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Abstract

Fluid-structure interaction (FSI) is a multiphysics study of mutual interaction between de-
formable structure and surrounding or internal fluid flow. Proper understanding of FSI
phenomena is crucial in many engineering fields. The increasing trend of extremely flexible
and lightweight structures, such as long-span cable-supported bridges, super-tall towers and
chimneys, large membrane roofs, requires accurate prediction of wind-structure interaction
in the design process to avoid potential damage of important structures.

The grid-free Vortex Particle Method (VPM) has been established as an accurate and efficient
computational fluid dynamic (CFD) simulation technique to model flow around complex
geometries. Existing FSI models of VPM have been in the context of two-dimensional (2D)
and pseudo-three-dimensional (pseudo-3D) multi-slice formulations. They are based on linear
structural behaviour and limited to rigid cross-sections only. In this study, the VPM is
extended with new developments to enhance its applicability for coupled FSI simulations of
thin-walled flexible structures. The partitioned algorithms are employed to implement the
coupling of flow solvers, 2D and pseudo-3D VPM, with advanced structural models.

Initially, the 2D VPM is coupled with corotational finite element formulation, which is to
include geometric nonlinear effects for large-displacement FSI of thin plate systems. Funda-
mentally, at each simulation step, the fluid forces are projected from the surface panels to
the FE nodes at the mid-surface of the thin body. The nodal displacements are projected
as feedback to the surface panels to update the required boundary conditions. The coupled
solver is validated on benchmark large-displacement FSI problems such as the flag-type flap-
ping of cantilever plates in axial low and Kéarman vortex street. The validated extension of
2D VPM is successfully employed for analysing diverse and complex aeroelastic interactions
of different thin-walled systems such as a) inverted and T-shaped cantilevers with/without
tip mass, b) flexible membrane systems, and c¢) umbrella-type structures.

Secondly, the pseudo-3D VPM is extended similarly according to the procedure of 2D VPM,
however, in a slice-wise manner. Importantly, the pseudo-3D VPM is proposed for FSI
analysis of linear shell structures. Modal superposition technique is applied because of its
computational efficiency. The novelty is the inclusion of 3D natural vibration modes in
the structural analysis. The validated method is utilised for the aeroelastic interaction of
shell-type structures such as large membrane roof and solar chimneys.

Furthermore, two new extensions of 2D VPM are developed for modelling of inflow fluctua-
tions that can be used as inflow condition in FSI analysis. While the first extension allows
modelling of low-frequency pulsating incoming flow, the second extension reproduces tur-
bulent wakes from bluff bodies. Finally, the FSI model of 2D VPM is applied exclusively
to a distinct application field: small-scale aeroelastic energy harvesting. The aero-electro-
mechanically coupled behaviour is modelled for different thin and flexible prototype har-
vesters. An analysis framework is shown useful for optimisation of harvester performance
for different inflow conditions. This work indicates that the developed numerical techniques
are beneficial not only for fundamental investigations but also for aeroelastic interaction of
large-scale thin-walled mega structures.






Kurzfassung

Die Fluid-Struktur-Kopplung, FSK (oder FSI im internationalen Kontext) ist ein multi-
physikalischer Effekt der gegenseitigen Wechselwirkung zwischen verformbarer Struktur und
umgebender oder interner Fluidstromung. Das richtige Verstéindnis der FSI-Phénomene ist
in vielen technischen Bereichen von entscheidender Bedeutung. Der zunehmende Trend zu
extrem flexiblen und leichten Strukturen, wie z.B. weitgespannte seilunterstiitzte Briicken,
superhohe Tiirme und Schornsteine, grofe Membrandécher, erfordert eine genaue Vorher-
sage der Wind-Struktur-Kopplung (WSK) im Entwurfsprozess, um potenzielle Schéden an
wichtigen Strukturen zu vermeiden.

Die gitterfreie Vortex-Partikel-Methode (VPM) wurde als genaue und effiziente numerischen
Stromungsmechanik (CFD im internationalen Kontext) Simulationstechnik zur Modellie-
rung der Stromung um komplexe Geometrien herum etabliert. Bestehende FSI-Modelle der
VPM wurden im Zusammenhang mit zweidimensionalen (2D) und pseudodreidimensionalen
(Pseudo-3D) Mehrschichtformulierungen erstellt. Sie basieren auf linearem Strukturverhal-
ten und sind nur auf starre Querschnitte beschrankt. In dieser Studie wird das VPM um
neue Entwicklungen erweitert, um seine Anwendbarkeit fiir gekoppelte FSI-Simulationen von
diinnwandigen flexiblen Strukturen zu verbessern. Die partitionierten Algorithmen werden
eingesetzt, um die Kopplung von Stromungslosern, 2D und Pseudo-3D VPM, mit fortschritt-
lichen Strukturmodellen zu implementieren.

Zunéchst wird der 2D VPM mit einer korotationalen Finite-Elemente-Formulierung gekop-
pelt, die geometrisch nichtlineare Effekte fiir F'SI mit grofler Verschiebung von diinnen Plat-
tensystemen beinhalten soll. Grundsétzlich werden bei jedem Simulationsschritt die Fluid-
krifte von den Oberflachenplatten auf die FE-Knoten in der Mittelfliche des diinnen Korpers
projiziert. Die Knotenverschiebungen werden als Riickkopplung auf die Oberflichenplatten
projiziert, um die erforderlichen Randbedingungen zu aktualisieren. Der gekoppelte Solver
wird anhand von FSK-Benchmark-Problemen mit grolen Verschiebungen validiert, wie z.B.
das fahnenartige Flattern von Cantilever-Platten in axialer Stromung und Kéarman Wir-
belstrale. Die validierte Erweiterung von 2D VPM wird erfolgreich zur Analyse vielfaltiger
und komplexer aeroelastischer Wechselwirkungen verschiedener diinnwandiger Systeme ein-
gesetzt, wie z.B. a) invertierte und T-formige Cantilever mit/ohne Spitzenmasse, b) flexible
Membransysteme und c¢) schirmartige Strukturen.

Zweitens wird die Pseudo-3D-VPM nach dem Verfahren der 2D-VPM in &dhnlicher Weise
erweitert, jedoch scheibenweise. Wichtig ist, dass die Pseudo-3D VPM fiir die FSI-Analyse
von linearen Schalenstrukturen vorgeschlagen wird. Die modale Uberlagerungstechnik wird
wegen ihrer rechnerischen Effizienz angewendet. Das Novum ist die Einbeziehung von 3D-
Eigenschwingungsmoden in die Strukturanalyse. Die validierte Methode wird fiir die aero-
elastische Wechselwirkung von schalenartigen Strukturen wie grofen Membrandéchern und
Solarkaminen eingesetzt.

Dariiber hinaus werden zwei neue Erweiterungen von 2D VPM zur Modellierung von Ein-
stromschwankungen entwickelt, die als Einstrombedingung in der FSK-Analyse verwendet
werden konnen. Wiahrend die erste Erweiterung die Modellierung von niederfrequent pulsie-
render Einstromung ermoglicht, reproduziert die zweite Erweiterung turbulente Nachldufe
von Steilkérpern. Schlieflich wird das FSI-Modell der 2D-VPM ausschliellich auf ein be-
stimmtes Anwendungsgebiet angewandt: die kleinrdumige aeroelastische Energiegewinnung.
Das aero-elektro-mechanisch gekoppelte Verhalten wird fiir verschiedene diinne und flexible



Kurzfassung

Prototyp-Harvester modelliert. Es wird ein Analyserahmen gezeigt, der fiir die Optimierung
der Harvesterleistung fiir verschiedene Einstrombedingungen niitzlich ist. Diese Arbeit zeigt,
dass die entwickelten numerischen Techniken nicht nur fiir grundlegende Untersuchungen,
sondern auch fiir die aeroelastische Wechselwirkung grofflachiger diinnwandiger Megastruk-
turen von Nutzen sind.
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Chapter 1

Introduction

1.1 Background and motivation

Fluid-structure interaction (FSI) is a multiphysics study that focuses on the mutual depen-
dence between deformable structure and surrounding or internal fluid flow. The flapping
flag and the falling of a leaf are amongst the daily life FSI examples. FSI frequently en-
counters in many areas of civil, mechanical, aerospace and biomechanical engineering such
as the aeroelastic phenomena in long-span bridges, tall towers, chimneys, and lightweight
membrane systems, the motion of wind-turbine blades, the fluttering of aeroplane wings, the
flow-induced vibration of marine risers, heat exchanger tubes, and the blood vessel dynamics,
etc.

Structures under wind action can exhibit a variety of aerodynamic phenomena, which can
lead to destructive and catastrophic events. Under specific wind—structure interaction (WSI)
scenario, the aerodynamic forces can insert on a structure as a consequence of its motion,
also known as self-excited forces, which cause aeroelastic instability. The incident that took
attention of the bridge engineers worldwide is the historical Tacoma Narrows Bridge disaster
(Fig. 1.1) in 1940, which was not entirely comprehended back at that time due to the lack of
understanding of self-excited forces. Furthermore, three of a group of eight tall thin-walled
cooling towers (375 ft high) collapsed in Ferrybridge/England in 1965 (c.f. Fig. 1.2), which

Figure 1.1: The Tacoma Narrows Bridge before (left) and after the collapse (right) (picture cour-
tesy: University of Washington Libraries, Special Collections).
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Figure 1.2: The collapse of three tall cooling towers in Ferrybridge/England (left), the moment
of collapse of one tower (right) (picture courtesy: www.halinaking.co.uk).

was due to disregarding of wind action enhanced by powerful Karman vortex street. Four
towers which were on the windward side survived the wind action, but those behind were
strongly affected by the vortices induced from the upstream bodies.

The design criteria of megastructures, such as long-span cable-supported bridges, super-tall
buildings, towers and chimneys, large membrane roofs, are governed by the aeroelastic in-
teraction phenomena. Advancement in computer-based numerical modelling as well as the
improvement in the wind tunnel test aid to push the boundary limit of these structures.
However, the desires to go beyond introduce explicit challenges for their safety and perfor-
mances, mainly when they are in demand to be increasingly aesthetic and flexible. The vast
majority of these structures are built in the atmospheric boundary layer, which implies that
they are exposed to high turbulence flow and other effects of climate changes due to the
surge of extreme events. Accurate prediction of WSI in the design process is crucial to avoid
potential damage of important structures.

While the wind effects on civil engineering structures are of significant concern, the WSI
has been used for large-scale wind power generation in many parts of the world. Due to
the increasing demand for energy, Professor J. Schlaich of Stuttgart University proposed a
solar chimney power plant (SCPP) in 1978 for solar-based electrical energy in the deserts.
Conceptually, the efficiency of power generation depends largely on the chimney height and
the enlargement of the heat collector area at the base. The feasibility studies on such large
thin-walled chimneys proposed for different heights of 1000-1500 m and diameters of 120—
170 m. Apart from several other critical design issues, such a tall vertical cantilever tower is
strongly susceptible to aeroelastic buckling of thin shells. Accurate modelling and analysis
of coupled behaviour have been a significant concern.

The application fields of WSI have not been limited to large-scale wind energy harvesting. In
recent years, aeroelastic responses or limit cycle oscillation (LCO) of thin-plate systems have
been converted to electrical energy. It has been an active research area of the last decade
because of the boom in structural health monitoring, which is influenced further by the
advancements in wireless sensor networks. The harvesters offer green power as an alternative
to the traditional limited-life batteries, which can save maintenance costs, particularly for
extensive network systems. However, the sustainable motion of aeroelastic energy harvesters
is a prerequisite for energy extraction. Proper understanding of the aero-electro-mechanically
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coupled interaction of thin-walled harvesters is necessary for study on energy optimisation.

It is challenging to analyse FSI problems using analytical methods since they are intrinsically
nonlinear and time-dependent. Experimental studies are always considered as a standard pro-
cedure; however, the advantages that make the numerical methods increasingly widespread
are their ability to predict the full-scale aerodynamic behaviour, modelling of complex shapes,
and detailed visualisation of interesting flow phenomena around bluff or moving flexible bod-
ies. They hold further some preferred components, such as low cost and easy controlling of
input parameters for fluid and structural models.

The numerical methods to solve FSI problems can broadly be classified as monolithic and
partitioned based on the coupling algorithm. The monolithic algorithms solve the governing
equations of fluid and structural dynamics simultaneously, and therefore, they are highly
robust and stable. However, monolithic algorithms are computationally costly and require
substantial expertise for code preservation. In contrast, partitioned algorithms are exten-
sively used since they allow synthesizing independent computational schemes for the fluid
and the structural dynamics subsystems. However, the stability of the coupled method re-
quires special attention. With the advancements of the computational fluid dynamics (CFD)
and computational structural mechanics, significant research on FSI has been performed.
However, it is still challenging to answer many of the fundamental questions in FSI concern-
ing appropriate coupling scheme, accuracy, robustness, performance, and applicability of the
simulation techniques, which indicates the need for further developments.

The Vortex Particle Method (VPM) has been established as an accurate and efficient CED
simulation technique to model flow around complex geometries. The particle-based VPM
has been a viable alternative to grid-based schemes for its strength in preserving rotational
flow features, which drive separation, reattachment and vortex shedding behaviour. The
existing FSI implementations of VPM, which are mainly in the context of two-dimensional
(2D) and pseudo-three-dimensional (pseudo-3D) formulations, have successfully been used
for the analysis of aeroelastic interactions of line-like flexible structures such as long-span
cable-supported bridges and towers. The existing 2D VPM can perform FSI simulation
of rigid cross-sections with 3 degrees of freedom only. The pseudo-3D VPM, as the name
suggests, uses multiple slices of 2D VPM simulations along the longitudinal direction of the
structure to represent the full-scale 3D FSI phenomena. Even though vortex methods have
successfully been used for bluff-bodies and in bridge aerodynamics; there exist no noticeable
contributions in VPM for FSI analysis of deformable geometry that can be widely accepted
in practical applications. The possibility of analysing flow around thin-walled flexible bodies
would allow VPM to investigate a new class of FSI problems such as the flow-induced bending
of a thin-plate or the deformation of thin-walled shell structures.

1.2 Objectives, methodologies and contributions

The main objective of this study is to extend the applicability of VPM for coupled FSI
simulations of thin-walled flexible structures under steady and fluctuating incoming flows.
The initial task is to extend the 2D VPM such that the flow-induced large motion of flexible
thin bodies can be analysed. The subsequent task is to extend the pseudo-3D VPM for
multi-slice F'SI analysis of shell-type systems. In addition to validation of the extended
FSI models, it is important to demonstrate their suitability to different FSI problems and
application field of thin-walled structures. The final and compelling task is to investigate the
interaction between fluid and structure influenced by inflow fluctuations.
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In this context, the flow around deforming thin bodies is to be analysed using the 2D and
pseudo-3D implementations of VPM. The structural behaviour is modelled and analysed
using the Finite Element Method (FEM). The partitioned numerical approach is considered
because of the flexibility of using different mathematical procedures for solving fluid and solid
mechanics. The advantage of VPM is that the method is primarily grid-free; there is no need
for conforming of mesh at the interface of fluid and structure. The structural equations are
formulated and analysed at the mid-surface of the thin element because of its efficiency of
handling large deformation. It is important to note that the coupled numerical extensions
are based on non-conforming mesh since the interface of fluid and structure is separate. The
accuracy of such models largely depends on the appropriate projection of information from
one interface to another and satisfaction of the required boundary conditions.

The interest of this study includes applying the FSI models under both laminar and fluc-
tuating incoming flows. The VPM allows including vorticity carrying particles in the free
stream flow, which can create flow fluctuations in the simulation domain while convecting
downstream. Prior knowledge about the characteristics of the vortex particles is necessary
to achieve the desired flow fluctuations.

This thesis separates the existing F'SI models of VPM from the new contributions that allow
the extended coupled methods to analyse FSI of thin-walled flexible structures. The latest
advancements of the VPM, the governing equations of structural analysis, and the coupling of
the fluid and structural models are explained in the same chapter (Chapter 4). The validation
of the coupled methods and their application are presented in the next chapters for different
FSI problems. Finally, the thesis presents two further numerical extensions of VPM that
allow the modelling of inflow fluctuations along with their application in FSI simulations.

The numerical extensions, the methodology, and the contribution of this research are sum-
marized as follows:

e A partitioned algorithm of 2D VPM for large-displacement FSI simulation of thin-
walled flexible systems.

It is a newly developed partitioned F'ST model using 2D VPM. The model is implemented
mainly for large-displacement coupled interactions of thin-plate systems. The 2D VPM
with immersed interface technique is utilised for analysis of flow around deformable
bodies; the method ignores across-flow effects. The 2D corotational finite element
formulation is used to analyse the geometric nonlinear motion of thin-plate systems.

e A partitioned algorithm using pseudo-3D VPM for FSI analysis of linear shell-type
structures.

It is another new extension of VPM in the context of pseudo-3D multi-slice FSI analy-
sis. Here, the structural equations are solved using superposition of uncoupled natural
vibration modes, and therefore, the method is for linear structures. The novel con-
tribution is the inclusion of 3D vibration modes of shell structures in contrast to the
existing line-like structural model based on beam elements. This new extension allows
simulating FSI problems of thin-walled shell structures such as large membrane roofs,
tubes, towers, and chimneys, etc.

e A simplified aeroelectromechanical coupled model within the framework of 2D coupled
VPM.



