the buffeting and self-excited forces within the linear
hypothesis and band superposition tests. Moreover, studying the effect of free-stream turbu-
lence, deterministic or random, on the critical flutter limit still remains an open question in the
community dealing with bridge aerodynamics and aeroelasticity. Although only 2D, the VPM
involving both deterministic and random free-stream turbulence could provide insight into this
topic.

Finally, the presented synergistic framework could be validated using an aeroelastic response
from wind tunnel experiments for both section and taut-strip experimental models. With this,
the effect of the aerodynamic assumptions would be quantified by taking an experimental model
as a reference. Moreover, such validation would certainly contribute to the acceptance of the
Pseudo-3D vortex methods by the wind engineering community.
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Appendix A: IABSE Benchmark

As a part of the International Association of Structural and Bridge Engineering (IABSE), a
Task Group (TG) 3.1: "Super-long span bridge aerodynamics" was formed with the purpose of
developing a benchmark for code verification for buffeting and flutter analyses. The TG consists
of experienced members including academics, consultants and designers from nine universities
and ten companies worldwide. The author is a contributing member as well.

The goal of the TG is to provide reference results for buffeting and flutter analysis for well-
defined input. All members of the group contributed with results using their codes and semi-
analytical models, for the identical input data. All results are then compared and reference
values are provided based on statistical analysis.

The work of the TG was split in three principal steps with sub-steps. The first step is to provide
numerical results for a 2D system with two degrees of freedom. Step two is a comparison of
numerical results from the members with common wind tunnel experimental results. The third
step is planned to be a comparison of numerical results against full scale measurements of a
real bridge. So far, the first and part of the second steps are completed.

In this Appendix, the results from the LU model, based on the code used throughout this work,
are verified using the reference data provided from Step 1.1a of the IABSE TG3.1 [87, 88].
This step is the simplest case and it involves buffeting and flutter analysis of a flat plate for
analytical aerodynamic coefficients. The input parameters resemble the ones used in the flat
plate study (cf. Sec. 5.4, Tabs. 5.7 and 5.8), with some differences. The main difference is in the
aerodynamic admittance function, for which the TG 3.1 provided the empirical Davenport’s
admittance instead of the analytical Sears, given as:

χ = 2
(7/Vr)2

[ 7
Vr

− 1 + exp
(

− 7
Vr

)]
. (A.1)

Moreover, fluid density of ρ = 1.22 is used instead of ρ = 1.20, a damping ratio of ξ = 0.3 %
and the term π/64 for the A∗

3 derivative (cf. (3.126)) is missing for the self-excited forces.

Buffeting analysis was performed in both the time and frequency domain for wind speeds in
the range of U = 15 − 75 m/s. For the time domain, twenty identical records were provided to
all members. The reference results in Fig. A.1 by the mean and standard deviation provided
by the TG members [142]. Moreover, the results for both the time and frequency domain
are given for the present implementation of the LU model, yielding excellent correspondence.
Unfortunately, the results from the TG cannot be directly compared for the CFD model as in
Sec. 5.4, since Davenport’s admittance was used for the TG benchmark.

Further, the critical flutter velocity was determined to be Ucr/(Bfhα) = 13.22 for both time
and frequency domain for the present code implementation, where fhα is the central frequency.
This matches exactly the mean reference value of Ucr/(Bfhα) = 13.22 provided by the TG.
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APPENDIX A: IABSE BENCHMARK
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Figure A.1: IABSE Benchmark: RMS of the vertical displacement (left) and rotation (right) from
the statistical comparison for 2D buffeting analysis for the present code and results from the IABSE
TG3.1. The response for the present time-domain analysis is obtained based on the mean of 20
independent response time-histories. The response for the IABSE benchmark is obtained as a mean
of all members of IABSE TG 3.1 from both frequency- and time-domain analyses. The shaded area
represents the ±σ interval for the IABSE TG 3.1 Benchmark.
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Appendix B: Modal Information

Tables B.1 and B.2 are included in this Appendix.

Mode No. Mode Type f [Hz]
1 Tower/Lateral 0.302
2 Lateral 0.401
3 Vertical 0.444
4 Vertical 0.731
5 Vertical 0.810
6 Torsional 0.913
7 Torsional 0.934
8 Vertical 1.505
9 Vertical 1.598
10 Tower/Torsional 1.945
11 Tower/Torsional 2.194
12 Torsional 2.832
13 Lateral 2.833
14 Vertical 2.914
15 Torsional 2.960

Table B.1: Mersey Gateway Bridge: natural
frequencies and mode types of the 15 vibration
modes included in the analyses.

Mode No. Mode Type f [Hz]
1 Lateral 0.053
2 Vertical 0.100
3 Lateral 0.108
4 Vertical 0.118
5 Vertical 0.144
6 Lateral 0.177
7 Vertical 0.193
8 Vertical 0.225
9 Lateral 0.228
10 Vertical 0.238
11 Lateral 0.242
12 Torsional 0.278
13 Vertical 0.279
14 Vertical 0.299
15 Lateral 0.303
16 Vertical 0.321
17 Vertical 0.321
18 Vertical 0.353
19 Torsional 0.377
20 Vertical 0.411
21 Lateral 0.419
22 Torsional 0.449

Table B.2: Great Belt Bridge: natural fre-
quencies and mode types of the 22 vibration
modes included in the analyses.
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